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Abstract

This contribution discusses the mapping of sin-
gular value {¢—) bounds and structured singular
value (u—) bounds into parameter space. The o—
and p— mapping problem is defined to enclose
robust design and analysis in parameter space.
Real, complex and mixed uncertainty structures
are considered. While the singular values enjoy
nice continuity properties and bound mapping
is rather principally straightforward, the struc-
tured singular value bound mapping is more in-
volved. Discontinuity properties of y—measures
w.I.t. parametric uncertainties are further dis-
cussed in terms of bifurcation mapping condi-
tions.

1 Introduction

Singular value bound specifications reside at the
heart of many robust design and analysis tech-
niques [7]. Consider the interaction of a given
stable and proper system P and some uncertainty
A, which may be a complex, real (parametric)
or mixed uncertainty. The basic paradigm of
all techniques is phrased as follows: given that
the norm (H,) of the uncertainty is smaller than
some 1/, (v > 0), the stability /performance ro-
bustness specifications are fulfilled if

a <
sup F{P) <,

holds. While this is known to be a fairly conser-
vative requirement, the structured singular value
measure [3] is introduced to include the uncer-
tainty structure information on the interaction
between the system and the uncertainty, thus
leading to less conservative constraint. The ro-
bustness requirement reads now

SRP ua(P) <.

However less conservativeness has its price, since
¢ may be discontinuous for systems with real
parametric uncertainties [2],[6].

This paper is about mapping of singular value
(H.) and structured singular value bounds in
parameter space. To this end, the o— and
p—mapping problems are defined, which may be
used for analysis and synthesis of robust con-
trollers for MIMO systems with real, complex
and/or mixed uncertainties. Based on two nec-
essary conditions, the g-mapping problem into a
plane of two parameters is solved for input-output
and state-space system representation. Also the
set of necessary and sufficient mapping conditions
is derived for the input-output system representa-
tions. Continuity properties of y are discussed in
the parameter space framework. It is shown that
mapping singularities such as bifurcation singular
and branching frequencies may cause the discon-
tinuity of u w.r.t. to the 'problem data’, [2]. The
p—discontinuity may also appear in the frequency
response. A continuity condition of u for real pa-
rameter uncertainties is derived. It is shown that
a linear fractional transformation exerts a shifting
and scaling effect on some uncertainty ball. Based



on this we propose a solution for the py—mapping
problem as an analysis and design tool for the
systems with mixed uncertainties.

The notation used in the paper is standard.

2 o—Mapping problem

Let P be a matrix in C™*". By definition, a
singular value ¢ of P fulfills the conditions

PP*y = g*u, P*Pv=d’v, (1)
i.e. the squares of the singular values of P repre-
sent the eigenvalues of the matrix PP* and P*P.

Obviously, P*P is a hermitian matrix with a real
nonnegative eigenvalue spectrum.

Let P = P(jw,q) € RH with g € R?, be any
proper and stable transfer matrix of a MIMO sys-
tem with m—inputs and n—outputs: g is a vector
of uncertain system parameters and/or controller
parameters. Define the c—mapping problem as
follows,

Definition 2.1 Let v > 0. Find the set Q, of
all parameters q, such that the mazimal singular
value of the system is smaller than ~, i.e.

Q,={geR: sup G (P(jw,q)) <~} (2

3 Continuity of singular values

This section is about continuity properties of the
singular values. The following is a reformulation
of the well-known polynomial root-continuity the-
orem.

Definition 3.1 (c—Continuity) Let

P(jw,q) € RHo and 0™ = o(P(jw, q*)) its sin-
gular value. Then Ve > 0, 36 > 0 such that ||q —
¢l <é=lo(P(jw,q)) —o*| <e.

On the basis of this definition, the Boundary
Crossing Theorem of Frazer and Duncan [5] for
the singular values is restated in the following the-
orem.

Theorem 3.2 (Boundary Crossing) Let v >
0 and P(jw,q) € RHe. Then (2) is equivalent
to the conjunction of the conditions

(3g € Q, s.t sup7(P(jw,q)) <7
(Vg € Q,, Sﬁj’p 7 (P(jw,q)) #7)-

Hence, g—boundaries should be searched for pa-
rameters q, s.t. o(P(jw,q)) = 7. Regions in
the parameter space (i.e. plane) result which are
then checked if the condition o(P(jw,q) < v is
fulfilled. The solution of the ¢—mapping prob-
lem, @Q,, is the region where this inequality is
valid for each singular value of the system.

