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Abstract: A robust steering controller is introduced for improving the yaw dynamics
of a passenger car. A specific two degree of freedom control architecture known as
the disturbance observer is adapted to the vehicle yaw dynamics control problem
and shown to robustly improve performance. The relevant design specifications are
formulated in terms of eigenvalues (I-stability} and in frequency domain as bounds
on weighted sensitivity and complementary sensitivity functions {B-stability). The
parameter space method is used to map the specifications for controller design. A
Popov criterion based nonlinear stability analysis is also carried out to prove robust
absolute stability (©-stability) in the presence of actuator rate limitatiorn. Simulations
are used to demonstrate the effectiveness of the final design.
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1. INTRODUCTION

Dangerous yaw motions of an automobile may
result from unexpected vaw disturbances caused
by unsymmetrical car dynamics perturbations like
unilateral loss of tire pressure or braking on uni-
laterally icy road {u-split braking). Safe driving
requires the driver to react extremely quickly in
such dangerous situations. This is not possible as
the driver who can be modeled as a high gain
control system with dead time overreacts, result-
ing in instability. Consequently, improvement of
automobile yaw dynamics by active control to
avoid such catastrophic situations has been and
is continuing to be a subject of active research.
In this paper, a steer-by-wire system is assumed
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where the commands to the steering actuator from
the steering controller are added to those of the
driver commanded via the steering wheel. The
steering control system should be robust w.r.t.
large variations in longitudinal speed, payload and
road adhesion and w.r.t. unstructured uncertainty
(unmodeled dynamics) as well. Moreover, its ac-
tions should not be uncomfortable for the driver
and passengers. A steering controller structure
that effectively satisfies the requirements outlined
above is presented in this paper along with its
associated design and analysis procedures in the
context of antomobile yaw dynamics improve-
ment. The organization of the rest of the pa-
per is as follows. The linearized single track ve-
hicle yaw dynamics model is introduced in the
appendix together with a model of an electric
motor used as steering actuator. In section 2 a
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more detailed specification of the yaw dynarmics
improvement problem is given. The disturbance
observer based steering controller is introduced
in section 3 where design and robust stability
requirements for unstructured uncertainty are also
given as initial design guidelines. Weighted sen-
sitivity, complementary sensitivity frequency do-
main constraints and eigenvalue specifications are
mapped into controller parameter space in section
4 for final controller design. Simulation results
based on the linear model in the appendix are used
to demonstrate the effectiveness of the method in
section 5. In addition, considering the possibility
of steering rate limitation, a realistic actuator
model is used in a Popov criterion based nonlinear
analysis in parameter space to investigate its effect
on stability in section 6.

2. PROBLEM SPECIFICATIONS

For modeling the vehicle yaw dynamics, the com-
mon linearized single track model is employed as a
parametric linear time invariant plant (parametric
LTT). The states are the yaw rate » and the chassis
side slip angle 3. See A.1 in the appendix for de-
tails of the model. Also model data corresponding
to a mid size passenger car is given there. The
variable exhibiting the largest variation during
operation is the longitudinal speed v (assumed to
be varying slowly). The tire cornering stiffnesses
¢f and ¢, can also exhibit large variations due
to variations in friction coefficient . between the
road and the tires. In addition to the single track
model dynamics, there is a steer-by-wire actuator
that is used to set the front wheel steering angle.
The steering actuator model assumed is described
in section A2,

The longitudinal speed v is assumed to vary be-
tween zero and a maximum value of 50 m/s dur-
ing operation. Gain scheduling will be necessary
to softly switch on the controller with increasing
speed starting at 10 m/s . However, in this paper
only high speed operation is investigated at two
exemplary speeds: v=30 m/s and v=50 m/s. The
assumed operating domain of the vehicle in terms
of the speed v and the road adhesion coefficient
# is displayed in Fig, 1. The maximum value
of p is one (dry road) at all speeds while its
assumed minimum value increases linearly from
0.2 (icy road) at low speeds up to 0.8 (wet road)
at high speeds. (Additional uncertainties will be
considered in sections 3.1 and 4.2.) Cross markers
in Fig. 1 indicate specific operating points which
will be particularly looked at later.

