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Abstract: In this article tracking control of nonlinear plants using a two degree of
freedom controller structure is considered. The work described herein focuses
on the design of feedforward controllers based on automatic generation of
inverse plant models. The method is applied to the problem of vibration
control of elastic joint robots and is demonstrated with simulations and
experimental results.
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1. INTRODUCTION

This article addresses model based control of mechanical systems, in
particular robots. When the tracking problem of such a plant is considered,
the controller often includes some kind of non-linear inverse dynamics of the
system. Depending on the controller, the inverse dynamics may be used in
the feedback part, e.g. in feedback linearization, or in the feedforward part,
e.g. in output regulation. For complex systems with fast dynamics like
robots, computation of the inverse dynamics involves a large computational
effort. In particular use of the inverse dynamics in the fast feedback loop
often fails due to real-time requirements. Therefore, considering practical
relevant robots, the inverse dynamics is used in the feedforward controller.
Here sampling times can be larger and there are no hard real-time
constraints.

In the following section a general framework is discussed to
automatically derive a non-linear inverse model from a given plant model.
This inverse model is used in the feedforward path of an appropriate two
degree of freedom controller which is introduced in section 3. Section 4
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highlights practical aspects of inverse model generation. In section 5, the
explained technique is applied to a robot with elastic joints. Section 6
presents experimental results from our laboratory robot illustrating the
reduction of vibrations at the tool. Section 7 concludes the paper.

2. DERIVATION OF INVERSE MODELS

The problems related to computation of non-linear inverse models shall
be illustrated by calculation of the inverse dynamics of a simple robot having
one elastic joint as shown below.
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Figure 1. Robot with one elastic joint

The equations of motion are given by

0=J,G+k(g-0)+d{g-6)+2(q)
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with joint position q(t), motor position 8(T), motor torque T(T), link
inertia J;, motor inertia J, a strictly increasing stiffness characteristics
k(.)OC" which is symmetric with respect to the origin, damping constant d
and torque due to gravity g(q). To obtain the inverse dynamics, T must be
computed from a given q(t) and higher derivatives of q(t). In a first step, 0 is
calculated from the upper part of Eq. (1). It can be shown that this
differential equation with state 8, which is known as the "internal dynamics"
of the system, is stable and therefore the solution 6(t) can be further utilized.
Note, since k(.) is a non-linear function, the solution 6(t) is usually
calculated by numerical integration. In order to compute T from the lower
part of Eq. (1), the second derivative of O must be calculated by
differentiation of the first equation. This results in a new algebraic equation.
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As illustrated with this simple example, the derivation of the inverse
dynamics model may require to differentiate a subset of the equations, select
appropriate states and solve the resulting system of differential and algebraic
equations numerically. Further, derivatives of the desired trajectory must be
provided up to a certain order. Below it will be shown how these tasks can
be handled automatically using algorithms for solution of differential
algebraic equations.

These algorithms start with a general model representation described by a
set of differential and algebraic equations (= DAE)

0=f(x,x,y,u) 3)

where x(t) are variables that appear differentiated in the DAE, y(t) are
algebraic and u(t) are known input functions of time t. In order to solve Eq.
(3) it is, at least numerically, possible to perform an index reduction step and
transform the system to state space form

[5‘1 X, ¥y W]T:S(xl,u). 4)

Here x; and x, form the vector x such that the subset vector x; is the state
vector and contains the independent variables of x. For example in multi-
body systems, x; are the minimal coordinates and x, are the coordinates that
are constrained. The vector w contains higher order derivatives of X, x,
and y that emerge when differentiating equations of f(.). They are treated as
algebraic variables. The equations to be differentiated can be determined
with the algorithm of Pantelides (1988). The selection of the state variables
x; can be performed with the “dummy derivative method” of Mattsson and
Soéderlind (1993). Both algorithms are, for example, available in the
Modelica (Modelica Association 2005) simulation environment Dymola
(Dynasim 2005). Computation of fg(.) might include solution of linear and/or
non-linear algebraic systems of equations.

In a plant model for controller design and simulation, the control
variables are chosen as inputs and the variables that are required to track as
outputs. In robotics this kind of model is known as forward dynamics.

