Test Specifications for Highly Automated Driving Functions: Highway Pilot

Knowledge for Tomorrow

Hardi Hungar

Team Leader Verification and Validation Methods Institute of Transportation Systems, German Aerospace Center (DLR) Joint work with: Frank Köster, Jens Mazzega

This research was partially funded by the German Federal Ministry for Economic Affairs and Energy, Grant No. 19A15012F (PEGASUS), based on a decision by the Parliament of the Federal Republic of Germany. The responsibility for the content lies with the authors.

Introduction Application: Highway Pilot

- Automated driving on a highway under regular conditions (SAE level 3)
 - Passenger car
 - Highway or similar equipped road
 - Speed limited to 130 km/h
 - Ordinary weather conditions

Included

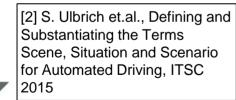
- Stop & Go
- Changing lanes
- Overtaking
- Emergency manoeuvers
 - Braking
 - Evasive actions
- Fallback when reaching system boundaries:
 - Driver (with sufficient takeover time)
 - Risk minimizing maneuver (if driver does not respond)

Excluded

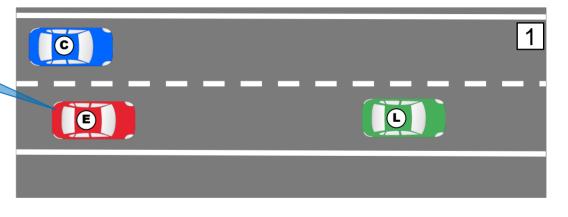
- Entering the highway
- Exiting the highway
- Bad weather
 - (very) Slippery surface
 - Heavy rain, snow, fog

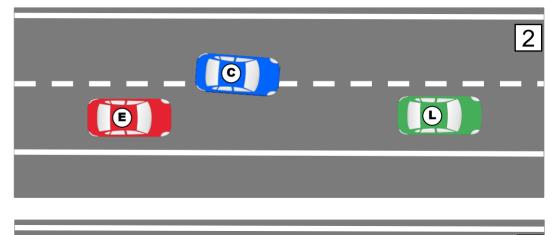
Introduction

Problem: How to prove safety of a Highway Pilot?


- ISO 26262: Standard "Road Vehicles Functional Safety" for developing systems with electronic elements
 - <u>Risk-based approach to safety</u>
 - Risk $\approx \sum_{h \in H} E_h * C_h * S_h$
 - H: Set of harmful events h
 - E: probability of occurrence (precisely: expected number per time unit)
 - *C*: controllability (here: probability of *not* avoiding an accident)
 - S: severity of event (injuries, fatalities)
 - Safety requirement:
 - The risk must be "minimized"
 - The definition of "minimal" may vary
 - Proving safety of an implementation of the Highway Pilot
 - ¿Testing a Highway Pilot on the road under supervision of a safety driver?
 - May take a while (one estimate: some billion kilometers, $\sim 13 * 10^9$ [1])

[1] H. Winner et al., Safety Assurance for Highly Automated Driving, TRB Annual Meeting 2017




Approach Specification Concept: Scenarios

- A scenario (after [2]) describes a traffic sequence
 - Here: always with one distinguished ego car
 - Consists of
 - scenes (snapshots), connected by
 - actions of the ego car, and
 - <u>events</u> coming from the environment (traffic participants or other)
- Example scenario "Cut In" (*Illustration*)
 - 1: Ego vehicle is following Lead vehicle, other vehicle is approaching from behind
 - 2: Other vehicle overtakes and moves into ego lane (events)
 - 3: Other vehicle has cut in (event)

Ego vehicle
Lead vehicle
Cut-in vehicle

(C)