4 Transfer matrix based mapping

Obviously, (2) is equivalent to
Q,={ge R’ :0 (P(jw,q)) <7, Yo €S} (3)

where § = {0].09,...,0m} is the set of all singu-

lar values, i.e.

(4)

withi =1,2,...,m, since o; is nonnegative. Con-
sidering any singular value o;, we search for the
boundaries in g—parameter space where the fol-
lowing two conditions apply

603'
O'.,;(CJJ, Q) =7, E(w: Q) = OJ

2 2
O};S'}/:

(%)

withi=1,2,...,m. These conditions are usually
called the point and tangent condition and repre-
sent the necessary conditions for a single singular
value to be maximal at frequency w.

Consider the maftrix,

¥ — P(jw, q)PT(—jw, q) (6)

and define,

e = det (721 — P(jw, )Pt (—jw, Q)) . (7)

The singular value decomposition (SVD) of (6)
yields

PI-PP =U (¥*I-%) UL, (8)



Therefore,

e=[[(+*=ad).

m
7=1

and the following two equations

o
e(w, q) =0, a—Z(w, q) =0, (10)
represent necessary conditions for the set of m
pair conditions (5), i.e. (2).

5 State space representation

based mapping

Let (A, B,C, D) be a state-space representation
of an uncertain system P(jw,q) (the argument
dependency is dropped). Define the Hamiltonian
matrix

_ [A-BRDTC

- —~BR-1BT
"I | NoTSsC

—AT + CTDR™'BT |
(11)

where R = DD —~+?I and § = DDT — 42T and
v > 0. The following theorem is standard, [4].

Theorem 5.1 Assume A has no z‘magz'nary}
eigenvalues, wy € R and v > 0 is not a singu-
lar value of D. Then, v is a singular value of
P(jw) iff jwq is an eigenvalue of H,.

This theorem relates the singular values of the
system with the eigenvalues of its Hamiltonian
matrix. A straightforward consequence is the fol-
lowing well-known theorem, [4].

Theorem 5.2 (Boyd et. al.) Let A be stable
and 6(D) < . Then the two statements are
equivalent,

1. [ Hllw 2
2. H, has pure imaginary eigenvalues.

This theorem has been used to obtain a numerical
bisection method to compute the I, norm of a
given transfer matrix. We use the above theorem

in its symbolic form to derive mapping equations
for the H norm. The boundary of a parameter
region with ||H||s < 7 is given by parameters for
which H,, defined in (11) has at least a pair of pure
imaginary eigenvalues. The eigenvalue equation
e(s,q) = det(sI — H,) = 0 can be used to check
if 5 is an eigenvalue of H.,. From this follows that

e(w, @) = det(jwl — H,) =0, (12)

is a necessary condition for parameters with
l|H||.o = 7. Since (11) is a Hamiltonian, pure
imaginary eigenvalues will exist as pairs. There-
fore the following double root condition for poly-
nomial equations applies,

Je
ow
Equations (12) and (13) define two polynomial
equations which can be used to map a given H
norm condition into parameter space. Note that

Theorem 5.1 guarantees that these equations are
identical to (10).

(w,q) =0. (13)

6 The necessary and sufficient
mapping conditions

The derived mapping conditions in the past two
sections represent the necessary conditions for
the solution of ¢ —mapping problem and they are
suitable for the mapping of the singular value
bounds in the parameter plane of two parame-
ters. In this section we generalize the mapping
equations by deriving the set of necessary and
sufficient conditions for the c—mapping problem.

Equation (8) says that ¢ —mapping conditions are
equivalent to positivity of the matrix (6), i.e.

VI — P(jw, q}P*(jw,q) > 0. (14)

The following theorem is standard in linear alge-
bra.

Theorem 6.1 A hermitian matriz H(jw) =
(hij) 1s positive definite iff,

AT GwY >0, Vw >0, i=1,2,...,m



with

hi1 (jw) hyi(jw)
AP (w) =] s
hig (jw) his(jw)
Now apply this theorem to (14) to get the set of
necessary and sufficient conditions which guaran-
tee the singular value bound condition

e;(jw,g) >0, i=1,... ,m. (15)

with
e(jw,q) = AT TFFGw), i =1,2,...,m.
(16)

This is a system of parametric nonlinear algebraic

inequalities. Its solution is the set Q).

7 u—Mapping problem

Nonconservative robust control analysis and de-
sign criteria can be formulated using the struc-
tured singular value measure [3], [6], [7]. The
structured singular value (u) of a system reflects
the interaction of the nonconservative uncertainty
set with the nominal {unperturbed) system.