Equivalently an inverse model of the plant can be constructed by
exchanging the meaning of variables: A subset of the control variables, ujyy,
with dimension n;,,, is no longer treated as known but as unknown, and njp,
previously unknown tracking variables are treated as known inputs. This
kind of model is named inverse dynamics in robotics. It can still be written
in form of Eq. (3) and handled with the same methods as any other DAE.
Some more practical aspects of derivation of inverse models from plant
models can be found in section 4.
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Use of the inverse model in the controller as described in the next section
is only possible if its DAE has a unique solution and if it is stable. Therefore
the internal dynamics of the plant associated with the output to be tracked
has to be stable. For linear systems this means, that the plant may not have
unstable transmission zeros. For a general DAE no stability proof exists, but
for certain classes of DAEs, including models of robots with elastic joints, it
is possible to prove the stability of the inverse model. Since the internal
dynamics is usually non autonomous, only boundedness of the internal states
can be guaranteed. This can e.g. be analyzed using the notion of input-to-
state stability from Sontag (1989). For the one link robot of Eq. (1), after a
coordinate transformation (y,8)=(q-qo,q-qo-0) with qo such that g(y =0)=0,
one can show that the integral of k(o) is an ISS-Lyapunov function for the
inverse model. Therefore 0 is bounded, provided q(t) 0 C*.

In case it is not possible to prove stability, simulations can be performed
to check whether the inverse model is stable in the desired operation region.
An alternative is to linearize the plant model around several stationary
operating points and check whether the transmission zeros are stable. Of
course, none of these checks can guarantee that the inverse DAE is stable.

If the inverse model is unstable, approximate inversion might be used for
the controller. Therefore, since the internal dynamics is associated with the
output, often an output redefinition approach is used. For linear single-
input/single-output systems this can e.g. be achieved by removing unstable
zeros before inverting the plant. For a non-linear DAE, one might choose
other outputs that are similar to the original outputs, but don’t lead to
instability. Alternatively, the DAE might be modified before inversion, e.g.,
by introducing additional damping terms.

Since the transformation from Eq. (3) to Eq. (4) might differentiate a
subset of the model equations, the known inputs of the model may be
differentiated too. Therefore, the derivatives of these inputs must exist and
must be provided up to a certain order. These derivatives can be computed,
e.g., if the inputs are available as functions that can be differentiated
sufficiently often. Alternatively, a desired reference model might be used
that, in combination with the inverse DAE, results in a DAE that does not
require derivatives of inputs. The reference model could, e.g., be selected as
a filter such that a combination of the filter states yields the needed
derivatives.

3. CONTROLLER USING AN INVERSE MODEL

The question arises how to use an inverse DAE model in a controller.
Kreisselmeier (1999) has proposed and analyzed a controller structure with
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two structural degrees of freedom for linear, single-input/single-output
systems. A generalization of this controller structure to nonlinear multi-
input/multi-output systems is shown in Fig. 2.
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Figure 2. Controller with two structural degrees of freedom

In Fig. 2 the multi-input/multi-output plant has inputs u, measured
signals y,, and outputs y. that are primarily controlled. The number of inputs
must be identical to the number of controlled variables: dim(y.) = dim(u). In
this case the inverse plant model with (known) inputs y. and unknown
outputs u is used in the feedforward path of the controller to compute the
desired actuator inputs uy4 to the plant.

A “reference model” is used to provide a smooth trajectory y..q4 and its
derivatives, which are the inputs of the inverse plant model. The inverse
plant model computes the desired measurement signals y,, 4 and the desired
plant inputs uy. For stabilization and robustness purposes a correction is
added that is computed by a feedback controller that has the error between
the measured signals and the desired measured signals as input. The
feedback controller might be a simple state controller.

The feedback controller must be able to stabilize the system around the
desired trajectory. Assuming the inverse plant model computes the same
value for yngq4 as the measured quantity y,, then control error e is zero.
Further, the feedback controller starts from a stationary state which is
selected such that u.=0. Then u equals uy which is computed in the inverse
plant model. If the inverse model of the plant is ideal and starts at the same
initial values as the plant, the plant will produce trajectories yu,(t)=ym.a(t)
(because the inverse plant model was constructed in this way). Then again
the preliminary assumption of zero control error e is fulfilled and the
controller has no effect.

