LASER OPTICAL TRACKING TECHNOLOGY FOR SPACE DEBRIS MONITORING Wolfgang Riede, Jens Rodmann, Leif Humbert, Daniel Hampf Institute of Technical Physics, Stuttgart, Germany 1st IAA Conference on Space Situational Awareness (ICSSA) Orlando, FL, USA, 2017/11/14 #### **German Aerospace Center (DLR)** Approx. 8000 employees across 33 institutes and facilities at 20 sites. Offices in Brussels, Paris, Tokyo and Washington. Gefördert durch: aufgrund eines Beschlusses des Deutschen Bundestages ## **DLR Institute of Technical Physics – Sites & Topics** **CBE Standoff Detection** Space Debris Air Data High-power cw lasers #### Overview of talk Motivation Laser tracking: procedure & results SLR ground station / containerized system Performance modelling of small station network Use cases Summary / outlook ## Radial distribution of spatial density of LEO objects # Scheme of three dimensional trajectory assessment of LEO orbital objects # Scheme of three dimensional trajectory assessment of LEO orbital objects # DLR tracking and laser ranging observatory: Technology testbed / engineering station (ILRS) # DLR tracking and laser ranging observatory: Technology testbed / engineering station (ILRS) ## SLR reference measurements of geodetic satellites #### LAGEOS 2 MEO object 0.6 m diameter 426 retroreflectors Time (s) # **Upgrade of satellite laser ranging station ESA project - space debris laser ranging** Wettzell SLR station 0.75 m transmitter/receiver "Space debris laser" specs: 20 Hz, 200 mJ, 1064 nm, 3 ns Beam coupled in Coudé path Laser ranging data can provide information about **structure** and **dimension** of objects ### Containerized laser ranging system #### **Characteristics** - Robust 20 ft ISO container, total weight of 10.5 t, easy shipping (truck/train) - Heavy duty frame for raising and lowering a platform - Short (2 m long) Coudé path with > 30 mm free aperture - "High" energy Nd:YAG laser (50 mJ), 20 W average power, 5 ns pulses - Full operation expected in 2018 ### Initial performance modelling of small station network #### Station passes with observable tracks of LEO object (Passes over the stations with elevations >30 deg are shown as green lines) ## Observable station passes of LEO object Station passes: 7 TNRF Sun 1 Mon 2 Tue 3 Wed 4 Thu 5 Fri 6 Sat 7 ## Position uncertainty during observation period Contributing observations by ASC, DWD, TNRF ## **Propagation - absence of measurements** ## Position uncertainty during observation period Contributing observations by ASC ### Addressable use cases by laser optical tracking #### Maintenance of a space object catalog Initial analysis with small local station network Network of laser optical tracking stations is mandatory #### **On-demand mission support** Inherent high accuracy achievable by laser ranging is the key factor Network of laser optical tracking stations is mandatory #### Stare and laser chase for uncatalogued objects Uncued detection of objects Handover to laser optical tracking telescope for range measurements Precise orbit determination (measurements from current / subsequent passes ### **Summary and outlook** - DLR is developing and operating laser optical tracking sensors - Cooperative objects: SLR station operational - Containerized, transportable system for space debris monitoring functional in 2018 - Laser optical tracking sensors complement radar sensors for LEO - Availability restrictions (weather/visibility...) can be circumvented by operation in a distributed sensor network - Initial performance modelling (using ODTK) of a small station network promising - Extension of modelling to extended station network # Laser ranging of space debris with Graz SLR station First successful demonstration in Europe - 150 tracked station passages - 59 different objects - $600 \text{ km} \le r \le 3,300 \text{ km}$ - RCS: 0.2 m² 19 m² - avr. accuracy (rms): 0.8 m - laser source: 532 nm, 200 mJ, 100 Hz, 3 ns