Monitoring of current density distribution

I. Biswas, D. Garcia Sanchez, M. Schulze

German Aerospace Center (DLR)
Institute of Engineering Thermodynamics
Electrochemical Energy Technology
Stuttgart, Germany
Outline

• Current Density
• Local current density monitoring – technology principles and origins in fuel cell technology
• INSIDE – Diagnostics in Electrolysis
• Application examples
• Outlook
Current Density

- Key point indicator for electrolyzers and fuel cells: efficiency of used materials (PGMs, etc.)
- Faraday’s Law:
 Current density equals chemical turnover
- Local electrochemical turnover is determined by local catalytic activity
 local transport limitations
 local degradation
 local temperature
 local…
Technology: Segmented Printed circuit boards

- Origin: PEM Fuel cells
- PCB mimicks bipolar plate
- Endplate contact possible
- Gas tightness
- Current take up 8 A/cm²
- Resistor shunt
- Recording of shunt voltage
- Additional T sensors (local)
- Local EIS (single segment readout)
- Operating temperature max 200°C
Technology: Segmented Printed circuit boards

- Milling of flow fields possible
- Limit to local resolution by
 - Flow field
 - PCB layout / thickness / connectors
 - Data acquisition
Technology: Segmented Printed circuit boards

Lab scale single test cell
25 cm², 49 segments

Fuel cell stack size
>150 cm², 108 segments
Technology: Segmented Printed circuit boards

Application

- Systematic studies on fuel cell
- Optimization of Performance
- Malfunctioning
- Humidification
- Heat dissipation
- Oscillating chemical reactions
- Flow field evaluation
- GDL enhancement

Flooding event in PEMFC
INSIDE – In-situ Diagnostics for Water Electrolysers

R&D Project funded by FCH JU:
Adaptation of segmented PCB to

- PEMWE
- AWE
- AEMWE

Consortium: 5 partners

- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
- NEL Hydrogen ASA, Norway
- Heliocentris Italy S.r.l., Italy
- CNRS / Université de Strasbourg, France
- Hochschule Esslingen, Germany
INSIDE – In-situ Diagnostics for Water Electrolysers

Grid stabilisation:
- Supply based operation
- Flexibility (KPI 5)
- Durability (KPI 3, 4)

Industry:
- Demand based operation
- Efficiency (KPI 1, 2)

Targeted development
INSIDE – In-situ Diagnostics for Water Electrolysers

Objectives

Provide in-operando monitoring for
• Harvesting of hidden performance
• Revealing hidden deficiencies
• Enhancing durability
• Preventing critical operation
• Targeted developments
• Evaluation of modelling
• Evaluation of AST
INSIDE – In-situ Diagnostics for Water Electrolysers

Challenges & Achievements

Contact Resistance: PCB – instead of BPP
Carbon GDLs vs. metal foams/felts
→ Increase of gold coating thickness
→ graphitic coating (under development)

Differential Pressure
→ adjust PCB thickness
→ add regular BPP
INSIDE – In-situ Diagnostics for Water Electrolysers

Challenges & Achievements

Number of data recording channels
Space requirements:
PCB circuits compete with hardware
 ➔ More complex layouting
 ➔ More PCB layers
INSIDE – In-situ Diagnostics for Water Electrolysers

Challenges & Achievements

AEMWE prototype:
Gas & electrolyte tightness
• Pressure
 ➔ adapt sealing concept
• Surfaces
 ➔ metal coating

Prototype for AEMWE
INSIDE – In-situ Diagnostics for Water Electrolysers

Challenges: Corrosion

• AWE conditions (30% KOH, >60°C)
 Sealings barely stop KOH lye
 Lye migrates along copper lines when accessible

• PCB material itself (FR4 epoxy) can be attacked
 Invasion between laminated layers
 → avoid exposure
 → or seal edges of PCB
INSIDE – In-situ Diagnostics for Water Electrolysers

Data acquisition

- Voltage recording
- Modular setup
- Multiplexer for up to 560 channels
- USB interface
- Labview™ compatibility

Data acquisition: Keysight (HP/Agilent) 34980A
INSIDE – In-situ Diagnostics for Water Electrolysers

Data acquisition & visualisation

Overall values

Local current densities
Examples for Application (25 cm² test cells):
Contact resistance and pressure

Homogeneous torques

- 2.2Nm
- 0.5Nm

Non-homogeneous torques

MEA: Greenerity E400E (Nafion 115)
Anode GDL: Sinter titanium
Cathode GDL: Carbon paper
Examples for Application: Flow field evaluation

![Graph of Voltage vs. Current Density]

Flow Field Configuration A)

Flow Field Configuration B)

Relative current densities

1. [Image of current density distribution]
2. [Image of current density distribution]
3. [Image of current density distribution]
4. [Image of current density distribution]

D.G. Sanchez, M Gnilka
WP4 – PEM electrolysers

Examples for Application: Water starvation

T = 80°C
P = 1 bar

D.G. Sanchez, M. Gnilda
Examples for Application: Irreversible Degradation

Local post-mortem investigations (XPS):
Mo traces in cathode catalyst layer, correlating with local irreversible degradation.
Summary and Outlook

- *In-operando* Diagnostics
- Visualisation
- Little disturbance
- Costs depend on upscaling & data acquisition
- Application:
 - Development (Materials, Designs)
- Monitoring
 - Steady monitoring
 - Response to diagnostic cycles
- Evaluation of numerical modelling
- Evaluation of testing protocols & ASTs
Acknowledgements

INSIDE consortium
Magnus Thomassen
Anders Søreng
Chiara Emiliani
Siegfried Limmer
Elena Savinova
Viktoriia Saveleva
Renate Hiesgen
Tobias Morewietz
Mathias Schulze

EWII
Laila Grahl-Madsen
Theiss Stenstrøm
Bertil Sieborg

People at DLR
Daniel Garcia Sanchez
Olivier Garrot
Michael Gnilka

FCH JU
The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology Initiative under Grant No. 621237 (INSIDE).
Thank you for your attention!