E

3

L

Approach

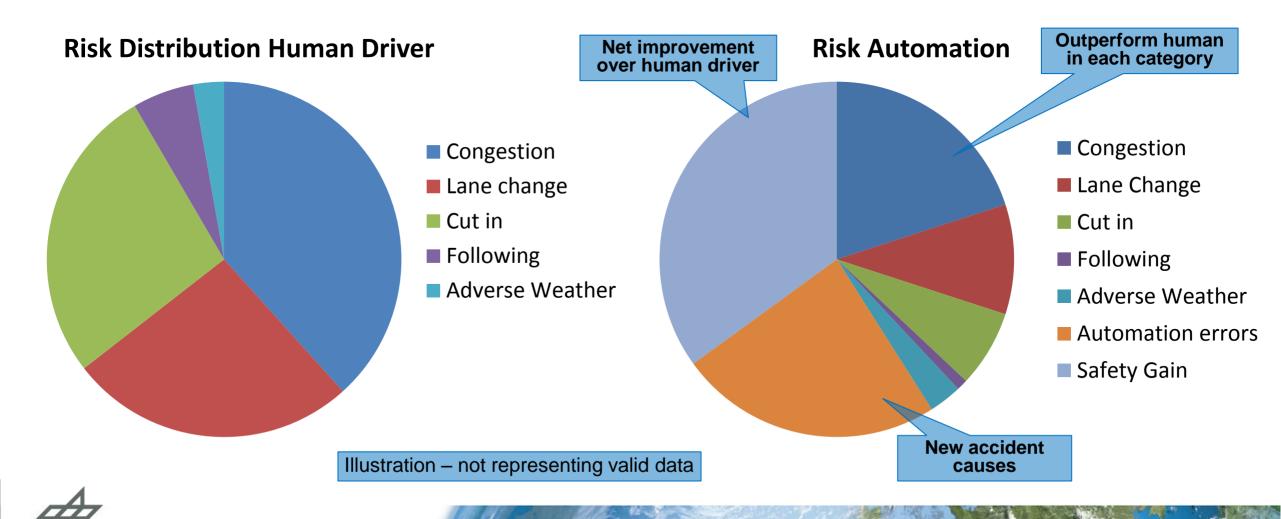
Hierarchy of Tests: Virtual, Proving Ground, Field

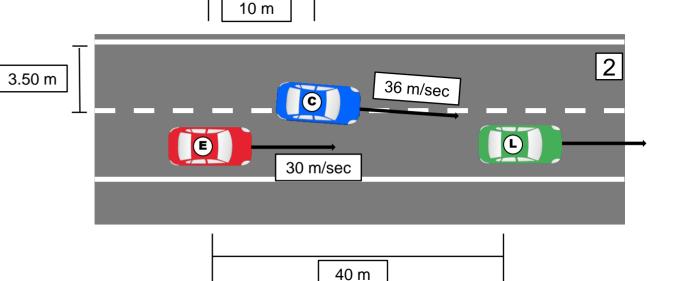
Simulation

- Embed HAF control into traffic simulation software
- Run extensive tests
- Proving Ground
 - Targeted experiments in controlled environments
 - Validation of simulation results

Field Data

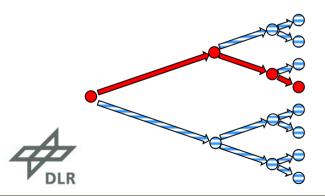
- Measuring parameters of exposure
- Evaluating accident data
- Validating simulation results in reality