The aim in yaw dynamics controller design is to
make sure that stable and improved yaw dynain-
ics is achieved for all operating conditions and
all possible values of the uncertain parameters
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Fig. 1. Operating domain and considered operat-
ing points

despite the presence of additional unstructured
uncertainty. Here, improved yaw dynamics means
good disturbance rejection properties where the
possible disturbances include the effect of wind
forces and p-split braking. Good steering tracking
performance is required as well. A disturbance
observer based steering controller is designed and
shown to effectively achieve the desired aim in the
following sections.

3. THE DISTURBANCE OBSERVER

The disturbance observer is a specific method of
designing a two degree of freedom comtrol ar-
chitecture to achieve insensitivity to both mod-
eling errors and disturbance rejection (Ohnishi,
1987; Umeno and Hori, 1991}, It has been used
successfully in a variety of motion contrel ap-
plications including high speed direct drive po-
sitioning (Kempf and Kobayashi, 1999} and fric-
tion compensation (Giiveng and Srinivasan, 1994).
The disturbance observer can also be used to
achieve dynamics similar to those obtained by
the use of inner feedback loops through control
(Giveng, 1999). The application of the distur-
bance observer control scheme to vehicle vaw dy-
namics control is introduced in the following.

The vehicle model can also be expressed as
‘T‘=G5f+d= (Gn(l-!-Am))rSf-f-d (1)

where G is the actual vehicle dynamics input-
output relation between steering wheel angle é¢
and yaw rate r. A,, is the multiplicative model
uncertainty in our knowledge of an adopted nom-
inal model @, and d is the external disturbance.
The aim in disturbance observer design is to ap-
proxitnately obtain

— = GnG, @)
ds
(compare tq (A.7)) as the input-output relation
(steering transfer function) despite the presence of
model uncertainty A,, and external disturbance d
(45 is the new input i.e. the steering wheel angle}.
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This aim is achieved by treating the external
disturbance and model uncertainty as an extended
disturbance e in disturbance observer design and
solving for it as

r=Cnds + (Culmbs +d) = Gnds +e  (3)
e=71—Gpoy (4)

and using the new control signal J§, given by

b = Ge (53- Gin) =G, (53— a,l;rwf)

()
to approximately cancel its effect in (3). Substi-
tuting (5) into (3) shows that the desired steering
transter function (2) is achieved if a good actuator
{G, — 1) is used. The front wheel steering angle
&r 1s assumed to be the output of the steering
actuator G,. With the aim of trying to limit
the compensation to & preselected low frequency
range {in an effort not to overcompensate at high
frequencies), the feedback signals in (5) are mul-
tiplied by the low pass filter @ to obtain the
implementation equation

61’ =G, (55 - G%T + Qaf) (6)

which can also be seen in the block diagram of
Fig. 2. Including G, in the inner feedback loop

Fig. 2. Closed loop structure with disturbance
observer.

helps in reducing the effect of actuator satura-
tion on disturbance observer performance (Aksun
Giiveng and Giiveng, 2002). The relative degree of
the unity d.c. gain low pass filter @ is chosen to
be at least equal to the relative degree of &, for
causality of ¢/G,. In the sequel, the structure of
@ is assumed to be

1
= 7
Q TQs+ 1 ( )
The nominal steering transfer function is chosen
as a first order system here given by

(8)

and K, (v) is the steady state gain of the nominal
single track model (i.e. on dry road, g, = 1) at
the actual longitudinal speed v {see (A.6) in the
appendix).

