The TiGL Geometry Library and its Current Mathematical Challenges

Workshop DLR / Cologne University 06.10.2017

<u>Dr. Martin Siggel</u> Merlin Pelz Konstantin Rusch Dr. Jan Kleinert

Simulation and Software Technology High Performance Computing DLR Cologne

Knowledge for Tomorrow

Outline

- What is the TiGL Library
- B-spline basics
- Surface Modelling: Gordon surfaces
 - Alternative to Coons Patches to interpolate curve networks
 - Solves problems with surface discontinuities
 - Resulting geometries
- Fitting aircraft engines with Free Form Deformation (FFD)
 - FFD Parametrization of aircraft engine cover
 - The minimization problem + regularization
 - Results
- Conclusion and Outlook


```
TiGL
What it does
```


- CPACS (Common Parametric Aircraft Configuration Schema) is an xml schema that describes the characteristics of an aircraft
 - includes a parametric description for airplane or rotor-craft geometries
- TiGL
 - generates geometries from CPACS files
 - provides an interface for geometry manipulation and queries

TiGL What it is

- TiGL is a C++ library with interfaces to C, Java, Python, Matlab and Fortran
- Uses Open CASCADE CAD kernel to represent airplane geometries as B-spline / NURBS surfaces //CASCADE
- Ships **TiGL Viewer** to visualize aircraft geometries or other CAD files.
- Is **Open Source**, Apache 2.0

https://github.com/DLR-SC/tigl

TECHNOLOGY

• Joint development

TiGL How it is used

TiGL How it is used

DLR.de • Chart 7 > The TiGL Geometry Library and its Current Mathematical Challenges > Martin Siggel > 06.10.2017

B-spline basics

B-spline basics B-spline curves

Definition:

$$\boldsymbol{c}(u) = \sum_{i=0}^{n} \boldsymbol{P}_{i}^{c} * N_{i}^{d}(u, \boldsymbol{t})$$

Linear in P!

with:

- Control points $\{P_i^c\}$
- B-spline basis functions $N_i^d(u, t)$
- Knot vector $\boldsymbol{t}, t_i \leq t_{i+1}$

B-spline basics B-spline surfaces

Definition:

$$\boldsymbol{s}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \boldsymbol{P}_{ij}^{s} * N_{i}^{d_{u}}(u,\boldsymbol{t}_{u}) * N_{j}^{d_{v}}(v,\boldsymbol{t}_{v}) \qquad \text{Linear in P!}$$

with:

- Control points $\{P_{ij}^s\}$
- B-spline basis functions $N_i^d(u, t)$
- Knot vectors t_u , t_v

B-spline basics Algorithm: Knot Insertion

• Adds an entry to the knot vector *t*, without changing the curve shape

- Modifes control points and adds one control point!
- Knot insertion basis for many higher level algorithms

B-spline basics Algorithm: B-Spline Curve Interpolation

• Given data points Pj, compute control points Ci, such that:

$$\sum_{i=0}^{n} \boldsymbol{C}_{i} * N_{i}^{d}(\boldsymbol{u}_{j}, \boldsymbol{t}) = P_{j}$$
$$\Rightarrow \boldsymbol{N}\boldsymbol{C} \equiv \boldsymbol{P}$$

Solve a linear equation

B-spline basics Algorithm: Surface Skinning

• Interpolates set of B-spline curves $c_i(u)$ by B-spline surface s(u, v)

- Similar to curve interpolation
- Requires knot insertion to make input curves compatible

DLR.de • Chart 13 > The TiGL Geometry Library and its Current Mathematical Challenges > Martin Siggel > 06.10.2017

Curve Network Interpolation with Gordon Surfaces

Gordon Surfaces

The curve network interpolation problem

- Definition of the problem:
 - Given a network of profile and guide curves: Find surface that connects (interpolates) these curves