In case a control error occurs, the controller has to stabilize the system
and cope with the imprecise inverse plant model. The proposed controller
structure is advantageous because design of the feedback controller is
decoupled from the feedforward controller that is responsible for tracking
the given reference input.

Note, that due to the particular controller structure, the reference model
determines essentially the input/output behaviour y.q4 — y. of the overall
system: According to the analysis above, the "feedback controller" in Fig. 2
has no effect for an ideal inverse plant model. In this case, the overall system
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consists of a series connection of reference model, inverse plant model and
plant model. Using the same assumptions as above, the output of the plant
model is identical to the input of the inverse plant model. As a result, the
reference model can be interpreted as the “desired transfer function” of the
overall system. Since the inverse plant model is in the feedforward path, the
calculation of uy and of y,,4 might be performed offline, so that hard real-
time requirements for the solution of the inverse plant model are not present.

4. CONSTRUCTING INVERSE MODELS USING
MODELICA AND DYMOLA

Deriving a non-linear inverse model manually can be a challenging task.
For complex models this is not practical. Our approach is to use the
Modelica modeling language (Modelica Association 2005) to define the
model and the Modelica simulation environment Dymola (Dynasim 2005) to
derive the inverse model automatically and perform simulations. The object-
oriented modeling language Modelica is designed to allow convenient,
component-oriented modeling of complex physical systems, e.g., systems
containing mechanical, electrical, electronic, hydraulic, thermal, control,
electric power or process-oriented subcomponents. The free Modelica
language and libraries are available, ready-to-use and have already been
utilized in demanding industrial applications. In Fig. 3, some example
models of available Modelica libraries useful for robot simulation are shown.
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Figure 3. Modelica component libraries

With the Modelica simulation environment Dymola, the practical

derivation of inverse models is straightforward, even for complex systems:

1. Define the plant model and include input and output signals of the plant
over which the inversion shall take place.

2. If necessary, provide a reference model or input filter of appropriate
relative degree. The relative degree may be known from physical
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knowledge of the plant dynamics, or can be automatically derived as
described below.

3. Connect the components using a twolnputs block as shown in Fig. 4. The
twolnputs block is necessary because in block diagrams it is not allowed
to connect two output signals with each other.

On the left side of Fig. 4 the plant model with one input and one output is
present.

plant tweolnputs fitter

u
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Figure 4. Definition of inverse model with Modelica

On the right side, a filter is used as reference model. If the filter order is too
low the DAE is not causal and Dymola prints an error message of the
following form:

Error: The model requires derivatives of some inputs as listed below:

Order of derivative Input
4 ul
2 u2
3 u3

Error: Failed to reduce the DAE index
In the second column the Modelica names of the input signals are listed that
need to be differentiated according to the differentiation order of the first
column. The numbers in the first column are therefore the minimum order of
the corresponding filters. The higher the required filter order, the more
problems usually occur when applying the inverse model in a control
system. In such cases, one might simplify the plant model.

S. ELASTIC JOINT ROBOTS

The computation of the inverse dynamics for rigid robots is a standard
task. Using the well-known equations of motion for tree-structured rigid
multi-body systems

M(q)q+C(q,q)+g(q) =7 (%)
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and given the desired joint positions q(t) and their derivatives with
respect to time up to a order of two, the generalized forces exerted by the
drives T can be calculated algebraically. De Luca (1996) showed that, when
more realistic models including drive dynamics and elasticity in the joints
are taken into account the computation becomes more complex. Derivatives
of the desired trajectory q(t) must be provided up to a certain order, because
the equations of motion must be differentiated several times in order to
calculate T. The necessary number of derivatives of q(t) depends on the robot
kinematics and cannot be given easily in closed form. An upper bound for an
robot having N joints is 2(N+1) without damping in the joints, and 2+N, if
damping is present in all joints. A first application of the proposed controller
using an inverse dynamics model for elastic joint robots can be found in
Thiimmel (2001).