The open loop transfer function at signal r of the
disturbance observer compensated yaw dynamics
model is

660 -
n(l—Ga@Q)

The steering transfer function, disturbance rejec-
tion {i.e. sensitivity function 5) and sensor noise
rejection (Le. complementary sensitivity function
T transfer functions given are then

L=

r leeNe:
5y Gl — G.Q) + G.GQ (10)
_ I _ 1 — Gn{l —_ GGQ) ( 1)
d 1+L  Goll - G.Q) + G.GQ
r—_T__L CaGQ (12)

n 1+L Gl — GaQ) + G.GQ

from which it is obvious that for good performance
) must be a unity gain low pass filter (G, is a
unity gain low pass filter as well). This choice will
result in r/é, — Gy, r/d — 0 at low frequencies
where {§ — 1 and r/n — 0 at high frequencies
where ) — 0 as is desired. Disturbance observer
design is thus mainly shaping the fiiter ¢ to satisfy
the design objectives. The first limitation on the
bandwidth of € comes from the sensor noise
rejection at sensor noise frequencies. The second
limitation is that the bandwidth of Q should not
be larger than the bandwidth of the actuator used
as it makes no sense to command what cannot be
achieved.

3.1 Stability robusiness

Another bandwidth limitation for the @ filter
comes from the robust stability criterion

1 1
A Gl
in the presence of unstructured multiplicative
model uncertainty A,,. The disturbance observer

design requirements specified in terms of the filter
€} are summarized in Fig. 3. For the uncertainty

Q<

, Ww {13)

40
t
i
)
20 )
77———'\ 1
]
fobust stabilfity
9———-----——--337‘3%\_‘ wa]
————————————————— P,
mosiel regulation and N A
- disturbanoa rejection '
g :
é l
g &0 ' rejection
' N
1} kY
a0} : N
1
1 &
i S
-eat k
.
Y
_so0 L s L .
w w0t 16° ' 1° i
frequency (Hz}

Fig. 3. Disturbance observer design specifications

in the mass, moment of inertia and front and rear
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cornering stiffness considered, the corresponding
[1/A] profiles were calculated at several different
values of the longitudinal speed v ¢ [30,50] m/s.
For the nominal steering transfer fimction Tn =
0.165s was used. The mass m € [1206, 1696] kg
and moment of inertia J & [1750, 2100] kg m?
were assumed to be linearly related according to
J = 616 kg m? + (0.875 m?)m in the calculations.
The composite lower bound obtained from this
calculation is displayed as the upper robust sta-
bility boundary in Fig. 3 from which can be seen
that ¢ should have a maximum bandwidth of &
Hz,

The tuning of 7 and 7, in the controller (eqs.
(6},(7),(8)) in order to achieve robust matching of
the design objectives is the scope of the following
section.

4. PARAMETER SPACE DESIGN

In this section, the parameter space approach is
applied for robust controller design and analysis.
Besides eigenvalue specifications (T- stability) also
Bode magnitude type specifications (8- stability)
on sensitivity functions are incorporated into the
controller design to enhance vehicle stability as
well as performance and handling qualities ro-
bustly w.r.t. structured (v, 4} and unstructured
uncertainty (m, J, unmodeled dynamics),

The section is subdivided into four subsections.
In section 4.1 the problem setup is stated. Sec-
tion 4.2 describes the stability and performance
specifications in eigenvalue and frequency domain
for controller design. In section 4.3, the parameter
space approach is used to map these specifications
into the plane of the two controller parameters 1,
and 7, and in section 4.5 the resulting controller
is analyzed in terms of sensitivity.

4.1 Problem setup

Consider Fig. 2 and (7). Q is chosen as 2 unity
dc. gain first order low pass filter with time
constant 7. The open-loop single-input-single-
output transfer function I, sensitivity function
S and complementary sensitivity function T are
given by (9), (11) and (12), respectively. Further-
more, the characteristic polynomial of the closed
loop system is defined as

p = Numerator{1+ L} . {14)

In the following demonstration of the design pro-
cedure applying I and B-stability, the time con-
stants 7, of the nominal model G,, in (B) and 7g of
the filter Q in (7), respectively, are considered as
controller parameters. These time constants shall
be tuned such that the feedback provides I™- and

B-stability for the whole operating domain given
in Fig. 1. In a first design step being described
in this paper, only the four operating conditions
marked by crosses in Fig. 1 are considered. For
each of them the I'- and B-stability specifications
given below are mapped into the controller pa-
ratneter plane (,, 7g).

