Space radiation, including Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), represents a major hazard for biological systems beyond Earth. Spores of _Bacillus subtilis_ have been shown to be suitable dosimeters for probing extreme terrestrial and extraterrestrial environmental conditions in astrobiological and environmental studies. During dormancy spores are metabolically inactive; thus substantial DNA, protein, tRNA and ribosome damage can accumulate while the spores are incapable of repairing and/or degrading damaged DNA and proteins. We used different genotypes of _B. subtilis_ to study the effects of extraterrestrial conditions in both space and ground-based experiments. Spore survival was strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid (DPA) and the interaction of several DNA repair mechanisms. I will present results from physiological and genetic studies regarding spore resistance to spaceflight conditions as well as data from the transcriptome analyses of germinating _B. subtilis_ spores. Our ultimate goal is to obtain a complete model describing spore persistence and longevity in high radiation-exposed environments, with implications for future life detection missions and human spaceflight.

For more information please contact Christopher Carr at chrisc@mit.edu, 617-216-5012.