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Driving is a complex task concurrently drawing on multiple cognitive resources. Yet,
there is a lack of studies investigating interactions at the brain-level among different
driving subtasks in dual-tasking. This study investigates how visuospatial attentional
demands related to increased driving difficulty interacts with different working memory
load (WML) levels at the brain level. Using multichannel whole-head high density
functional near-infrared spectroscopy (fNIRS) brain activation measurements, we aimed
to predict driving difficulty level, both separate for each WML level and with a combined
model. Participants drove for approximately 60 min on a highway with concurrent
traffic in a virtual reality driving simulator. In half of the time, the course led through a
construction site with reduced lane width, increasing visuospatial attentional demands.
Concurrently, participants performed a modified version of the n-back task with five
different WML levels (from 0-back up to 4-back), forcing them to continuously update,
memorize, and recall the sequence of the previous ‘n’ speed signs and adjust their
speed accordingly. Using multivariate logistic ridge regression, we were able to correctly
predict driving difficulty in 75.0% of the signal samples (1.955 Hz sampling rate) across
15 participants in an out-of-sample cross-validation of classifiers trained on fNIRS data
separately for each WML level. There was a significant effect of the WML level on the
driving difficulty prediction accuracies [range 62.2–87.1%; χ2(4) = 19.9, p < 0.001,
Kruskal–Wallis H test] with highest prediction rates at intermediate WML levels. On the
contrary, training one classifier on fNIRS data across all WML levels severely degraded
prediction performance (mean accuracy of 46.8%). Activation changes in the bilateral
dorsal frontal (putative BA46), bilateral inferior parietal (putative BA39), and left superior
parietal (putative BA7) areas were most predictive to increased driving difficulty. These
discriminative patterns diminished at higher WML levels indicating that visuospatial

Frontiers in Human Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 542

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2018.00542
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2018.00542
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2018.00542&domain=pdf&date_stamp=2019-01-23
https://www.frontiersin.org/articles/10.3389/fnhum.2018.00542/full
http://loop.frontiersin.org/people/507345/overview
http://loop.frontiersin.org/people/395320/overview
http://loop.frontiersin.org/people/26148/overview
http://loop.frontiersin.org/people/380148/overview
http://loop.frontiersin.org/people/2441/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00542 January 21, 2019 Time: 17:54 # 2

Scheunemann et al. Demonstrating Brain-Level Interactions in Driving

attentional demands and WML involve interacting underlying brain processes. The
changing pattern of driving difficulty related brain areas across WML levels could indicate
potential changes in the multitasking strategy with level of WML demand, in line with the
multiple resource theory.

Keywords: driver state assessment, mental workload, driver workload estimation, visual-motor coordination,
visual attention, brain-level interactions, dual-task, fNIRS

INTRODUCTION

Driving is a complex task, composed of multiple subtasks where
different cognitive demands are concurrently imposed on the
driver. For instance, one needs to be attentive toward unforeseen
events, integrate information from within and outside the vehicle,
and control the vehicle to keep it on the lane. All those tasks
require cognitive resources of limited capacity (Wickens et al.,
2008). Some of these tasks could possibly draw from the same
shared resources, leading to a potential interaction between
different subtasks.

Working memory plays an important role while driving since
the driver has to continuously integrate and dynamically update
information from internal and external traffic environments (De
Waard, 1996; da Silva, 2014). For example, Wood et al. (2016)
have associated increased working memory capacity with better
ability to control visual attention while being less distracted
in different driving tasks. Further, certain driving situations
are associated with increased working memory demands, e.g.,
left turns at intersections (Guerrier et al., 1999) or driving
within a dense city environment (Patten et al., 2006) as they
require integration of more items into trajectory planning. Yet,
working memory is a capacity-limited system (Baddeley, 2003;
Cowan, 2010) and working memory overload deteriorates driving
performance (Lavie, 2010). For example, it has been shown that
increasing working memory load (WML) via a secondary task
decreases driving performance on the lane change task (Ross
et al., 2018). Interestingly, this effect was larger for people with
less working memory capacity.

Besides working memory, driving requires visuospatial
attention and visuomotor control (Vingerhoets and Stroobant,
1999; Lust et al., 2011; Benedetto et al., 2013). Visual attention is
demanded because the driver needs to simultaneously integrate
central and peripheral vision within a rapidly changing moving
environment, while monitoring for unexpected critical events
(Owsley and McGwin, 2010). Under decreased vision, more
resources are allocated to lane keeping (Gao and Zhang,
2016). More specifically, Brooks et al. (2018) could link a
decrement in driving performance in a lane-keeping task to
increased peristimulus alpha activity, an indication for poor
visuospatial attention. Further, when participants drove in a
narrow road condition as compared to the ordinary driving task
with normal lane widths, fNIRS measured increased activation
in the prefrontal areas (Shimizu et al., 2009). This supports
other findings showing that driving in narrowed lanes is more
demanding (De Waard et al., 1995; Liu et al., 2016a) and
associated with performance loss (Rosey and Auberlet, 2012).

Thus, narrowed lanes seem to increase visuospatial attention load
necessary for controlling the vehicle safely.

In driving, different task demands interact with each other
(Borghini et al., 2014; Matthews et al., 2015). On the behavioral
level, there are various studies that have investigated the effect of
cognitive load on driving performance. For example, a majority
of the studies suggest that cognitive load actually improves
driving performance indicated by improved lane keeping (He and
McCarley, 2011; Cooper et al., 2013; for review see Engström
et al., 2017). Yet, for studies in which driving difficulty was
increased by exposing the car to crosswinds, an additional
cognitive load task led to an improvement in lateral control
in one study (He et al., 2014), but a drop in another study
(Medeiros-Ward et al., 2014).

The interaction of workload and driving performance on
the neural level was studied by Wang et al. (2018). In their
driving study, using electroencephalography (EEG), car drifts
were induced requiring the participant to make lane-keeping
adjustments. Additionally, a mathematical calculation task was
presented either right before, right after or simultaneously
to the induced car drifts. Theta and alpha oscillations in
frontal, parietal and occipital areas in the different dual-
task conditions were compared to oscillations in single task
conditions. While over-additive activation in the frontal theta
oscillations were found for the simultaneous condition, all
other location-band combinations revealed either additive or
under-additive activation in dual-tasking. Vossen et al. (2016)
studied the effect of WML on the temporal neural markers
for visuospatial attention. Participants performed worse in a
visuospatial attention task, in which participants had to react
to specific cued visual stimuli in a traffic scenery, when they
had to complete an additional verbal memory rehearsal task
simultaneously. A further analysis of evoked response potentials
(ERPs) from EEG showed that in the high WML conditions,
there was a reduction and delay of neural markers only in
the early stages of the visuospatial task associated with the
initiation of spatial orienting. On the contrary, later stages of
the visuospatial task responsible for retaining attentional focus
and target selection revealed no differences in the high WML
conditions.