4.2 Control design specifications
T-stability

Hurwitz-stability requires that all roots of the
characteristic polynomial p(s} He in the complex
left half plane C~, j.e.

roots{p(s)} Cc C~. (15)

A more generalized stability notion is I-stability
(Ackermann et al., 1993; Ackermann et al., 2002)
where also other eigenvalue specifications w.r.t.
the eigenvalue location can be formulated. A sys-
tem is called T-stable if all roots of p are located
within a predefined region T being bounded by
ar, i.e.

roots{p{s}} CT CC. (16)

Fig. 4 shows the I'-region representing the eigen-
value specifications which are one part of multiple
specifications for the design of 7,, and 74 for all
(#4,v) in the operating domain. The boundary 81’

Fig. 4. I-specifications in eigenvalue domain.

of I' is composed of three geometric elements. The
first boundary is a shifted imaginary axis s = —2
which ensures that the system’s settling time is
limited. Two lines of constant damping guarantee
a minimum damping of 0.5 of all poles, and a
circle centered at the origin with radius R = 2710
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guarantees that the natural frequency of any pole
does not exceed 10 Hz. The poles of the closed
loop system shall be located in the admissable
eigenvalue region I as shown in Fig, 4, i.e.

roots{p(s, Tn, 7q, v, )} C T (17

B-stability

The notion of B-stability (Odenthal and Blue,
2000; Ackermann et al, 2002) is analogous to
that of T-stability. However, frequency response
magnitude (FRM) specifications are used for B-
stability definition. A system is considered to be
B-stable if its FRM lies within a desired region
in the FRM plot (i.e. the Bode magnitude plot)
referred to as B. B-stability shall now be applied to
bound the Bode magnitude plots of the sensitivity
function S given by (11) and the complementary
sensitivity function 7" given by (12}, i.e. weighting
functions Wy (s) and Wip(s) are selected such that

[SU)| <|Ws(Gu)™Y, Yw
T < Wr(jw) ™, V.

"These inequalities are well known as the “nomi-
nal performance” and the “robust stability” crite-
ria (assuming a multiplicative uncertainty model)
(Doyle et al., 1992).

Disturbance rejection a) To ensure disturbance
attenuation at low frequencies [S(jw)] <« 1
must hold. b) However, since I is a robustly
stable transfer function with a relative degree
of three, Bode’s integral theorem applies which
means that attenuating disturbances at low fre-
quencies unavoidably results in amplifying them
at high frequencies. Therefore, also the amplifica-
tion must be restricted to an acceptable level, i.e.
1S(jwllee < 1/ps, where pg is equivalent to the
required Nyquist stability margin.

These two specifications a) and b} are combined
into one specification by selecting an upper bound
on the FRM of S (see Fig. 9), i.e.

!S(jw, TnaTQvUHU')' < fWS{jw)kIJ: Vw (18)
where

s+ 0.7

Wis) L =185F07
(5) 18 126

(19)

Robustness w.r.t. unstructured uncertainly Two
magnitude bounds on 7, i.e. the magnitudes of
Wr,1{s)™! and Wr,(s)~1, are selected to capture
robustness w.r.t. unstructured uncertainty, i.e. us-
ing a multiplicative uncertainty modei, subject to
unmodeled dynamics and uncertainty in mass m
and moment of inertia .7,

a) The disturbance observer shall guarantee ro-
bustness to 10% magnitude uncertainty at low
frequencies, i.e. where the model of the vehicle and
the actuator is reasonably accurate, and 500 %
uncertainty at high frequencies, i.e. where unmod-
eled dynamics come into play. Thereby, a transi-
tion frequency of 6 Hz between low gain and high
gain of the weighting function Wr, (s) was selected
based on the knowledge of the vehicle model’s
accuracy and the performance specification of the
steering actuator.

b) A second bound on T, i.e. Wra(s)™, is used
to cover the disturbance observer stability specifi-
cations subject to model uncertainty in m and J
as outlined in section 3.