Gordon Surfaces Motivation

- Before: Used OpenCASCADE implemention of Coons-patch based geometry generation
- Problems from aero simulations:
 - Pressure oscillations on the wing
 - Surface modelling probably the issue!
- Analysis:
 - Generated surfaces have small bumps, waves and kinks
 - The latter is caused by C1 or C2 discontinuities
- Conclusion:
 - Must implement algorithm by our own: Gordon Surfaces

Gordon Surfaces Algorithm overview

Create three different surfaces:

- 1) Create skinning surface interpolating the curves $f_i(u)$, $\forall i$: $S_u(u, v)$
- 2) Create skinning surface interpolating the curves $g_j(v), \forall j$: $S_v(u, v)$
- 3) Create surface interpolating the intersection points of the curve network:

T(u, v)

Gordon Surfaces Algorithm overview

 \rightarrow Gordon Surface is superposition of these three surfaces:

 $G(u, v) = S_u(u, v) + S_v(u, v) - T(u, v)$

→ Convert to Gordon surface B-Spline / NURBS for the use in TiGL

Gordon Surfaces Compatibility Conditions

• Condition for the algorithm: Curves must be compatible

Compatibility condition

All profile curves $f_i(u)$ must intersect with a guide curve $g_i(v)$ at exactly the same parameter value u_i and vice versa:

$$f_i(u_j) = g_j(v_i), \forall i, j$$

• Interpretation: The input curves $f_i(u)$, $g_j(v)$ must be iso-parametric curves of the resulting surface

Gordon Surfaces Compatibility Conditions, Example

Compatible intersections of the guides with the profiles:

Gordon Surfaces Reparameterization

- Compatibility condition very restrictive
- Compatibility practically never the case!
- \rightarrow All curves have to be **reparametrized**
- \rightarrow Reparameterization is the main issue!

Gordon Surfaces Reparameterization

Rough Idea:

• Find function r_i such that

$$r_i(u_j^i) = \widehat{u_j^i}$$

with:

- u_j^i the parameter of the intersection of curve $f_i(u)$ with curve $g_j(v)$
- $\widehat{u_j^i}$ the desired intersection parameter to achieve compatibility
- Reparametrized function is given by

$$\widehat{f}_i(u)\coloneqq f_i(r_i(u))$$

• Challenge: Find B-spline parameterization of $\hat{f}_i(u)$

Gordon Surfaces Quality Analysis

• Surface quality analysis with zebra stripe plot

Position : GO When the zebra stripes are 'broken'

Tangent : G1 When the zebra stripes are 'joined'

Curvature : G2 When the zebra stripes are 'smooth'

Gordon Surfaces Results, Nacelle (engine cover)

Gordon Surfaces

Results, Wing

Gordon Surfaces Results, Arbitrary surface

Gordon Surfaces Results, Coons vs. Gordon, Nacelle

Coons Patches

Gordon Surface

(one half of the same nacelle)

Gordon Surfaces Results, Coons vs. Gordon, Nacelle

Coons Patches

Gordon Surfaces Results, Coons vs. Gordon, Nacelle

Coons Patches

Coons Patches

Coons Patches

Coons Patches

Gordon Surfaces Results, Coons vs. Gordon, Arbitrary Surface

Coons Patches

Gordon Surfaces Results, Coons vs. Gordon, Arbitrary Surface

Coons Patches

Gordon Surfaces Results, Summary

- Gordon Surface method works!
- Better quality than previous Coons patch implementation
- Global interpolation:
 - Smooth and natural interpolation of the curve network with a single surface
 - But, Oscillation might occur!