The effect of an additional task on the primary driving task
was also studied with functional magnetic resonance imaging
(fMRI). In a driving simulator study, Just et al. (2008) found a
decrease in parietal activation associated with spatial attention
in normal driving when participants performed an additional
listening comprehension task. As spatial attention and listening
comprehension draw resources mostly from non-overlapping
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cortical areas, the authors interpret the “diversion of attention as
reflecting capacity limit on the amount of attention or resources
that can be distributed across the two tasks” (p. 76). Similarly,
in a more recent fMRI-driving simulator study, Choi et al.
(2017) found a decrease in activation in the parietal areas and
an increase in activation in the inferior frontal gyrus and the
superior temporal gyrus associated with an additional listening
comprehension task while driving. These results illustrate the
complex interaction of how an additional task alters the neural
activation associated with the primary driving task.

In a cognitive approach on dual-tasking, Wickens (2008)
defined resources in his multiple resource theory of attention
along four dimensions, namely stages of processing, codes of
processing, modalities, and visual channels. The model assumes
an interference in dual-tasking when tasks compete for the
same resources. For each task, a computational model codes
the amount of resources needed for each dimension. For
any dimension, if all tasks combined require more resources
than what is available, the model predicts interference and
performance loss (Wickens, 2002). In an earlier study, the model
was implemented to predict driving performance along nine
different dual-task combinations consisting of different driving
conditions (e.g., urban vs. rural routes) and additional different
secondary tasks (e.g., visual vs. auditory backward reading of
numbers; Horrey and Wickens, 2003). Performance loss in dual-
tasking was successfully predicted by the model for latency of the
secondary task and response times to critical road hazards.

An important aspect of the multiple resource theory is
executive control, which describes the allocation of resources
between tasks. Especially in situations of high dual-task demands,
resources might be drawn away from a less prioritized task
toward a task with higher priority. Hence, the amount of
resources allocated to a subtask depends on the demands of the
other subtask, in particular when the other subtask is prioritized.
However, how these interactions happen on the brain level in
real world tasks is largely unknown. Therefore, in this study,
we aimed to investigate at the brain level, how different task
demands in one cognitive domain affect the resource allocation
for another cognitive domain, by comparing the specificity of
predictive brain activation patterns across various dual-tasking
scenarios. Specifically, we sought to explore how the assessment
of visuospatial attentional driving demands from functional
near-infrared spectroscopy (fNIRS) measurements depends on
different WML levels.

Functional near-infrared spectroscopy has recently become
popular in driving research as a measure of brain activity
because it provides brain activations measures with reasonable
anatomical and temporal resolution in relatively unconstrained
applied settings (Liu et al., 2016b; Sibi et al., 2016). FNIRS
uses near-infrared light to measure local concentration
changes of deoxygenated hemoglobin (HbR) and oxygenated
hemoglobin (HbO) from cortical brain areas which are seen
as correlates of functional brain activity (Villringer et al.,
1993; Sassaroli and Fantini, 2004). In comparison to HbO,
HbR signals are considered to be less influenced by systemic
physiological artifacts like cardiac pulsation, respiration,
or Mayer wave fluctuations than HbO (Obrig et al., 2000;

Zhang et al., 2005, 2009; Huppert et al., 2009; Suzuki, 2017).
Other studies additionally reported that HbR tends to correlate
stronger with blood oxygenation level dependent (BOLD)
response than HbO (MacIntosh et al., 2003; Huppert et al., 2006;
Schroeter et al., 2006; Foy et al., 2016).

In comparison to fMRI, fNIRS has lower spatial (Cui et al.,
2011; Mehta and Parasuraman, 2013; Pinti et al., 2018), but
better temporal resolution (Huppert et al., 2006). Compared to
EEG, fNIRS has lower temporal (Naseer and Hong, 2015), yet
better spatial resolution (Scholkmann et al., 2014). Due to its
robustness against motion artifacts and external electrical noise,
fNIRS is suitable for applied settings (Masataka et al., 2015;
Balardin et al., 2017) and has been used in actual driving (Yoshino
et al., 2013a,b). FNIRS has shown to be sensitive toward changes
in mental workload in the applied fields of simulated flight
operation (Ayaz et al., 2012; Durantin et al., 2014), simulated
urban rail driving (Li et al., 2018), as well as simulated (Unni
et al., 2017; Xu et al., 2017) and actual car driving (Ahn Son et al.,
2018). Further, fNIRS could detect elevated visual attention in
curve driving, as indicated by increased activity in right premotor
cortex, right frontal eye field, and bilateral prefrontal cortex (Oka
et al., 2015). Thus, fNIRS is applicable in applied driving settings
while providing independent measures of activity in functionally
specific brain areas.

In this study [some data has already been published in Unni
et al. (2017)], we used fNIRS brain activation measurements
obtained during driving to predict two types of cognitive
demands: visuospatial attentional demands and working memory
demands, both modulated simultaneously. To manipulate
visuospatial attentional driving difficulty, participants drove in
a 360◦ Virtual-Reality (VR) driving simulator, half of the time
through a construction site with a reduced lane width. At the
same time, participants had to perform the primary driving
task, which was a working memory speed regulation task (Unni
et al., 2017) with five different WML levels. Recording almost
whole-head fNIRS brain activation measurements, we aimed
at predicting driving difficulty (i.e., driving outside and within
construction sites with narrower lane widths) as a measure for
visuospatial attentional demands. One of our central questions
was whether it is possible to predict driving difficulty or whether
task interactions between visuospatial attentional demands and
WML levels at the brain level render this impossible. More
precisely, we calculated decoding models for the prediction of
driving difficulty from almost whole-head fNIRS for each WML
level separately and a model which combined fNIRS data over all
WML levels. A model with good prediction accuracy for driving
difficulty can be interpreted such that there exist distinct neural
correlates associated with increased driving difficulty. If there
was no interaction between WML and visuospatial attention,
a decoding model which combined fNIRS data over all WML
levels would perform similarly well in predicting driving difficulty
as using a decoding model for each WML level separately.
However, if there was an interaction between visuospatial
attentional demands and working memory demands, activation
patterns associated with increased driving difficulty would differ
over WML levels leading to better prediction accuracy for
the separate models. Hence, the comparison of prediction
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accuracies of the different decoding models characterizes the
interaction between the visuospatial attention with working
memory processing at the brain level. This is relevant for the
development of brain-based driver assistive systems as well as for
understanding the nature of the multitasking interactions at the
brain level.