Hence, the following B-specifications will be used
as constraints for T

IT{jonn:Tsts nu)l < IWT,iUW)_EEJ Vw,i= 1,2,
(20)

where

s+ 3.77

Wra(s) =5 — 4555

W o(s) = 212804(s +43.98)(s + 0.4333)
R T 6.124)(s + 2.882)

{see Fig. 10}. Note, that (20) represents the “ro-
bust stability” criterion for two different multi-
plicative uncertainty models, At low frequencies
unstructured uncertainty subject to uncertainty
in m and J is relevant and for high frequencies
uncertainty subject to unmodeled dynamics.

4.3 Mapping of I'- and B-stabikity boundaries into
parameter space

The mapping of the I-stability boundaries defined
in section 4.2 is based on the limit condition
that the characteristic polynomial (8, Tn, Tg, v, 1)
has a root exactly on the I'region boundary T
Therefore, the condition 8" = s(a) = ola) +
jw(a), where « is the parameterization of ar,
is substituted into the characteristic polynomial
given by (14) which is seperated into two equa-
tions for its real and imaginary part respectively:

Re pla, 7, 7g, v, ) = 0

21
Imp(a1TnaTQ7Us“):D ( )

The mapping of the I-stability boundaries into
the parameter plane (Tn,7Q) Tequires algebraic
solution of these two equations (Ackermann et al.,
1993; Ackermann et al., 2002; Kaesbauer, 2000).
Fig. 5 shows the result for the mapping of the
T-stability boundaries (as defined in Fig. 4) for
the two operating conditions with v = 50m/s
and u & {0.8,1} (see Fig. 1). The (T, TQ )
region which simultaneously I'stabilizes the two
operating points is denoted K- ;- In this plot and
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also in Fig. 6 and Fig. 7 the gray lines correspond
to the operating condition with ¢ = 0.8, and
the black lines to that with ¢ = 1. For a better
distinction between I'- and B-stability boundaries,
dashed linestyle is used for I'-stability in this
plot and in the subsequent plots. For the sake
of consciseness the I'-stability boundaries for v =
30m/s and u € {0.5,1} are not displayed in Fig. 5,
Fig. 6 and Fig. 7.

ey
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Fig. 5. T-stable region for v = 50 m/s and u €
{0.8,1}.

To establish the mapping equations of the B-
stability boundaries defined by eqs. (18) and
(20), it suffices to consider two mathematical
conditions, the point and the tangent condition
(Odenthal and Blue, 2000). The point condition
applies when [S(Jw, Tn, T, v, 1) or
|T{jw, T, 7, v, )| respectively starts (w 0)
or ends {w — oo} on the boundary 8Bg =
Ws(jw)™t| or 8Br; = [Wr;{jw)™!] respec-
tively. The tangent condition allows for the map-
ping of touching points, i.e. the points where
|S(Jw1 TR1TQ1U!JU')| or IT{jerﬂzTstnu‘)E respec-
tively becomes tangent to 8Bs or OBt; re-
spectively. Details about the mapping of B-
specifications are described in (Odenthal and
Blue, 2000; Ackermanmn ef al., 2002).

To ensure that the magnitude of the sensitiv-
ity function |S(jw, T, 7q, v, u}| remains below its
upper bound, condition (18) is mapped to the
(7n,7%) controller parameter plane. Fig. 6 shows
the resulting region Kp, for the two operating
points at v =50m/s with 4 € {0.8,1}. For any
parameter combination (r,,7g) taken from this
region condition (18) is satisfied for both operat-
ing points simultaneously.