Figure 1: To illustrate the definition of 4.

To recall the definition of i, consider the system
in the above figure with P(s) € RH, represent-
ing the nominal system and A the uncertainty.
Let P € C™" and A € C™*". The uncertainty A
is a diagonal matrix with structured uncertainty
blocks of the forms g¢;1;, 6;(s)}{; and unstructured
uncertainty A;(s) € C™*™ . Here g; is a scalar
uncertain parameter. All of the entries in A are
assumed to be in R . Such entries are said to

be allowed uncertainties. Let A denote the set of
all such uncertainties.

The structured singular value of P wur.t. the
structured uncertainty A is defined as

1
“A(P) = min {7(A) : det (1 — PA) =0}

unless no A € A makes I — PA singular, in
which case, pa (P) =0, [6], [7]. That is, u rep-
resents the reciprocal of the smallest (in the sin-
gular value sense) structured uncertainty A € A,
which destabilizes the loop in Fig. 1.

The p—mapping problem is defined as follows,

Definition 7.1 Find the set Q, of all parame-
ters q defined by,

Q,={gqe€ R":
sup o({A(jw, g)) sup pa(Piw)) <1}
“ (17)

Some conventions are needed for the generaliza-
tion of the u—mapping problem to framework the
structured robust stability and performance anal-
ysis and synthesis. Consider the general setup in

Figure 2: General p framework.

the figure above. The uncertainty block A is split
into two blocks A; and Aa. The block A, in-
cludes real parametric uncertainties ¢;/;, and/or
structured complex uncertainties §;(s)I;, while
Ap includes unstructured complex uncertainties
A;. All entries are assumed to be allowable (i.e.
stable and proper). By D we will denote the set



of all Ax uncertainties and by D, that of Ags.
Clearly A =D, U Da.

We will further discriminate between three sets of
plants: Py includes the set of all nominal plants,
Pa the set of all plant LFTs w.r.t. some un-
structured uncertainty Aa, i.e. F,(P,Aa) and
P, the set of all plant LFTs w.r.t. the controller
K, F(P, K}, or some structured uncertainty A,
Fi(P,Ay). Define also P =Py UPAUP,.

8 Continuity of u

The continuity properties of x4, on its domain of
definition are essential to the g—mapping prob-
lem. By definition, x : P x A — R. Formally
we say that g is defined on an interacting pair
(P,A) € (P x A), where P is a generalized plant
and A some structured or unstructured uncer-
tainty. The continuity of p is defined naturally
as follows,

Definition 8.1 Let ua(P) = p. p is said to
be continuous on (P,A) if Ve > 0, 36 > 0 s.t.
(P, A1) = (P A < 6= |pa, (P1) — ol <e.

Continuity properties of x4 depend primarily on
the interaction pair type. We will differ two in-
teraction types. An ¢ — g interaction includes the
(P, x D,} pairs, while g — A the remainder cases
(P; x Da) and (Pa x D,). A short discussion
of the continuity properties of these interaction
types follows.

8.1 ¢ — A Interaction

A pair (Pa,D,) appears typically during a ro-
bustness analysis step, e.g. when applying the
main-loop-theorem [6], [7]. On the other hand,
(Py. Da) is met when performing p-design w.r.t.
to some An.

Lemma 8.2 Suppose pa, (Pa) =8> 0. Then u
is continuous on the pair (Pa, A,).

Proof. In [6] it has been shown that u is al-

ways uFE)er-semicontinuous, Le. Ve > 0, 34, >
1

0: [|Ps, — Pa,ll <é1 = MA,,(PS)) < fB—¢1. On

the other hand, since &(-) is continuous on A,
Ve, >0, 36, > 0 AP —A || < & = 5(AP) <
. Define F(X, A{Y) = det(I ~ XA =0,
where Vw > 0, min 7(Pa} < 7(X) € max 5(Pa).
F is continuous in X, so g is well-defined in
HA?) — Ay]| < 8. But therein g, @ (X) > f—éo.
So 4 is also lower-semicontinuous. “This completes
the proof.

Analogously it can be shown that 4 is continuous
on (P;,Pa). Therefore it can be concluded that
(4 is continuous on ¢ — A interactions.