MATERIALS AND METHODS

The experiment was implemented in a driving simulator where
participants drove on a highway with varying concurrent traffic.
Participants performed a driving task in a two factorial within
participant design with factors driving difficulty manipulated by
visuospatial attentional demands (two levels: non-construction
and construction) and WML (five levels: 0–4 back). The driving
difficulty was manipulated via changes of lane width and for
WML manipulation, participants performed a digit-span n-back
speed regulation task. The details of the tasks are provided
below.

Participants
Nineteen volunteers (17 males) aged 19–32 years
(Mean ± SD = 25.2 ± 3.7) participated in the experiment.
All participants possessed a valid German driving license at the
time of the experiment. Participants gave informed consent prior
to the experiment and received a financial reimbursement of
10 € per hour. The experiment was conducted according to the
guidelines of the German Aerospace Center and was approved
by the Ethics Committee of the Carl von Ossietzky University,
Oldenburg.

Experimental Set-Up
The experiment was set up in a VR-lab at the German Aerospace
Research Center allowing a 360◦ full view (Fischer et al., 2014).
During the experiment, participants were operating a realistic
vehicle mock-up equipped with common throttle, brake pedal,
steering wheel, and indicators. Participants drove on a simulated,
slightly curvy highway (64 km in total; developed on the platform
Virtual Test Drive, Vires Simulationstechnologie, Bad Aibling,
Germany) with varying concurring traffic. There were 15 vehicles
set randomly in an area with a radius of 1000 m around the ego
vehicle. Of those vehicles, 60% followed the direction of the ego
vehicle; 35% were in the front, 35% in the back, 15% to the left and
15% to the right of the ego vehicle; and 45% were trucks, other
55% were cars.

While driving, fNIRS brain activation measurements were
recorded from almost whole-head at a sampling frequency of
1.955 Hertz (Hz) from thirty-two optical emitters and detectors
using two NIRScout systems (NIRx Medical Technologies, LLC,
United States) in tandem mode. The system uses two wavelengths
of 760 and 850 nm to calculate the relative concentration changes
of HbO and HbR. We defined 78 fNIRS channels (emitter-
detector combinations) in total with an average channel distance
of about 3.5 cm. The exact channel locations are provided in Unni
et al. (2017). Along with fNIRS data, steering wheel position and
driving speed was also recorded at a sampling frequency of 50 Hz.

FIGURE 1 | Screenshots from the experimental paradigm. Top: a scene from
the construction condition with two lanes of reduced width. Bottom: a scene
from the non-construction condition with three lanes and normal lane width.

Visuospatial Attention Manipulation
We manipulated the visuospatial attention demands for the
driving task throughout the highway. For about half of the time,
participants were driving within a construction site (labeled as
construction). During the other half of the drive, participants were
driving on a normal road without the construction site (labeled as
non-construction).

The main differences between those two conditions were
the number of available lanes and their widths. In the non-
construction condition, there were three lanes available with a
total width of 10.75 m, consisting of two lanes with a width of
3.5 m (left and center lane) and a slightly wider right lane with
a width of 3.75 m. Driving in the construction site was more
difficult where only two lanes were available. The widths of the
lanes were also reduced along the construction sites with the left
and right lanes having a width of 2.5 and 3.5 m, respectively,
resulting in a total width of 6 m.

Further, the highway resembled the typical design of German
highways. In the non-construction site, there were solid markings
in white on the left and right of the road with dashed lines
between the lanes. As typical for German highways, pylons
marked the beginning and end of the construction sites and
yellow markings highlighted the new lanes. The positions and
design of the speed signs remained the same.

Screenshots from the experimental paradigm for both
conditions can be seen in Figure 1. In both conditions,
participants had to avoid collisions with other vehicles in ongoing
traffic and overtake when it was deemed necessary to drive at the
correct speed. Speed signs and WML levels varied at the same rate
over both levels of driving difficulty.
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FIGURE 2 | Example of the n-back experimental paradigm to manipulate cognitive workload. (A) Consider a scenario where the participant is about to pass the
80 km/h speed sign and the previous four speed signs were as shown in the schematic. (B) For the corresponding n-back task, participants had to memorize the
last n speed signs and drive at the n-th speed sign which occurred previously. For example, at 1-back, the participant’s target speed is the previous sign (140 km/h)
and has to keep the current speed sign in memory (80 km/h). Figure taken from Unni et al., 2017.

Working Memory Load Manipulation
The n-back task is considered to be a benchmark for WML
manipulation in neurocognitive psychology (Kirchner, 1958). In
a classical n-back task, a series of numbers, letters, or other stimuli
are presented. Participants then have to compare the current
stimulus with the stimulus n steps back and give a response
whenever they are the same. We modified the classical n-back
task to be applicable in the driving scenario by using speed signs
as stimuli. Participants had to adjust their speed to the speed sign
they passed n speed signs before. For a successful performance,
it was necessary that participants continuously update, memorize
and recall the previous n speed signs. Our experiment consisted
of five different workload levels from n = 0 (adjusting the speed
to the current speed sign) to n = 4 (adjusting the speed to the 4th
previous speed sign). The task is illustrated in Figure 2. A detailed
explanation of the WML speed regulation task can be found in
Unni et al. (2017).

Participants had a 6 s window (3 s both before and after
passing the sign) to adjust their speed to the target speed.
A deviation up to ±5 km/h from the target speed was judged
as correct. Whenever the deviation was more than ±5 km/h,
a warning message ‘Please pay attention to your speed’ was
displayed on the screen. This was done to motivate the participant
to drive at the correct speed. This message appeared on the screen
until the participant drove within the correct speed range. For
every new n-back task, participants were instructed to stay at the
speed of the first sign until they passed ‘n’ successive speed signs
before they could begin with the n-back task. There were nine

different speed signs (60–140 km/h in steps of 10 km/h) presented
in random order to avoid sequencing effects. At the beginning of
a new n-back condition, participants were informed via a message
displayed for 5 s on the VR-screen about the next n-back level to
be accomplished.

Experimental Procedure
The participants started with a 20 min training session where they
drove each of the five different n-back levels twice. Then, the main
experiment started, which lasted about 60 min with a break in
the middle. In total, the participants performed each 3 min long
n-back level four times, twice in each of the construction and
non-construction conditions. The speed signs were distributed
such that the participants passed a new speed sign roughly
every 20 s with some temporal jitter. The construction and non-
construction sites were alternating with every change in n-back
level. The order of the n-back levels was pseudorandomized in
such a way that the same n-back level was never driven twice
in a row and each n-back level was performed twice in the
construction and the non-construction conditions respectively.
Also, the sequence of n-back levels repeated itself in reversed
order after the break to avoid sequencing effects.

Data Analysis
Driving Behavior
To determine the effect of increasing WML levels, we calculated
error rates in the speed regulation task. As a measure of
performance in the working memory task, we calcultated the
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percentage of time segments in which the participant did not
reach the target speed (<90% driving within the tolerance
interval around the target speed). In line with the analysis for
the fNIRS data described below, we have excluded those time
segments (∼8% of time segments over all participants) from the
other analysis of driving behavior.