For consideration of robust stability, condition
(20) is mapped to the (7,,7g) controller param-
eter plane (see Fig. 7). The dotted lines corre-
spond to the Hurwitz-stability condition, i.e. the
nominal stability condition, for the two operating
points considered. This nonconservative mapping

Q [s]

0.15¢

0.2 0.25

T 18]

0.1 0.15 0.3 0.356

Fig. 6. Nominal performance in parameter space
for v =50 m/s and p € {0.8,1}.
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Fig. 7. Robust stability in parameter space for
v=>50m/s and p € {0.8,1}.

shows which set of (7, 7g) gains (i.e. the region
Kp, in Fig. 7) will guarantee robust stability in
the presence of actuator uncertainty, unmodeled
dynamics and/or structured uncertainty due to
the disturbance observer specifications simultane-
cusly for the two operating points at v =50m/s
with u € {0.8,1}. Similiar results were achieved
for the other two operating points v = 30m/s and
€ {0.5,1}.

The final step in controller design is superimpos-
ing the previously determined stability regions in
parameter space. The intersection of all of the
individual regions in the (r,,7g) plane, which
satisfy the formulated I'- and B-specifications, for
all four operating points form the desired param-
eter region K shown in Fig. 8. For any choice
of (7, 7g) € K, all previously described require-
ments in terms of I'- and B-stability are met
simultaneously for the four operating conditions.
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Fig. 8. Parameter region which meets all B- and
T-specifications for v =50m/s, u € {0.8,1}
and v =30m/s, u € {0.5,1}.

4.4 Controller selection

Note that satisfying all specifications postulated
in section 4.2 also for low speed {eg. v = 10
m/s) requires gain scheduling of 7, and T with
speed. This is not considered here. Instead, from
the region K in Fig. 8 the parameters 7,, = 0.165 5
and 7 = 0.0318s are chosen as fixed controller
parameters (marked with a cross). Fig. 4 shows
all eigenvalues of the closed loop system for the
four aperating conditions. They are all included
in the desired T-region.

4.5 Sensitivity analysis

Figs. 9 and 10 show |S(jw)| and IT(ju)| for
the four operating points. They all remain be
low [Ws(jw) ™|, [Wr,1 (jw)™!| and [Wra(jw)!!
respectively, i.e. they are entirely included in the
B-stable regions.

0 -
10 10' 10'
Frequency [Hz]
Fig. 9. Frequency response magnitude plot of the
sensitivity function.

5. SIMULATION RESULTS

Two versions of the vehicle are compared in this
section by means of linear simulation: The conven-
tional car and the controlled car. For the sake of

10 10° 10
Frequency [Hz]

Fig. 10. Frequency response magnitade plot of the
complementary sensitivity function.

comparability, the conventional car is assumed to
be a steer-by-wire vehicle equipped with the same
steering actuator as the controlled car {see (A.7)).
The steering transfer function of the controlled car
is given by (10). The controller parameters are set
according to the design results in section 4: 1, =
0.165s and 7 = 0.0318s. Two maneuvers are in-
vestigated: A steering wheel step input and a yaw
disturbance torque step input. The maneuvers are
performed at the four operating points marked
in Fig. 1. The results are shown in Figs. 11-14
in terms of the yaw rate r, the steering wheel
angle §, and the front wheel steering angle d;.
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Fig. 11. Linear simulation results at v — 50 m/s,
p=1

The simulations show that the controller provides
excellent disturbance rejection and a good steering
tracking at all investigated operating points. The
yaw disturbances are robustly attenuated within
half a second. The control action is finished before
the driver is even capable of starting his counter-
steering due to his reaction time of about a second.
The yaw rate responses to a steering wheel input
are well in accordance with the desired steering
transfer function (2) not exhibiting any overshoot,
Zero steady state error is inherent to the con-
trol structure as already discussed by means of
(10)-(12). The steady state gain of the controlled
vehicle steering transfer function is K, (v). This
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gain has been calculated to be identical to the
conventional vehicle steady state gain for u, = 1.
Therefore, the steady state yaw rate of the con-
ventional vehicle and the controlled vehicle after
a steering wheel input are identical for po=1
(Fig. 11 and Fig. 13) but differ otherwise.