8.2 g — g Interaction

This type of interaction describes the systems
with real parameter uncertainties. In [2] it was
shown that gz may be discontinuous in this case.
Note that an ODE

J(q,w)q’ + eg{q,w) =0, (18}

can be associated to the mapping equation
e(w,q) = 0, whereby ¢’ = (dqy/dw,dgy/dw)”
and

J(q,w) = de/dq, eo(q,w)=0J/0w. (19)
The peculiar mapping condition appear at
(g, wp) for which

rank (J) = rank (J,ep) = 1. (20)

At such a (g,,wp) (18) is consistent but the so-
lution uniqueness is lost. At frequency wy a bi-
furcation occurs, i.e. new curve branches emerge
or disappear. The bifurcation frequency wy may
be a singular frequency or a branching frequency.
Geometrically the difference is that in an envi-
ronment of a singular frequency wy real solutions
for g, exist, whereas at a branching frequency the
complex solutions fall down to the real g plane,
or 'disappear’ into complex solutions at g;. An-
other difference is that branching frequencies ap-
pear only for a nonlinear parameter dependency,
whereas singular frequencies are present also for
linear parameter dependency.

Clearly such bifurcation events affect substan-
tially the p— mapping regions. Actually new



boundaries (regions) emerge in the parameter
space which may cause discontinuity of the ro-
bustness margin, see Example 9.7.

9 u—Mapping equations

9.1 Basics
Consider the primitive definition of the
p—mapping problem in (17). Note that

this definition includes a (Py,A,) interaction
pair and it does not fit into any of the robust
control framework pair type just defined, since
Py is fixed. However its solution will illustrate
the basic approach.

The p—mapping problem is split into three sub-
problems.

1. The boundary condition

e(jw,q) = det (I — P(jw)A(jw, q)) =0,
(21)
is mapped in the g—parameter plane. A

curve J, results in the parameter plane.

2. Jointly to mapping, an optimizatioﬁ algo-

rithm for the singular value of A; = A(jw, q)
on the boundary (21) is executed. The min-
imal singular value of A, say

in 7(A v, ) = % (22)

is returned (3 > 0).

3. The third subproblem is a c—mapping prob-
lem,

search for g : sup o(A(jw,q@) <8 (23)

in {the same) g-plane.

Remark 9.1 If the entries of the uncer-
tainty A, are scalars, the o—mapping
problem is rother straightforward,  since

E(AQ) = max('QIi! |QE|: e )

Example 9.2 The nominal system P, 1s defined
by P.(s) = C(sI — A)"'B, with

C 0 1 0 0
0 0 1 0
A: 1
0 0 0 1
| —5¢,2 —-20-8¢g, —44—-2¢, —20 ]
00 0g,2 —20 10 0
_1 Ga - e
B_ 00 o q
00 0 20 40 20
11

while the uncertainty is described with two un-
certain parameters A, = diaglqi,q].  The
boundary mapping equation (21) for this pair is
e(w, e, q) = J{w, g,)q + eo, with

[ ~10w? +10¢,”

J(w, q,) =

203 — 20w

40 w?
20 quw

and

wh+ (44— 2q,) W +5¢,° }

eo(w, ¢a) = l —20w® + (20 + 8¢,) w

q,= 5.82

Figure 3: Solution of the g—mapping problem.

The solution of the u—mapping problem is shoun
in Fig. 3. Note that the line ¢ = —0.5 1s the
singular line, which corresponds to the singular
frequency w = 0, [1]. @, is represented by the
rectangle.

|
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Figure 4: ¢ — A Interaction.

9.2 ¢ — A Interaction
9.2.1 Main Loop Theorem

Consider Fig. 4 and assume o(Aa) < 1. Recall
the main loop theorem: given that ua, (P) < 1,
then pa(P) < 1 iff pa (F(P,An)) < 1, with
A = diag [Ag, Aa], and F; ; being submatrices of
a conveniently partitioned P. Note that in this
case the p—mapping problem can be defined as,

check whether ;,Laq(]:l(P, Aa)) < 1. (24)
This is a more involved problem compared to the
example above, since the boundaries of a family
of infinite plants have to be mapped to the pa-
rameter plane. However, as we showed, the g— A
interactions enjoy the powerful continuity condi-
tions, which might be of use to overcome this dif-
ficulty.

An intuitive idea is to define boundaries which
enclose the set of all plants F;(P, Ax) and then to
map these boundaries into a parameter plane. As
the enclosure criterion should be used the size of
the uncertainty Aa, since it is the only available
information. In addition, the enclosure should be
nonconservative,

Definition 9.3 Define the lower-boundary-
plant (LBP) L£(jw) and the upper-boundary-
plant (UBP) U(jw) as follows

a(L(jw)) =Aarréixéag(.ﬁ(P, Ap)), Yw >0
F(U(jw)) = max F(F(P,Ax)), Yw > 0.