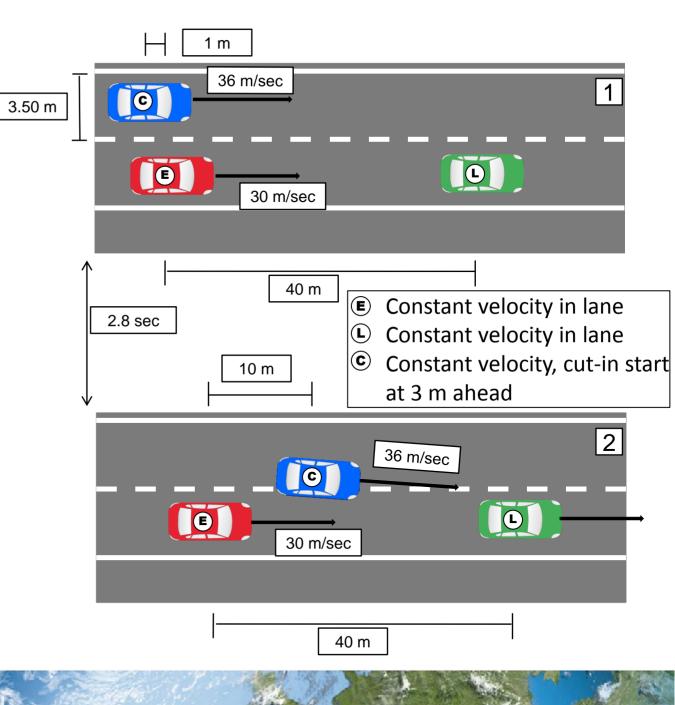




Approach Safety Goal: Outperform the Human Driver

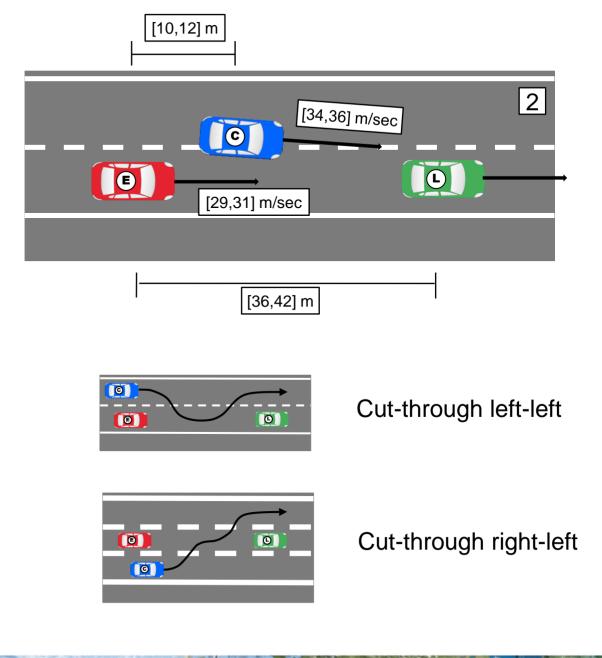
Scene Definition


- A <u>Scene</u> describes a particular state
 - <u>Traffic infrastructure</u>
 - Lanes, regulations
 - Geometry: curvature, elevation
 - Environment conditions
 - Surface grip (wetness, ...)
 - Perception: Light, sun, fog, sensor obstacles, etc.
 - Traffic
 - Vehicles: Ego and usually other
 - Type
 - Position, speed, orientation
 - Blinker, brake lights



Scenario Definition

- A <u>Scenario</u> describes a particular evolution of scenes
- It consists of
 - A (finite) timed sequence of scenes
 - A fully defined start scene
 - Transitions between subsequent scenes, with
 - Actions of the ego vehicle
 - <u>Events</u> from the environment (other vehicles, conditions)
 - Evolutions (passage of time)
- One line of evolution (of potentially many)



Scenes and Scenarios Definition (Elaboration)

- Scene parameters need not be fully defined
 - <u>Field data</u>: Precise values (ground truth) are not always available
 - <u>Specifications</u>: Ranges serve to capture a class of similar situations

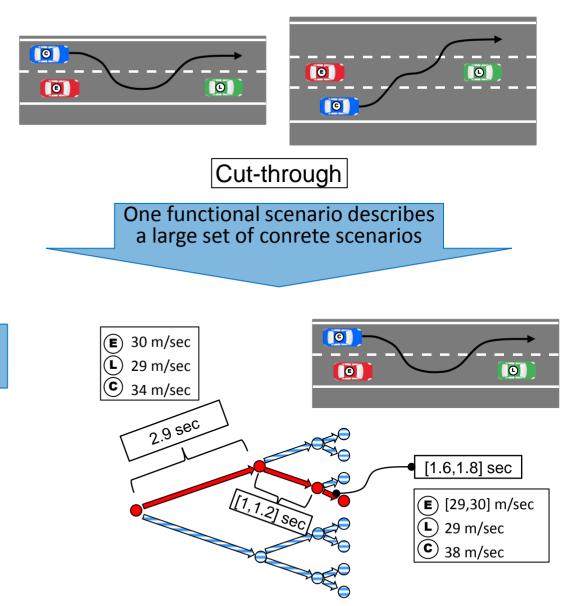
Scenarios

- <u>Action</u>, <u>event</u> and <u>time</u> parameters can be imprecise
- The <u>discrete structure</u> remains **fixed** in one scenario
 - E.g.: Lane change performed vs. lane change aborted go into different scenarios
- <u>Discrete variability</u> captured in sets/classes of scenarios

Scenario Classes Functional and Concrete Scenarios

Functional Scenario

- Textual / graphical description of a class of scenarios
- Rough parameter ranges (if at all restricted)
- May include discrete variability
- Usage: High-level specification
- Examples: Cut-in, Cut-through, Lane Change, Overtaking, etc.


Capture and discuss different classes of evolutions

Essentially one

specific evolution

Concrete Scenario

- Fully defined sequence
- · Parameters within tight bounds
- One line of evolution
- Usage:
 - Capture <u>field data</u> or <u>simulation runs</u>
 - Define test cases

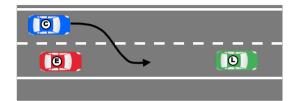
Scenario Classes Functional Scenarios

Functional Scenario

- Textual / graphical description of a class of scenarios
- Rough parameter ranges (if at all restricted)
- May include discrete variability
- Usage: <u>High-level specification</u>
- Examples: Cut-in, Cut-through, Lane Change, Overtaking, etc.

