Objectives

An electrochemical in-situ diagnostics tool for monitoring of locally resolved current densities, originally developed for application in PEM fuel cells, is adapted to water electrolysis:
- PEMWE: based on proton exchange membranes
- AWE: alkaline water electrolysis
- AEMWE: based on anion exchange membranes

The developed tools allow to correlate performance issues and ageing processes with local anomalies. Corresponding mechanisms are investigated with ex-situ analytics.

Strategy

- Stress Tests
- Investigation of Degradation
- Correlation: Operation Conditions & Degradation
- Improved Operation Strategies
- Enhanced performance & lifetime

Achievements

- AEMWE: Prototype delivered
- PEMWE: Technology concept in test cell operation

Perspectives

The patented segmented printed circuit board (PCB) for the monitoring of current density distributions in PEM based fuel cells is used and steadily improved at DLR.
- Monitoring of performance and local anomalies during operation
- Revealing systematical deficiencies not detectable offline
- Correlating degradation mechanisms and system parameters
- Identifying and preventing critical operation
- Systematically improving the efficiency of water electrolysis
- Recommendations for use of present and for design of future water electrolyzers

Challenges

Adaptation of segmented PCB:
- pH and non H+ ions
- Pressure
- Bubble formation
- Sealing

Visualisation of water starvation

Irreversible degradation – correlated to other metal ion poisoning

Coordination:
Deutsches Zentrum für Luft- und Raumfahrt e.V.
Institut für Technische Thermodynamik
Pfaffenwaldring 38-40
D-70569 Stuttgart

Contact:
Indro Biswas
Phone: +49(0) 711/6862-603
Fax: +49(0) 711/6862-747
E-mail: indro.biswas@dlr.de
Internet: http://www.dlr.de/tt

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology Initiative under Grant No. 621237 (INSIDE).