In order to check whether driving through the construction
site was associated with changes in driving performance, we
analyzed the steering reversal rate. Steering reversal rate was
defined as the number of times the participant crossed the
centered position of the wheel. Steering reversal rate usually
increases with increased driving difficulty, as more corrections
to the steering wheel position are required (Macdonald and
Hoffmann, 1980). As a measure for increased driving difficulty,
we calculated the difference in steering reversal rate between
driving in the construction and non-construction condition for
each n-back level.

Due to a problem in data recording in one participant, driving
behavior is presented for only 14 participants.

Working Memory Capacity
To ensure that all participants had comparable levels of working
memory capacity, they first performed the memory updating task
from the working memory capacity test battery by Lewandowsky
et al. (2010). In this test, participants had to remember a set
of digits which they had to update continuously through a
series of simple arithmetic operations (single digit addition and
subtraction). For every correct trial, participants received 1 point.
The average total score was 38.4 (SD = 10.7) out of a maximum
possible score of 60. One participant was excluded from the data
analysis, because of a score more than two standard deviations
below the mean.

FNIRS Data Processing
We used the nirsLAB analysis package (Xu et al., 2014) for fNIRS
pre-processing. Physiological artifacts (heartbeat, respiration,
and Mayer waves) were reduced with a low-pass filter (finite
impulse response with least-square error minimization) with a
cut-off frequency of 0.1 Hz. We used the Gratzer Spectrum
to obtain the molar extinction coefficients of HbO and HbR
corresponding to wavelengths of 760 and 850 nm, respectively
(Prahl et al., 1999). The corresponding molar extinction
coefficients are €760 = [1486.59 3843.71] and €850 = [2526.39
1798.64] M−1∗cm−1 (nirsLAB, NIRx Medical Technologies).
The differential path length factor takes into account the
increased distance the light path travels from the emitter to
the detector because of scattering and absorption effects. The
differential path length factors for HbO and HbR were 7.25
and 6.38, respectively (Essenpreis et al., 1993). The relative
concentration changes in hemoglobin (mmol/l) were calculated
via the modified Beer–Lambert’s law (Sassaroli and Fantini,
2004). For the modified Beer–Lambert’s law calculation, the exact
source-detector distance for each NIRS channel was computed
by nirsLAB according to the corresponding distances between
emitter and detector pairs on the NIRS cap.

We computed a channel-wise coefficient of variation (CV)
which is a measure for the signal-to-noise ratio (SNR) from the

unfiltered raw data. CV is calculated as the ratio of the standard
deviation and the mean of each NIRS channel over the entire
duration of the experiment (Schmitz et al., 2005; Schneider et al.,
2011). All channels with a CV greater than 20% were excluded
from further analysis. On average, 64 channels per participant
were included in the analysis (SD = 7). For the following fNIRS
analysis, we have used the HbR signal.

In the fNIRS analysis, we excluded all consecutive time
segments between two successive speed signs (∼20 s) in which the
participant didn’t reach the target speed (∼8% of time segments
over all participants). This was done because we were not sure
whether the participant was continuing to focus on the working
memory task in those time segments or whether he or she had
already given up at an earlier stage due to the inability to focus
on the task due to cognitive overload. This is important, as
disengagement from difficult tasks reduces the actual cognitive
load and affects interpretability of results since workload would
be significantly lower than what would be expected on basis of
objective task requirements (Victor et al., 2005; Mehler et al.,
2012).

A common method to increase the SNR is the application
of a Principal Component Analysis (PCA) on the pre-processed
fNIRS data (Virtanen et al., 2009). In a PCA, the fNIRS
data is transformed to a new set of variables called ‘principal
components’ (PCs) that are linearly uncorrelated and ordered
according to the amount of variance explained in the data.
It is presumed that motion artifacts contribute more to the
variance than the neurophysiological signals and hence the first
PC will mostly explain variance dominated by motion artifacts.
Therefore, in order to remove motion artifacts, we deleted the
first PC, which has shown to be a successful procedure in motion
artifact reduction of fNIRS data (Cooper et al., 2012; Brigadoi
et al., 2014). Besides motion artifacts, fNIRS data contains noise,
for example random instrumental white noise. As we can assume
this noise to have a Gaussian distribution, all PCs will contain
noise of the same Gaussian distribution. As all PCs contain the
same noise variance, first PCs, which explain most of the variance
will have a better SNR than later PCs, which explain little variance
but will be dominated by the same noise variance and therefore
have a worse SNR. That is why we retained only PCs with high
exploratory value before transforming the PCs back into the
time-series fNIRS data. Based on the recommendation by Jolliffe
(1972) on the Kaiser’s rule (Kaiser, 1958), all components with
eigenvalues larger than 0.7 were kept. With the procedure of
deleting the first PC and all other PCs with an eigenvalue smaller
than 0.7, 7.09 PCs (SD = 2.07) were retained on average over
all 15 participants. As detailed in the section below, the PCs are
calculated on training data in a cross-validation scheme. These
retained PCs were then transformed back to the original space
resulting in a less noisy time-series fNIRS data.

Multivariate Cross-Validated Prediction of Driving
Difficulty
Our goal was to predict the driving difficulty, i.e., whether
the participant was in the construction or non-construction
condition. First, we calculated binary multivariate logistic ridge
regression models (Hastie et al., 2009) for the prediction of
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driving difficulty from fNIRS data for each WML level, i.e., we
calculated separate models for each of the five n-back levels for
each participant. Second, we calculated one binary multivariate
logistic ridge regression model to predict driving difficulty from
fNIRS data combined over all WML levels for each participant.
Both models used time-resolved fNIRS HbR pre-processed data
from all the good channels at each timepoint (sampling frequency
1.955 Hz) as one signal sample. From each signal sample, channel-
wise weights were used for the model, which were computed
using the Glmnet toolbox (Qian et al., 2013). The output of the
logistic regression model can be interpreted as a class probability.
Consequently, we computed a model output for each signal
sample. All samples with a model output of p≥ 0.5 were assigned
to the class construction. This allowed us to calculate the rates
at which the model correctly classified different conditions.

In this study, we report model accuracy, which indicates the
proportion of correctly classified samples as either construction
or non-construction. The accuracy was calculated as follows:

Accuracy (%) =
TPc + TPnc

TPc + TPnc + FPc + FPnc
∗ 100

Here, the TP refers to the true positives (number of samples
correctly classified) and FP refers to the false positives (number
of samples incorrectly classified) for the two conditions denoted
by c for construction and nc for non-construction.