Note that other choices for @ and G, than given
by (7) and (8) are feasible and may be reasonable
depending on the specifications. For example a
second order filter for G,, to Tepresent a certain de-
sired single track steering transfer function can be
used. If this model is well in accordance with the
actual vehicle, then the steering transfer function
Is not significantly changed by control. However,
good disturbance rejection is retained. On the
other hand, a band-pass filter can be applied for
@ instead of a low pass filter. This removes con-
trol action at low frequencies ("fading controller”)
and transfers the task of compensating steady
state errors back to the driver {Aksun Giivenc et
al., 2001).

6. NONLINEAR STABILITY ANALYSIS

Previous experimental experience shows that limit
cycles with actively steered cars can occur due
to actiator nonlinearities (Ackermann and Binte,
1999). In this paper, the rate limitation of the
steering actuator is considered in terms of the
limitation of the electric voltage of the motor (see
Appendix A.2 for details of the steering actua-
tor model). The Popov criterion (Popov, 1962)
is employed to prove absolute stability for the
controlled car such that Lmit cyeles can not occur
in the whale operating domain of the car. The
foundations of mapping the Popov criterion to pa-
Tameter space are described in {Biinte, 2000; Ack-
ermann et al, 2002), Any criteria referring to
frequency loci are subsumed with the notion of
O-stability. With the Popov absolute stability
criterion, the Popov plot of the system’s linear
part is considered, whereas for the static time-
invariant nonlinear part only a sector needs to
be known which includes the nonlinearity char-
acteristics. The transfer function of the system’s
linear part is the transfer function from signal u to
signal —u; in Fig. A.2. Therefore, the actuator is
considered to be connected to the control loop as
shown in Fig. 2 with 4 fref = 03 + 8,. The Popov
plot is derived from the locus of the linear part
transfer function, whereupon its imaginary part
is multiplied with the respective frequency. The
saturation in Fig. A2 is a characteristic which is
included in a sector formed by the two straight
lines u = 0wy and 4 = kouy withk =1, According
to the Popov criterion absolute stability is proven
if the linear part is Hurwitz and the Popov plot
lies to the right hand side of the socalled Popov
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Fig. 15. Popov line (black) and Popov plots
(gray) for six operating conditions marked in
Fig. 16.

line. (This definition-is adopted for O-stability
here.) The Popov line intersects the real axis at
—1/k = —1. The slope M of the Popov line may
be chosen arbitrarily. We chose M = 6.0 (see
Fig. 15) which turns out to be favorable in terms
of the resulting ©-stable parameter region QJo.
Thus, the whole operating domain of the vehicle
is included in Qg as illustrated in Fig. 16. Fig. 15

o8}

206

0 10 20 30 40 50
v fm/s]

Fig. 16. Region Qg of absolute stability using a
Popov line with slope M = 6.0.

also shows six Popov plots corresponding to six
operating points marked in Fig. 16, Solid lines are
used for the Popov plots of the operating points
indicated by cross markers. The Popov plot be-
Ionging to the circular mark is plotted dashed, the
one belonging to the triangular marker is plotted
with dotted linestyle. The latter two cases are ©-
limit-stable since the operating points are located
on a ©-stability boundary in the {v, p}-plane. This
illustrates the limit case of a Popov plot touching
the Popov line which was used for mapping sta-
bility boundaries into parameter space. By this
approach, the robust nonexistence of limit cycles
in the operating domain is proven while acecount-
ing for the presence of the saturation nonlinear-
ity. A similar proof, however applying the dual
locus method, has been shown in (Ackermann and
Biinte, 1999) for a different control structure.

