LASER OPTICAL TRACKING TECHNOLOGY FOR SPACE DEBRIS MONITORING

Wolfgang Riede, Jens Rodmann, Leif Humbert, Daniel Hampf

Institute of Technical Physics, Stuttgart, Germany

1st IAA Conference on Space Situational Awareness (ICSSA) Orlando, FL, USA, 2017/11/14

German Aerospace Center (DLR)

Approx. 8000 employees across 33 institutes and facilities at 20 sites.

Offices in Brussels, Paris, Tokyo and Washington.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

DLR Institute of Technical Physics – Sites & Topics

CBE Standoff Detection

Space Debris

Air Data

High-power cw lasers

Overview of talk

Motivation

Laser tracking: procedure & results

SLR ground station / containerized system

Performance modelling of small station network

Use cases

Summary / outlook

Radial distribution of spatial density of LEO objects

Scheme of three dimensional trajectory assessment of LEO orbital objects

Scheme of three dimensional trajectory assessment of LEO orbital objects

DLR tracking and laser ranging observatory: Technology testbed / engineering station (ILRS)

DLR tracking and laser ranging observatory: Technology testbed / engineering station (ILRS)

SLR reference measurements of geodetic satellites

LAGEOS 2

MEO object 0.6 m diameter 426 retroreflectors

Time (s)

Upgrade of satellite laser ranging station ESA project - space debris laser ranging

Wettzell SLR station 0.75 m transmitter/receiver "Space debris laser" specs: 20 Hz, 200 mJ, 1064 nm, 3 ns Beam coupled in Coudé path

Laser ranging data can provide information about **structure** and **dimension** of objects

Containerized laser ranging system

Characteristics

- Robust 20 ft ISO container, total weight of 10.5 t, easy shipping (truck/train)
- Heavy duty frame for raising and lowering a platform
- Short (2 m long) Coudé path with > 30 mm free aperture
- "High" energy Nd:YAG laser (50 mJ), 20 W average power, 5 ns pulses
- Full operation expected in 2018

Initial performance modelling of small station network

Station passes with observable tracks of LEO object

(Passes over the stations with elevations >30 deg are shown as green lines)

Observable station passes of LEO object

Station passes: 7

TNRF

Sun 1 Mon 2 Tue 3 Wed 4 Thu 5 Fri 6 Sat 7

Position uncertainty during observation period

Contributing observations by ASC, DWD, TNRF

Propagation - absence of measurements

Position uncertainty during observation period

Contributing observations by ASC

Addressable use cases by laser optical tracking

Maintenance of a space object catalog

Initial analysis with small local station network Network of laser optical tracking stations is mandatory

On-demand mission support

Inherent high accuracy achievable by laser ranging is the key factor Network of laser optical tracking stations is mandatory

Stare and laser chase for uncatalogued objects

Uncued detection of objects

Handover to laser optical tracking telescope for range measurements Precise orbit determination (measurements from current / subsequent passes

Summary and outlook

- DLR is developing and operating laser optical tracking sensors
 - Cooperative objects: SLR station operational
 - Containerized, transportable system for space debris monitoring functional in 2018
- Laser optical tracking sensors complement radar sensors for LEO
- Availability restrictions (weather/visibility...) can be circumvented by operation in a distributed sensor network
- Initial performance modelling (using ODTK) of a small station network promising
- Extension of modelling to extended station network

Laser ranging of space debris with Graz SLR station First successful demonstration in Europe

- 150 tracked station passages
- 59 different objects
- $600 \text{ km} \le r \le 3,300 \text{ km}$
- RCS: 0.2 m² 19 m²
- avr. accuracy (rms): 0.8 m
- laser source:

532 nm, 200 mJ, 100 Hz, 3 ns