While classification accuracy is an intuitive concept to evaluate
the performance of a model, it can be biased, e.g., by uneven
data sets. In contrast, precision and recall are advantageous
performance measures, insensitive to training set size differences
(Rieger et al., 2008). Precision provides information about how
precise the model is in assigning a particular sample to the
respective empirical class (‘construction’ or ‘non-construction’).
On the other hand, recall is the proportion of samples belonging
to a particular class (‘construction’ or ‘non-construction’) which
were also assigned to the same class by the model. Here, we report
the F1-scores which are a harmonic average of the precision and
recall measures. A F1-score of 1 indicates perfect precision and
recall (Shalev-Shwartz and Ben-David, 2014). The F1-score for
the construction condition was calculated as follows:

F1-score =
2∗TPc

2∗TPc + FPc + FPnc

In order to test the generalization of the logistic ridge
regression model to new data and to avoid overfitting, an out-of-
sample nested cross-validation procedure as suggested by Hastie
et al. (2009) was used for model training and testing. The outer
loop implemented a five-fold cross-validation where the pre-
processed fNIRS time-series data was split into five consecutive
blocks. In each fold, a different set of four blocks was used as
training set to train the model while the left-out block was used
to test the generalization of the model. In addition, an inner
five-fold cross-validation loop was implemented on the training
set where we first performed the PCA of the fNIRS time-series
data to reduce noise, after which it was transformed back from
PC-space to the original time-series space. Using the Glmnet
toolbox (Qian et al., 2013), channel-wise weights for the logistic

regression model were found, for which the λ regularization
parameter was optimized internally by Glmnet in the training
phase. The cross-validation procedure avoids overfitting of the
data to the model and provides an estimate of how well a
decoding approach would predict new data in an online analysis
(Reichert et al., 2014).

Univariate Correlation Analysis
Interpreting the channel weights as indicators for brain areas
involved with the experimental condition can be difficult as
they result from a multivariate model and each weight can
only be interpreted in the context of the whole model (Reichert
et al., 2014; Weichwald et al., 2015; Holdgraf et al., 2017). To
achieve better interpretability, we additionally fitted channel-
wise, univariate logistic regression models of the fNIRS HbR data
on the driving difficulty for each participant for the separate
models. The fNIRS data was the same preprocessed data that
was used for the multivariate analysis. To reduce noise and
movement artifacts, we used a PCA the same way as for the
multivariate analysis. We performed a PCA for each condition
and participant, deleted the first and all PCs with an eigenvalue
smaller than 0.7 and then transformed it back from PC-space
to the original time-series space. To determine model fit, we
used the method suggested by Tjur (2009), to calculate R2 as
measure of the predictivity of a channel (R2

uvr). The Tjur R2

varies between 0 (no predictivity) and 1 (perfect predictivity).
We created averaged predictivity maps across all participants

(Tjur R2
avg) for each fNIRS channel, illustrating the differences

in brain activation between construction and non-construction
site driving, separately for each n-back level. Those averages were
calculated by weighting the single-subject’s univariate coefficient
of determination (R2

uvr) with prediction accuracy from the
multivariate regression analysis:

Tjur R2
avg (i) =

i, n∑
i, n=1

R2
uvr (i)∗ Accuracy (n)

n∑
1

Accuracy (n)

RESULTS

Participants
Four participants were excluded from the analysis, three of them
due to a large number (>50%) of noisy fNIRS channels and one
due to low performance in the working memory capacity test.
Thus, data from fifteen participants, all males, aged 19–32 years
(Mean± SD = 25.6± 3.96) are included in the following analysis.

Driving Behavior
Steering Reversal Rate
Across all n-back levels, the steering reversal rate was higher
in the construction condition than in the non-construction
condition, indicating that the construction site increased driving
difficulty (see Table 1). Additionally, this difference increased for
higher n-back levels, with exception of the 3-back, indicating that
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TABLE 1 | Steering Reversal Rate in Hertz.

0-back 1-back 2-back 3-back 4-back Mean

Construction 0.012 0.012 0.017 0.013 0.018 0.014

Non-construction 0.011 0.008 0.012 0.009 0.010 0.010

tconstruction−non-construction t(13) = 2.027 t(13) = 8.123 t(13) = 9.817 t(13) = 15.571 t(13) = 11.445 t(13) = 13.821

Significance test p = 0.064 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Bonferroni corrected p∗-value p∗ = 0.318 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001 p∗ < 0.001

TABLE 2 | Differences in errors between driving difficulty conditions (construction–non-construction) calculated via paired-sample t-test and the effect size Cohen’s d.

0-back 1-back 2-back 3-back 4-back Mean

Construction 0.01 0.05 0.07 0.21 0.17 0.10

Non-construction 0.01 0.02 0.13 0.05 0.08 0.06

Differences between driving
difficulty condition

t(13) = −0.195
p = 0.849

t(13) = 1.011
p = 0.331

t(13) = −1.158
p = 0.268

t(13) = 3.014
p = 0.010

t(13) = 2.189
p = 0.046

t(13) = 3.198
p = 0.007

Cohen’s d −0.06 0.52 −0.46 1.10 0.76 0.85

Bonferroni corrected p∗-value p∗ = 1.00 p∗ = 1.00 p∗ = 1.00 p∗ = 0.050 p∗ = 0.230 p∗ = 0.035

driving difficulty increased with increasing WML levels (r = 0.65,
p < 0.001). This is also supported by a two-factor analysis of
variance (ANOVA) with the factors driving difficulty and WML
level. For steering reversal rate we observed main effects for both
driving difficulty [F(1,130) = 146.87, p < 0.001] and WML level
[F(4,130) = 19.08, p < 0.001], as well as a significant interaction
effect [F(4,130) = 10.49, p < 0.001]. For additional analysis on
lane deviation (see Supplementary Table S1).

Error Rates in WML Speed Regulation Task
We calculated the error rates (percentage of target speeds the
participants failed to reach) in the WML speed regulation
task in the construction and non-construction condition.
A two-factor ANOVA with the factors driving difficulty and
WML level revealed main effects of error rates for both
driving difficulty [F(1,130) = 5.12, p = 0.03] and WML level
[F(4,130) = 6.16, p < 0.001], as well as a significant interaction
effect [F(4,130) = 3.54, p < 0.01]. Figure 3 shows that for all
n-back levels except for 2-back driving in the construction site
was accompanied by more errors in the working memory speed
regulation task as compared to driving in the non-construction
site. This was especially true for the 3-back and 4-back levels (see
Table 2). The reduced meory performance suggests that increased
recruitment of cognitive resources required to meet increasing
visuospatial attention demands for the lane-keeping task interacts
with cognitive resource recruitment in the working memory task.

