CSP Research on CSP cost reduction

Bernhard Hoffschmidt, DLR Institute of Solar Research

Knowledge for Tomorrow

- 1. Strategy and Approach for Cost Reduction
- 2. Innovation to drive Cost reduction
 - a. Near term: Advanced silicon Oil in parabolic troughs
 - b. Mid term: Parabolic Trough with Molten Salt
 - c. Long term: Particle Receiver Technology
- 5. Conclusions

1. Strategy and Approach for Cost Reduction

- 2. Innovation to drive Cost reduction
 - a. Near term: Advanced silicon Oil in parabolic troughs
 - b. Mid term: Parabolic Trough with Molten Salt
 - c. Long term: Particle Receiver Technology
- 5. Conclusions

Strategy and Approach for Cost Reduction

High Concentration + High Temperature = High Efficiency = Low Cost

- 1. Strategy and Approach for Cost Reduction
- 2. Innovation to drive Cost reduction
 - a. Near term: Advanced silicon Oil in parabolic troughs
 - b. Mid term: Parabolic Trough with Molten Salt
 - c. Long term: Particle Receiver Technology
- 5. Conclusions

Advanced Silicon Oil in Parabolic Troughs

- Environmental Safety
- Capacity / Performance
 - Reduction of auxiliary consumption by lower pour point (-55°C)
 - Higher 425°C field outlet temperature
 - Higher possible efficiency of Rankine cycle
 - Slower degradation
 - Smaller storage systems at the same capacity
- => 5% cost reduction potential

Advanced Silicon Oil in Parabolic Troughs

Enhanced thermal stability

- Comparison of DPO/BP at only 400°C with HELISOL[®] 5A at 425°C
 - Considerably slower formation of low boiling degradation products
 - Less hydrogen formation (enhanced receiver lifetimes expected)

- 1. Strategy and Approach for Cost Reduction
- 2. Innovation to drive Cost reduction
 - a. Near term: Advanced silicon Oil in parabolic troughs
 - b. Mid term: Parabolic Trough with Molten Salt
 - c. Long term: Particle Receiver Technology
- 5. Conclusions

Molten Salt in Parabolic Trough Power Plants

Advantages of the Molten Salt System

- Higher overall system efficiencies due to higher working parameters (up to 565°C/150 bar instead of 400°C/100 bar)
- Fully decoupled Solar Field and power block
- Lower price for heat transfer fluid (HTF)
- Environmentally friendly heat transfer fluid vs. thermal oil

=> 20% cost reduction potential

DLR's objective in Évora, Portugal: to confute all concerns

Project: HPS2 – High Performance Solar 2 Commissioning of the plant: January 2018

on the basis of a decision by the German Bundestag

See also: http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10436/20174_read-48143/

Road map of Cost reductions for molten salt parabolic trough plants

Rügamer, T., H. Kamp, et al. (2013). Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects. 19th SolarPACES Conference, Las Vegas.

- 1. Strategy and Approach for Cost Reduction
- 2. Innovation to drive Cost reduction
 - a. Near term: Advanced silicon Oil in parabolic troughs
 - b. Mid term: Parabolic Trough with Molten Salt
 - c. Long term: Particle Receiver Technology
- 5. Conclusions

Long Term Perspective: Path to High Temperatures

Reference system: molten salt, steam cycle @540°C

Target: higher system efficiency

- Steam cycles of 620°C: η_{cycle} up to 48%
- Supercritical CO₂ cycles with up to 700°C: $\eta_{cycle} > 50\%$?
- Receiver temperature up to 1000°C
- Suitable heat transfer media
 - New molten salt mixtures: cost, corrosion, degradation?
 - Liquid metals: cost, corrosion, safety?
 - Solid particles?
- Higher cycle efficiency \Rightarrow less heliostats required \Rightarrow **lower cost**
- \Rightarrow Bauxite particles

Principle of a Solar Particle System

Particle Direct Absorption Receiver: Falling Film Receiver

- Solar tests at temperatures > 700°C
- Particles: sintered bauxite ("proppants")
- High particle velocities might be problematic (abrasion, attrition)

Particle receiver tests at Sandia Natl. Labs, USA

DLR Approach: Direct Absorption Receiver: Centrifugal Receiver

- Rotating receiver
- Centrifugal force keeps particles at the wall
- · Residence time controlled by rotational speed
 - Good temperature control in all load situations

Centrifugal Particle Receiver: 10kW Test Receiver

High receiver efficiency due to high flux capability

Centrifugal Particle Receiver: 500kW Prototype

- 500 kW_{th} test prepared for summer 2017
- 900°C design particle outlet temperature

Economics of Solar Particle Systems vs. State of the Art Molten Salt Tower

\Rightarrow LCoE reduction potential: about 16%

Conclusions

- Cost reduction requires higher process temperature to reach to higher solarelectric efficiency
- New heat transfer fluids needs to be integrated to reach higher process temperature
- Advanced oil, molten salt or solid particles are currently under large-scale testing to proof their feasibility
- CSP + PV Hybrid Plants has the potential to meet price targets

Thank you for your attention

contact: bernhard.hoffschmidt@dlr.de