Aa € BA

9.2.2 Obtaining the LBP and the UBP
boundaries

By definition Fi(P, Aa) is a homographic trans-
formation of the uncertainty A into some Aa.
In the scalar case such a transformation may map
a circle onto a circle. It is therefore apparent to
investigate whether the same holds also in the
matrix spaces (i.e. RH)-

Indeed, consider the plant uncertainty

An = Ap(I — PpAg)™, (25)
which is, by definition, well defined in the ball
Aa. Solving this equation for A, a homographic
transformation results, as well

Ap=AaI +ApPp) 7t (26)
The uncertainties ’'lying’ on the ball boundary,
OB A are unitary, i.e. they satisfy the equation
AAA3 = I. Therefore the ball boundary BA

is mapped to the ﬁA uncertainties which satisfy

An(I = PuPL )AL — ApPh — PpAy —T1=0.
(27)

Remark 9.4 Since p(Pa) < pa,(Pa) < 1, the
eigenvalues of the hermitian Py Py, are smaller
than unity. Therefore I — PapPyy is always non-
singular and positive-definite. These properties

of I — Py Py, are essential for the ezistence (and
unigueness) of the LBP and UBP.

Consider a sphere in Aa space, with the center
at 3 and the radius p. Move to its center using a
linear transformation (o nonsingular)

Aa=als+ 5, (28)

and substitute (28) in AxA% = pp* to get the

sphere equation in A, space

Z\i.A(aae’*)f&"A + Araft + ﬁa*ﬁf‘& +B8* —ppt =0.
(29)

Compare (29) with (27) to conclude that Ax (7 —
Py Ap) is indeed mapped to a ball in A, space.



That is, the LET F, (P, Aa) shifts and scales the
uncertainty ball Aa. The following are the equa-
tions to determine its center and radius,

ot = I — P22P2*2 (30)
Ofﬁ* = -*sz (31)
BB —pp" = I (32)

Since, I — Py Pj, is a positive definite and non-
singular hermitian, a unique solution for o will
always exist, which is

o = (I — PpPp)Y2 (33)

The same is valid also for p and 3,
p = (I—PuPp)™? (34)
8 = (o~ I)M2. (35)

Therefore, the uncertainty ball, which A, is
mapped to by F(P, Aa), is found to be

Fi(P,An) = Q1 + Q805 (36)
where,
1 = Pu— PPy (37)
Q2 = Ppat (38)
(s = Py (39)
with,
7(Ax) =(p) (40)
Finally define
) 7(Qx) 7(p) 7(Qs)
1) b )Q(Ql) )
e 7(Q) 7(p) 7(Q)
(w) 1+ 70 (42)

to complete the following theorem.

Theorem 9.5 If ua, (Py) <1, Apx € BA, than
the lower-boundary-plant and wupper-boundary-
plant of the LFT F(P, Ap) are uniquely defined
to be,

Hw)@r(Jw)
u(w)Qr (Fw).

(43)
(44)

N
<
E

|

Proof Indeed Yw > 0,

Amax F(Fi(P, Aa))
= max 0@+ Qz/—\AQs)
= Aﬁ'(%fjl-i-ﬂ Q2)7(p)T(Q3)
= u(w)o(Q1)

Analogously,

min g(}—z(P AA))

BaeBAT T L 0Q1+Q2AAQ3)
_ A&(%QB?"‘ o Q2 QB)
= l{w)a(Ch)
= &(L(jw))-

Note that in both cases it is assumed that ZSA isin
the 'direction’ of );. Hence U(jw) and L£(jw) rep-
resent non-conservative upper and lower bound-
aries for the LFT.

9.2.3 The p-region in parameter space

The continuity property of g— A interaction guar-
antee that the set of equations

det(I — F1(P,Ap)A,(jw, q)) =0,

is mapped onto a closed set. In this section,
we derive the mapping equations which define
the boundaries of this set. Form (45) it can
be read, that the set of all parameters g is to
be found, such that A = 1 is an eigenvalue of
Fi(P,Ap)A4(jw, g). Note that this is equivalent
to the requirement for ¢ = 1 to be a singular
value of the hermitian,

Ha = Fi(P,Da)Dg+ ALFF(P,An)—
Fi(P, Aa)AA;F; (P As).