FNIRS Results
Prediction of Driving Difficulty
Our goal was to classify the driving difficulty from multivariate
logistic ridge regression using pre-processed fNIRS signal
samples (sampling frequency 1.955 Hz) in a cross-validation
scheme with five equally sized blocks to avoid class size bias. We
first calculated separate models for each WML level and each
participant. With this procedure, we predicted driving difficulty
correctly in 75.0% of the signal samples on average over WML
levels and participants. The mean F1-score was 0.70. The similar

scores between F1-score and accuracy suggest that the model was
not biased to a single class. There was a significant effect of the
WML level on the prediction of driving difficulty as indicated by
the rank-based non-parametric Kruskal–Wallis H test for both
model accuracy [range: 62.2–87.1%: χ2(4) = 19.91, p < 0.001] and
F1-scores [range: 0.57–0.86; χ2(4) = 15.46, p < 0.01]. Predictions
were better for intermediate WML levels (1-back and 2-back)
as illustrated in Figure 4 for model accuracy and Table 3 for
F1-scores. This pattern of prediction accuracy holds for most
individual participants: In 12 out of 15 participants, best model
performance F1-scores were achieved for either 1-back or 2-
back.

Prediction performance declined, when we used a decoding
model that combined the fNIRS data over WML levels to
classify driving difficulty. With this procedure, prediction was
around chance level with a mean classification accuracy of

TABLE 3 | F1-scores of each classifier for predicting driving difficulty and means
across participants and n-back levels (individual maxima bold).

Participant 0-back 1-back 2-back 3-back 4-back Mean

01 0.23 0.77 0.09 0.32 0.70 0.42

02 0.70 0.80 0.88 0.23 0.72 0.67

03 0.62 0.85 0.98 0.91 0.54 0.78

04 0.89 0.98 0.47 0.90 0.66 0.78

05 0.55 0.93 0.90 1.00 0.21 0.72

06 0.90 0.86 0.88 0.71 0.84 0.84

07 0.44 0.78 0.94 0.48 0.67 0.66

08 0.42 0.99 1.00 0.74 0.31 0.69

09 0.77 0.68 0.89 0.94 0.52 0.76

10 0.67 0.87 1.00 0.23 0.84 0.72

11 0.50 0.82 1.00 0.99 0.33 0.73

12 0.73 0.88 1.00 0.67 0.56 0.77

13 1.00 0.93 0.16 0.94 0.77 0.76

14 0.24 0.91 0.77 0.27 0.44 0.53

15 0.89 0.91 0.57 0.31 0.40 0.61

Mean 0.64 0.86 0.77 0.64 0.57 0.70
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FIGURE 3 | Error rate in the speed regulation task for driving in construction and non-construction condition for each n-back level across all participants. Black lines
indicate the standard error of the mean (n = 15).

FIGURE 4 | Prediction accuracies of driving difficulty for the models separate for each WML level. Individual accuracy score is indicated as dots. Mean accuracy per
WML level and its standard error of the mean are depicted in purple. Dashed line at 50% indicates the theoretical guessing level.

TABLE 4 | Accuracy and F1-score of each classifier across participants for the prediction of driving difficulty across all WML levels.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean

Accuracy(%) 49 54 34 41 61 51 44 41 52 46 42 43 55 42 48 47

F1-score 0.44 0.44 0.40 0.42 0.57 0.50 0.42 0.18 0.44 0.31 0.35 0.55 0.52 0.38 0.37 0.42

46.8% and a mean F1-score of 0.419 over all participants (see
Table 4). Figure 5 depicts example histograms of the classifier
output for two participants. These results show that for seperate
models (Figure 5A), prediction of driving difficulty is clearly
higher than in the combined model (Figure 5A), suggesting
an interaction between brain networks modulated by increasing

driving difficulty and brain networks modulated by WML
variations. Importantly, this interaction appears to be asymmetric
as the reverse was not the case. Unni et al. (2017) demonstrated
that WML level can be predicted from fNIRS measurements
independent of changes in driving difficulty using data from the
same experiment.
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FIGURE 5 | Classifier output predicting driving difficulty for example participants P7 and P14. Colors indicate the actual driving condition and vertical dashed lines
indicate the class limit of the logistic regression output. Values larger than 0.5 were assigned to the construction condition. (A) For the separate prediction models,
most signal samples are predicted correctly at intermediate WML levels (1-back to 3-back level). (B) For the combined model, many signal samples are incorrectly
classified.

TABLE 5 | Comparison of mean accuracy for prediction of driving difficulty between predictions within WML levels and adjacent WML levels.

0c 1c 2c 3c 4c Mean

Discrimination of driving difficulty 0nc 1nc 1nc 2nc 2nc 3nc 3nc 4nc 4nc

Within WML level 0.68 0.87 0.85 0.72 0.62 0.75

Adjacent WML level 0.64 0.63 0.55 0.49 0.58

Comparison t(14) = 0.601
p = 0.558

t(14) = 5.913
p < 0.001

t(14) = 6.311
p < 0.001

t(14) = 2.736
p = 0.016

t(14) = 5.854
p < 0.001

To further test for an interaction between driving difficulty
and WML, we trained classifiers for all possible pairings of
experimental conditions to obtain a dissimilarity matrix. As
there were five WML levels and each WML level consisted of
two different driving difficulty levels, there were ten conditions
in total, resulting in 45 pairings. Figure 6 depicts the mean
dissimilarity matrix over all participants. Higher discrimination
accuracies indicate more reliable changes in brain activations
with increasing driving difficulty. In line with the previous
analysis, the highest discrimination rates were achieved at
intermediate WML levels. This is indicated by accumulation
of pairs with higher discrimination rates (depicted by yellow
color) in the central areas of the matrix. In addition, a closer
analysis of the pattern along the first off-diagonal trace shows an
alternating pattern of high and low discrimination accuracies. For
example, the 2-back construction brain measurements could be
better discriminated from 2-back non-construction than from 3-
back non-construction [t(14) = 6.311, p < 0.001]. This pattern
was consistent across other n-back levels and summarized in
Table 5. The average prediction accuracy of driving difficulty
within the same WML level was 75.0%, whereas the prediction
accuracy of driving difficulty for adjacent WML levels was 57.8%,
with this difference being significant [t(14) = 5.854, p < 0.001].
This shows that the driving difficulty became less discriminable
by fNIRS data once the WML was increased slightly in the
non-construction condition, a pattern that is expected when we

assume interactions of driving difficulty with varying WML at the
brain level.

Localization of Predictive Brain Areas
To gain further insights into the functional anatomy of brain
areas associated with increased driving difficulty and their
modulation by WML level variation, we calculated channel-
wise univariate logistic regressions of HbR levels between
the construction and non-construction conditions for each
participant and each n-back level. Figure 7A shows the group-
level brain maps depicting classification separability, derived as
the weighted averaged channel-wise Tjur R2 coefficients (Tjur
R2

avg) from the univariate logistic ridge regression model. The
maps show that predictivity of fNIRS activation in the lateral
dorsal frontal and parietal areas increases up to the 2-back WML
level, while the predictivity of fNIRS activation decreases at
higher WML levels (i.e., the 3-back and especially the 4-back
levels). This follows the pattern of discriminability variation in
the multivariate analysis. These results indicate that the loci
of interaction between WML and driving difficulty are in the
bilateral dorsal frontal (putative BA 46), bilateral inferior parietal
(putative BA 39), and left superior parietal (putative BA 7) areas.