DLR.de • Chart 36 > The TiGL Geometry Library and its Current Mathematical Challenges > Martin Siggel > 06.10.2017

Free-Form Deformation of Aircraft Nacelles

Free Form Deformation of Nacelles Motivation

- Different possibilities to parametrize engine nacelles, such as
 - Interpolation of curve network
 - Free-Form Deformation
- Proof of concept:

Show, that we can rebuild existing geometries from real aircraft with the FFD parameterization approach

Free Form Deformation of Nacelles Concept

• Free-Form-Deformation (FFD)

- start with simple, rotationally symmetric geometry
- deform the geometry using FFD (parametrization = grid point displacements)

1. Define a so-called FFD-grid around the geometry:

2. Deform your geometry by moving the FFD points from their original places

Free Form Deformation of Nacelles Definition

- Each point on the engine surface s has local grid coordinates (s,t,u)
- Deformation of the point (s,t,u) using FFD:

$$F_{ffd}(s,t,u) = \sum_{i}^{l} \sum_{j}^{m} \sum_{k}^{n} B_{i,l}(s) B_{j,m}(t) B_{k,n}(u) \cdot x_{ijk}$$
Linear in x!

with:

- FFD grid points $\{x_{ijk}\}$
- Bernstein basis functions $B_{i,n}(u)$

Free Form Deformation of Nacelles Initial Surface Generation

- Rotation of iso-parametric curve of reference surface around central axis
- \rightarrow Identical parametrization of reference geometry and created geometry

Initial surface with iso-parametric curve in axial direction and rotational curve

Free Form Deformation of Nacelles Basic Principle

Modify FFD grid points $\{x_{ijk}\}$, such that initial surface fits reference surface :

Free Form Deformation of Nacelles The Minimization Problem

• The discretized surface z depends linearly on the control points x.

$$z = B \cdot x$$

• Given the discretized reference surface as r, the fit is given by the solution of

$$||B \cdot x - r||_2^2 \xrightarrow{x} \min$$

Free Form Deformation of Nacelles Regularization

- Problem: Matrix B has bad condition, resulting FFD grid x distorted
- Remedy: Use modified L2 regularization

$$||B \cdot x - r||_2^2 + \frac{\lambda}{n} ||x - x_0||_2^2 \xrightarrow{x} \min$$

with:

- Regularization parameter $\lambda \in R^+$
- Number of FFD grid points *n*

Free Form Deformation of Nacelles Solving the Minimization Problem

• Re-arrange minimization problem:

$$\begin{split} \|B \cdot x - r\|_{2}^{2} + \frac{\lambda}{n} \left\| \underbrace{x - x_{0}}_{\Delta x} \right\|_{2}^{2} \\ &= \|B \cdot \Delta x - (r - B \cdot x_{0})\|_{2}^{2} + \frac{\lambda}{n} \|\Delta x\|_{2}^{2} \\ &= \|B \cdot \Delta x - \hat{r}\|_{2}^{2} + \frac{\lambda}{n} \|\Delta x\|_{2}^{2} \xrightarrow{\Delta x} \min \end{split}$$

- Solve using Singular Value Decomposition (SVD):
 - Let $B = U\Sigma V^T$ its SVD, with diagonal Matrix Σ , containing singular values Σ_{ii} , then

$$\Delta x = V \Sigma^+ U^T \hat{r}$$
 , with $\Sigma_{ii}^+ = rac{\Sigma_{ii}}{\Sigma_{ii}^2 + \lambda/n}$

Free Form Deformation of Nacelles Results, best Fit

Reference surface and initial surface

Reference surface and deformed surface using 10x10x10 FFD grid points

Free Form Deformation of Nacelles Results, Error of the Fit

Optimiertes FFD Gitter mit 4 / 2 / 2 Punkten und deformierte Gondel

Free Form Deformation of Nacelles Results, Regularization

Distorted Grid (unregularized)

Same FFD grid, regularization, with $\lambda = 0.5$

Free Form Deformation of Nacelles Results, Regularization

 $\lambda = 0.01$

Free Form Deformation of Nacelles Summary and Outlook

- Approximation engine surfaces with FFD method
- Method converges with rising number of FFD grid points
- Regularization is required due to bad conditioning
- Regularization has small influence on fit error, but large influence on the resulting grid quality

Outlook

- Use B-spline basis function in FFD function → also local deformation possible (already implemented but not presented here)
- Hierarchical optimization \rightarrow could replace regularization

Questions?

martin.siggel@dlr.de http://github.com/DLR-SC/tigl