(45)

Formally, we are looking for (7,-, defined by,
Qo=1 = {q € R”: 3w > 0,0(Ha) =1}. (46)

Next we try to convert this problem into a
o-mapping problem. To this end, define further
the UBP and LBP hermitians,

Hy = }-I(Pau)Aq + A;}T(P.U) - (47)
]:[(P,M)AQA;.}T(P,M),
He = F(PL)A+ A F (P L) (48)

~F(P, L) DAL F (P, L)



Several straightforward linear algebra steps lead
to the following crucial boundary conditions for
these hermitians, Vw > 0,

a(Hi) = mAT; a(Ha), mrﬁ‘; a(Ha) = E(Hu),@ |

Define further the two o-mapping problems,

Qa’<1
Qar>1 =

The solution of the problem (46) is given by,

{ge R :sup 7(H,) <1}, (50)
{qge RP: iglfg(?{l) >1). (51)

Lemma 9.6

ch=1 = Rp \ QJ>1 \ Qa'<1 (52)
The proof of this lemma is rather straightforward,
and is omitted.

After mapping the conditions, the two steps de-
scribed in (22} and (23) are to be done, to com-
plete the p—mapping problem for ¢ — A interac-
tion.

9.2.4 u—Synthesis

Note that principally the ¢ — A paradigm may
be used also for the synthesis of the controller K
w.r.t. some unstructured uncertainties A. The
structure of the controller is assumed to be pre-
defined and the plant P and the uncertainty A
are mixed in an LFT, 7(P,A). The set K, is
searched,

K, = {keR": (53)
sup (K (jw, k) sup ux 71(P, A) < 1}.

9.3 The ¢ — g Interaction

In this section the u—mapping problem of a g —
g interaction is defined. Just its usage for the
analysis purposes is discussed here.

A g — q interaction is defined on (P, A,) pairs,
that is, a controller K is to be found, such that
robust stability and performance criteria are sat-
isfied w.r.t. parameter uncertainties. Principally

any of the blocks A, or K (see Fig. 2) may be
mixed with the plant P in an LF'T, to define
Py, e.g. Py = Fu(P,K). The p—mapping prob-
lem in this case reads: find the set of all con-
trollers K, i.e. controller parameters k, such that
Vge Q— Box

sup 7(A(jw, q)) syp pa, (FulP K)) < 1.

¢ ’ (54)
In [2] it was shown that g— (i.e. robustness mar-
gin) of these systems may be discontinuous on its
domain of definition. The g— mapping approach
provides a very nice framework to illustrate this
discontinuity.

Consider the mapping equations

e(jw, g, k) =0. (85)

Now observe the relation between the infinites-
imal increments of dg and dk, by applying the
total differential on {55)

Oe de

— dk+ =— dw =0,
ok * B ¥
where J, = de/dq stands for the jacobian matrix
w.r.t. . As long as this jacobian is non-singular,
the vicinity of (g, k) is governed by continuity
properties and

J,dg+ (56)

de Jde
_ g1 _ 1% 4o 5
dg=-J, e dk — J, Ew dw (57)
Hence, if 4 is defined on a (g, k), i.e. it is a

solution of the equation

e :=det(I — Py(k)A,(jw, @) =0,
then it is continuous in a vicinity of (g, k) if the
jacobians

3
%€ and J, =28

Ji= 34 ok

are nonsingular at (g, k).

Example 9.7 The determinant of the jacobian
Jy in example 9.2 is

det(Jy) = —200w (w? ~ (1 - go)w+qa)
X (w?+ (1 - go)w + o)



Note that singular frequencies may appear for
a certain ¢,. Indeed, observe that if for ¢ =
3 + 2v/2 a double singular frequency ezists at
w = 1+ 2. This bifurcation event generates
two singular lines that cause the discontinuity in
parameter plane. This is eractly what was re-
ported in [2] to represent the discontinuity of ro-
bustness margin on ’‘problem data’ In Fig. 5

Figure 5: p— Mapping solution for the 'problem
data’, g, = 5.84.

the p—mapping problem is solved for the 'problem
data’ g, = 5.84, and in Fig. 6 both u—curves are
shown to visualize the effect of the discontinuity.

q,=582584

Figure 6: Illustrating the discontinuity of u, due
to a double singular frequency.

Conclusions

Singular value and structured singular value
bounds mapping in parameter space is discussed.
A paradigm is developed, which may be used for
the H,, and p analysis and synthesis in parame-
ter space. The discontinuity of x is shown to be
related to the singularities in the solution of the
mapping equations. The approach presented in
this paper calls for further research efforts.
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