We compared the brain maps to the results from Unni
et al. (2017) depicted in Figure 7B, where the same fNIRS
data was used to predict WML levels independent of driving
difficulty (average correlation between predicted and induced
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FIGURE 6 | Dissimilarity matrix of predictions of all possible pairings of conditions. c, construction; nc, non-construction; corresponding number indicates WML level.

FIGURE 7 | (A) Weighted mean of channel-wise predictivity (Tjur R2
avg) for driving difficulty at the different WML levels. (B) Weighted averaged group-level univariate

correlation (ravg) HbR brain maps showing brain areas sensitive to changes in WML independent of driving difficulty. White shapes mark WML prediction maxima in
all maps. Data for the two analyses were recorded in the same session with concurrent manipulation of driving difficulty and WML.

WML r = 0.61). The comparison of the anatomical locations of
predictive maxima for WML predictions in Figure 7B (marked
by white shapes) to Figure 7A suggests only partial overlap
between the brain resources predictive to the different task
demands. Variation of WML level was best predicted in bilateral
inferior frontal gyrus (IFG; putative BA 45), an area more
posterior to the lateral dorsal frontal areas (putative BA 46)
predictive for driving difficulty. An occipito-temporal predictive
region (putative BA 21) overlapped between WML and driving

difficulty predictors but appeared more left lateralized in WML
prediction, which has a stronger language component. The
bilateral inferior and left superior parietal areas (putative BA
39 and BA 7, respectively) which showed increased predictivity
to driving difficulty seems to show reduced correlations in the
WML level predictions (see Supplementary Figure S1 for an
annotation of putative Brodmann areas). This suggests that these
areas are unique to the prediction of driving difficulty, likely
involved in visuomotor attention (Jovicich et al., 2001; Caplan
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TABLE 6 | Brain areas showing predictive maxima of the driving difficulty and
WML levels and their corresponding MNI co-ordinates.

Brain areas Putative Brodmann
Area (BA)

X Y Z

For driving difficulty

Right dorsal frontal 46 38 52 30

Left dorsal frontal 46 −38 50 30

Right inferior parietal 39 44 −76 32

Left inferior parietal 39 −52 −66 18

Left superior parietal 7 −18 −64 70

Left occipito-temporal 21 −68 −38 −4

Right occipito-temporal 21 68 38 4

For WML levels

Right inferior frontal gyrus 45 52 36 20

Left inferior frontal gyrus 45 −52 38 20

Left occipito-temporal 21 −68 −38 −4

et al., 2006) such as vigilance and tracking of moving objects
(Culham et al., 1998), but nevertheless their predictivity depends
on WML level.

We visualized the averaged brain map on the MNI 152
brain in the Neurosynth1 and used MRIcron2 to determine
MNI co-ordinates and the corresponding Brodmann areas for
the brain areas depicting increased predictive discriminability
of the driving difficulty. Table 6 lists the brain areas and their
corresponding MNI-co-ordinates of the predictive maxima of the
driving difficulty and the WML levels.

DISCUSSION

In this driving simulator study, we varied visuospatial attention
demands by changing the lane widths, thus manipulating
driving difficulty while participants performed a modified n-back
WML speed regulation task. Using almost whole-head fNIRS
brain activation measurements, we were able to predict the
driving difficulty using a decoding model for each WML
level separately. However, the predictions of driving difficulty
degraded significantly when we tried to predict driving difficulty
using a decoding model which combined fNIRS data over all
WML levels.

In order to investigate possible interactions between
visuospatial attention and WML, there were two experimental
manipulations. To induce different demands in visuospatial
attention, participants drove half of the time through a
construction site with reduced lane-widths, increasing driving
difficulty. At the same time, participants performed a modified
n-back speed regulation task (0-back to 4-back) resulting in
five different levels of WML. Our goal was to predict the
driver’s current driving difficulty from almost whole-head
fNIRS brain activation measurements using a multivariate,
cross-validated logistic ridge regression model. As we were
interested in understanding if there exists an interaction between

1http://neurosynth.org
2https://www.nitrc.org/projects/mricron

visuospatial attention and WML on a brain level, we predicted
driving difficulty with a decoding model which used fNIRS data
separately for each WML level and with the same decoding model
using fNIRS data combined over all WML levels to compare the
decoding accuracies between the models. Our rationale was that
if visuospatial attention and working memory had independent
underlying brain processes, it should be possible to predict
driving difficulty in a combined model across all WML levels.
However, this was not the case. In fact, prediction accuracy
for driving difficulty across all WML levels was at chance level.
Yet, model accuracy improved when the prediction of driving
difficulty was calculated separately for each WML level (mean
accuracy = 75.0% over all WML levels). Further, there was a
significant effect of the WML level on the prediction of driving
difficulty.

Thus, we draw two conclusions. First, as driving difficulty
could be predicted separately for each WML level, changes in
driving difficulty lead to changes in neural correlates detectable
by fNIRS. This means that the separate models were able
to identify neural correlates specific to changes in driving
difficulty for each WML level. Second, the chance level accuracy
achieved while predicting driving difficulty in the combined
model across different WML levels suggests that no neural
correlates measurable with fNIRS changed with driving difficulty
across different WML levels. This means, the changes in
activation patterns due to changes in driving difficulty depended
on the driver’s current WML level. The interaction of the
underlying brain processes is further supported by the additional
comparisons of all possible combinations of predictions of
driving difficulty separately across different WML levels. We
showed that the construction condition could be better predicted
when discriminated against the non-construction condition
at the same WML level than when discriminated against a
non-construction condition at the successive WML level. This
suggests that an increase in WML recruits a neural network
which reduces the discriminability of different levels of driving
difficulty.

As fNIRS has good spatial resolution, it allowed us to
determine brain areas predictive for visuospatial attention and
to study a possible effect of WML on these brain areas. In
order to identify potential brain areas associated with increased
driving difficulty, we calculated group-level brain maps using
univariate channel-wise logistic regression analysis to predict
driving difficulty for each WML level. This analysis revealed the
bilateral dorsal frontal (putative BA 46), bilateral inferior parietal
(putative BA 39), and left superior parietal (putative BA 7) areas
to be most sensitive to changes in driving difficulty. Nevertheless,
these discriminative patterns diminished at higher WML levels
indicating an interaction between visuospatial demands and
WML levels.