The framework presented in the previous sections is now applied to the
DLR lightweight robot LBR2 shown in Fig. 5. This manipulator arm of
approximately 1 m length is able to handle a payload of 8 kg with a total
weight as low as 17 kg. It is a chain-structured mechanism with seven
revolute joints. The motors are mounted in the joints, their rotors' axes of
rotation coincide with the joint axes, as depicted in the right part of Fig. 5.
The drive trains are known to be elastic due to harmonic drive reduction
gears and torque sensors. They are modeled like in the example of section 2,
with non-linear joint stiffness that are roughly 10* Nm/rad and damping
coefficients that are roughly 15 Nms/rad. A more detailed description of the
LBR2 is given in Albu-Schiffer (2002). In Hopler (2004) the inverse
dynamics problem for this robot was solved using spatial operator algebra
and the reasons for the necessity of differentiation of the equations of motion
were given as well.

Figure 5. DLR light weight robot LBR 2.
Left part: complete arm, right part: joint with rotor and drive

Starting from a detailed Modelica model of the LBR 2, the inverse
dynamics model of the robot was automatically derived, as described before.
It was found, that this model requires derivatives of the equations of motion
up to an order of 4, what is undesirable for use in a controller. This higher
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order results from gyroscopic effects introduced by the motors which are
mounted on the robot arms. It is well known, that these effects decrease with
increasing gear ratio. Taking into account the high gear ratios of the LBR2, it
seems justified to neglect gyroscopic effects of the motors. Therefore, in a
simplified model the motors are assumed to be not moving with the bodies to
which they are attached but mounted on the ground. This significantly
simplifies the model and reduces computation time since now the equations
of motion only need to be differentiated once. A comparison of the models
can be found in Tab. 1.

Table 1. Comparision of required differentiability

Type of model Detailed model Simplified model
Required order of derivatives of 4 1

the equations of motion

Required order of derivatives of q(t) 6 3

In order to verify the assumption that gyroscopic effects of the motors
can be neglected, simulations have been performed to check the errors
introduced by the simplification of the model. In the example shown in Fig.
6 the desired trajectory for all joints was a step input from one to two radian
filtered with a 8th order filter with cut-off frequency of 5Hz.

As can be seen, the errors with the simple model are roughly one percent
of the overall torque and much smaller than the errors of a rigid model where
the elasticity in the joints is neglected. Therefore the simple model is a good
approximation for control purposes.
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Figure 6. Torques computed with inverse dynamics models
Left part: torque for detailed model. Right Part: torque errors with respect to detailed model

6. EXPERIMENTAL RESULTS

In order to check the performance of the proposed controller, tests with
our laboratory robot have been carried out using the controller structure
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shown in Fig. 2. The feedback controller was chosen to be a PD controller
for every joint and a low-pass filter was used as a reference model.

On the left hand side of Fig. 7 the tool vibrations after a robot motion are
shown. The motion was executed two times: one time without feedforward
controller (PD) and one time with the inverse dynamics model in the
feedforward part (PD+inv.). As can be seen the inverse dynamics model
reduces vibrations for positioning tasks.

position error [mm]

time [s]

Figure 7. Comparison of control errors. Bright line: controller without feedforward.
Dark line: controller using inverse dynamics model
Left part: positioning experiment. Right part: tracking experiment

On the right hand side of Fig. 7 the results of a trajectory tracking
experiment are shown. The desired trajectory was chosen to be a square with
start point [-100, 0, 0] mm traversed in clockwise direction as indicated by
the black line. Again this movement was executed with and without the
inverse dynamics model in the feedforward part and measured with an
optical coordinate measurement system. The figure shows normalized
absolute deviations from the desired path displayed on the z axis. As can be
seen also the tracking error can be reduced significantly when using the
inverse dynamics model.

7. CONCLUSION

Vibration control of elastic joint robots with automatically generated
inverse dynamics models in the feedforward controller was considered. It
has been shown, that inverse models of general plants can be derived
automatically using existing algorithms for DAE systems. The method was
illustrated by simulations with a model of the LBR2, and a simplified model
for use in a controller was derived. As shown in experiments, the proposed
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controller can reduce robot vibrations in positioning tasks as well as tracking
errors significantly.
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