7. CONCLUSIONS

A two degree of freedom steering controller
based on the disturbance observer for vehicle
yaw dynamics improvement was introduced here.
For robust controller design, weighted sensitivity
and complementary sensitivity frequency domain
specifications (B-stability) and eigenvalue specifi-
cations (I-stability) were mapped into the param-
eter space of controller parameters. Simulation
results based on the linear single track model were
used to demonstrate the achievement of excellent
disturbance rejection and good steering command
response. In addition, considering the possibility
of steering actuator rate limitation due to electric
voltage limitation, a Popov criterion based nonlin-
ear analysis was performed for proving robust ab-

solute stability. Therefore, respective ©-stahility .

boundaries were mapped into a plane of operating
parameters.
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Appendix A. VEHICLE MODEL AND
STEERING ACTUATOR MODEL
Al Vehicle yaw dynamics model
The car model which is used for the investigations
in this paper is the classical linearized single track

model (Riekert and Schunck, 1940) as illustrated
in Fig. A.1. Its major variables and geometric

X5

Fr v d
= / CG 71
—J g
! ! i
I \ ! I
! LA
I I
£, &
Fig. A.1. Single-track model

Parameters are

Fp(F.) lateral wheel force at
front (rear) wheel

T yaw rate

Jéj chassis side slip angle at
center of gravity (CG)

v magnitude of velocity vector
at CG (v > 0, 9 = 0)

£¢(8) distance from front (rear)
axle to CG

&y front wheel steering angle

The mass of the vehicle is m and .7 is the moment
of inertia w.r.t. a vertical axis through the CQ.
For small steering angle 47 and small side slip
angle 3, the linearized equations of motion are
(Ackermann et el., 1993; Ackermann et al., 2002)

F_f+F1~

{mv(ﬁ + r)] _ [Ffef o e,J (A1)

mt’ff,.r'* -

The tire force characteristics are linearized as

Felog) = pepoy, Fu(on) = porger (A2)

with the tire cornering stiffnesses ¢ £0, Cr0, the Toad
adhesion factor u, and the tire side slip angles

£
oy :(Sf - (ﬁ—i— -’{-)'tr)

acr:«-(ﬂ—i—rr)

The transfer function from the front wheel steer-
ing angle d5 to the yaw rate r can be computed
from {A.1)-(A.4):

(A.3)

(A.4)

_ T’(S) _ bo+ bys
Gls) = 87(s) @ +ays + ass? (45)
with

bo=cper(ly + 1. )v

by = cplyme?

ap =cser(ly + 4% 4 (eolr — cplp)mo®
a1 ={er(J + 3m) + (I + )
as = Jmu?

The steady state gain of the nominal vehicle
steering is

Ka(v) = 31_% G{s) {A.6)

H=pr
at nominal friction coefficient x = Hona-
In this paper, the considered conventional car

has a steer-by-wire actuator. Hence, the steering
transfer function of the conventional car is

Gca'rw = é_t = GGa

&5

(A7)

with &, denoting the steering wheel angle and G,
being the actuator dynamics (see below).

A1, Vekhicle model date The nominal values
of the variables for the linearized single frack
model assumed in this paper are ! £=1.25 m,
{-=132m, m = 1296 kg, J = 1750 kgm?, crp =
84243 N/rad and ¢,¢ = 95707 N/rad. The nominal
friction coefficient is u, = 1 which corresponds to
dry road.
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Fig. A.2. Actuator model

A2 Steering actuator model

The steering actuator model (Ackermann et al.,
2002} used in this paper is shown in Fig. A.2.
The parameters of this model of an electric motor
under position control are assumed to be L —
0 ({electric time constant neglected), R = 50,
Jo = 0.004053kg m?, k; = 0.01625, K, =
2222, ke = kom = 0.9Nm/A. The electric
voltage of the motor is assumed to be limited
which is impletnented in the model by a unity
slope saturation between the signals «; and 1. No
assumptions on the saturation limits are Necessary
to be made in this paper. The transfer function of
the linearized steering actuator model employed
in sections 3-5 is

2

i Wy
= A.
dfref w2+ 2D,w,5 + 52 (A8)

with D, = 0.7 and w, = 27 . 5Hz

G, =
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