The bilateral dorsal frontal areas (putative BA 46) are known
to be involved in executive control of behavior (Kübler et al.,
2006). In contrast, the bilateral inferior parietal (putative BA
39) and left superior parietal (putative BA 7) areas have been
associated with visuomotor integration, spatial perception and
orientation as well as in visual motion analysis (Andersen, 2011)
and visuomotor attention (Jovicich et al., 2001; Caplan et al.,
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2006) such as vigilance and tracking of moving objects (Culham
et al., 1998). These areas play an important role in driving,
especially with increased driving difficulty as in this study while
driving through a construction site with reduced lane widths.

We proceeded to compare the brain areas predictive to driving
difficulty to those areas predictive to WML independent of
driving difficulty, previously shown by Unni et al. (2017) using
the same data. The comparison of the anatomical locations of
predictive maxima for WML predictions revealed only partial
overlap between the brain resources predictive to the different
task demands. Variations in WML levels was best predicted in
bilateral inferior frontal gyrus (IFG, putative BA 45), which was
further posterior to the lateral dorsal frontal areas (putative BA
46) predictive for driving difficulty. An interesting point to note
was that the bilateral inferior and left superior parietal areas
(putative BA 39 and BA 7, respectively), which showed increased
predictivity to driving difficulty, showed negative correlations in
the WML level predictions independent of driving difficulty. This
could indicate that the two tasks interact at a common, task
unspecific cognitive resource at the brain level. The changing
pattern of driving difficulty related brain areas across WML levels
could indicate potential changes in the multitasking strategy with
level of WML demand.

The task interactions at brain level could be explained on
the basis of the Multiple Resource Theory (Wickens, 2002)
where an executive control system adjusts and allocates resources
between the two tasks. The bilateral dorsal frontal areas could
potentially represent the executive control system. From the
predictivity patterns of the brain maps, we observed that these
areas show increased predictivity to driving difficulty up to the
3-back WML level suggesting an increase in the difference in
effort by the participants for driving difficulty. The increased
cognitive resources allocated by the executive control to the
WML task rather than for increased visuospatial attention
may have reduced the predictivity pattern in the parietal areas
representing visuomotor co-ordination. It has been shown in
a driving simulator study that participants can strategically
prioritize among subtasks and adapt effort and driving behavior
accordingly (Cnossen et al., 2000).

In our study, prediction accuracies and F1-scores derived
from fNIRS brain activation measurements decreased for 3-
and 4-back WML levels. Participants might have reached their
maximum capacity at 3-back or 4-back WML levels. According to
multiple theories (Kahneman, 1973; Tombu and Jolicoeur, 2003;
Wickens et al., 2015), once the maximum resource capacity is
reached, limited resources are distributed across subtasks. This
would suggest that there were only limited resources available
for visuospatial attention needed for increased driving difficulty
in the higher WML levels. This can explain the drop in task
performance, the decrease in prediction accuracies and F1-
scores, as well as the decreased predictivity of localized brain
areas associated with increased driving difficulty for high WML
levels.

The notion of a competition of cognitive resources available
for the two tasks was further supported by the analysis of
the behavioral data. Participants made more errors in the
working memory task with increased driving difficulty and

had to make more steering adjustments (indicated by higher
steering reversal rates) with increased WML levels. Hence, an
increase in cognitive demands for one domain led to a decrease
in performance associated with the other cognitive domain.
These results are in line with Salvucci and Beltowska (2008)
who observed that increasing working memory demand of a
concurrent task substantially reduced driving performance with
respect to lateral control and brake response. Further, this task
interference became larger at high WML. Specifically, at high
WML levels (3- and 4-back), increased driving difficulty led to
a much larger drop in performance in the working memory
task, as compared to low and intermediate WML levels (0-back
to 2-back) at which the effect of increased driving difficulty
on the working memory task performance was substantially
smaller.

There are some limitations in this study that need to be
addressed. First, our sample population was low. Second, the
working memory task used is novel and other than traditional
memory span task used in driving research, where digits are
presented auditory (e.g., Mehler et al., 2012), the presentation
of stimuli in this task was visually, at a lower frequency, which
added an additional encoding and retention component to
the task. Future studies using the same paradigm should also
consider that a participant needs to pass n-number of speed
signs to reach the corresponding n-back WML level and might
therefore want to include more speed signs for higher n-back
levels. Third, the construction condition is not well validated.
For example, driving through a construction site is associated
with increased workload (Shakouri et al., 2018), even if the
lane width is not reduced (Vrieling et al., 2014). For example,
the construction condition had different lane markings than
the non-construction condition, which can influence driving
behavior (Davidse et al., 2004; Charlton et al., 2018). Further,
pylons marked the beginning of the construction sites in this
experiment that could possibly affect the preferred driving speed
in construction sites (Blackman et al., 2014; Steinbakk et al.,
2017). In general, rich driving environments increase visual
demands and uncertainty in the driver (Kujala et al., 2016), which
might have made it more difficult for the driver to detect and
encode speed signs in the construction condition necessary for
the WML task. Thus, increased effort in scanning for speed signs
in the construction condition could have altered lane-keeping.
We also have to point out that participants received feedback
for the working memory task only, possibly shifting the focus
toward this task, whereas in real driving, lane keeping would have
been prioritized over speed regulation. To assure participants
had the effective WML level as intended, we have excluded
time segments, in which participants didn’t reach their target
speed.

Our results could potentially have practical implications in the
field of brain-based adaptive driver state assessment. Assessment
of a driver’s cognitive state has the goal to detect when the
driver’s workload is too high to keep up with the demands of
operating a vehicle safely (Aghaei et al., 2016). In such situations,
a driver assistance system could provide feedback to the driver
(Feng and Donmez, 2013). For example, the use of a haptic
steering wheel providing haptic feedback to the driver for ideal
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steering movements helped to decrease driving difficulty (Steele
and Gillespie, 2001). Alternatively, adaptive automation systems
have the goal to detect the driver’s current cognitive demands
and to adjust the level of automation accordingly (Parasuraman
et al., 2000). Our results illustrate the challenge to disentangle
different types of workloads calling for new methods in workload
assessment for an accurate assessment of cognitive demands in
applied multiple task settings.

CONCLUSION

Our study indicates brain level interactions between visuospatial
attentional demands and WML while driving using fNIRS brain
activation measurements. As an explanation for the dependency
of those two different cognitive demands, we proposed that
once maximum capacity is reached, the two tasks must compete
for available resources. Further, there could be an interaction
at a common, task unspecific cognitive resource at the brain
level. The interaction of those different driving relevant tasks
constitutes a challenge in brain-based driver state assessment for
adaptive automation systems. Future studies should investigate
how different subtasks in driving influence each other and how
they could be assessed independently. This could eventually lead
to more specific support for the driver in operating the car safely.
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