List of functional scenarios

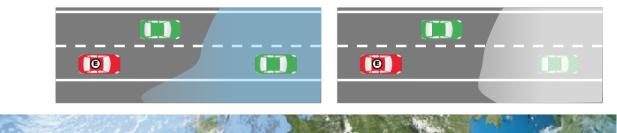
- Free driving
- Following
- Lane change
- Overtaking
- Cut-in
- Leave lane
- Cut-through
- Slow traffic
- Stop & Go
- Jam
- Lane violation
- Incident traffic
- Wrong-way driver
- Obstacle
- Incident environment



Scenario Classes

Functional Scenario Examples: Cut-in / Incident Environment

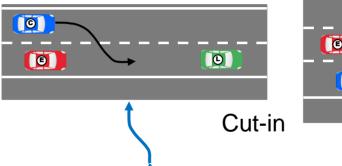
Cut-in

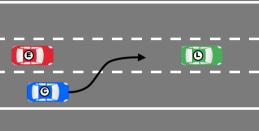

- Start situation
 - Ego car (E) drives on highway lane
 - Other vehicle (C) on adjacent lane
 - Potentially further vehicles involved
- Evolution
 - C moves into E-lane in front of E
- Criticalities
 - C cuts in with little distance to E
 - C brakes after cutting in
 - Low TTC(**E**,**C**)

TTC: Time to collision

Incident Environment

- Start situation
 - Ego car (E) drives on highway lane
 - Varying traffic situations
- Evolution
 - Sudden change of environment conditions affecting traffic
 - Heavy rain/snow
 - Fog, low standing sun
 - Wet road surface, ice/white frost
- Criticalities
 - Sensor reliability reduced
 - Grip reduced/lost




Scenario Classes Logical Scenarios

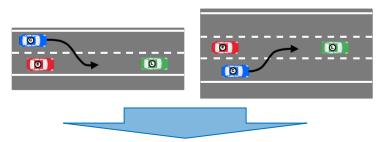
- Functional Scenario
 - Usage: High-level specification

Precise definition of sets of scenarios

- Logical Scenario
 - One line of evolution
 - Parameter ranges with occurrence probability distributions
 - Represents set of concrete scenarios
 - Usage: Main constituent in the test specification
- Concrete Scenario
 - Usage:
 - Define test cases

Cut-in (left, from behind) (regular traffic situation)

- Step 1:
 - Velocity [m/sec]: E , L: [22-36]; E-L: [-4,4]; C: [23-67]; C-E: [1,45];
 - Position [m]: L-E: [33,100]; E-C: [0,30];
 - Distributions: may be multivariate binomial (nontrivial correlations), or multivariate gamma-distributions
 - ...
 - Step 2: Cut-in starts (C crosses lane marking) Δt : [2,20]
 - Velocity [∆ m/sec]: L: [-7,+7]; C: [-50,+5]; C-E: [-5,40]; C-L:[-12,50]
 - Position [m]: L-E: [25,110]; C-E: [1,60]; L-E: [5,100]
 - ..
- Step 3: Cut-in completed (C has crossed lane marking halfway) Δt : [0.5,4]
 - Velocity [Δ m/sec]: ...
 - ...


Figures given as illustration

Deriving Scenarios

Logical Scenarios are derived systematically from <u>Functional Scenarios</u>

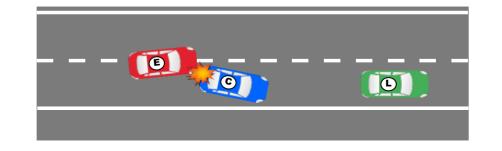
 One Functional Scenario (or a combination of Functional Scenarios) gives rise to a number of Logical Scenarios

- Cut-in (left, from behind)
- Cut-in (left, front)
- Cut-in (left, fall-back)
- Cut-in (right, from behind)

Concrete Scenarios are instantiations of <u>Logical</u> <u>Scenarios</u>

- One Logical Scenario represents a large (infinite) number of Concrete Scenarios
- Step 1:
 - Velocity [m/sec]: E , L: [22-36]; E-L: [-4,4]; C: [23-67]; C-E: [1,45];
 - Position [m]: L-E: [33,100]; E-C: [0,30];
 - Distributions: may be multivariate binomial (nontrivial correlations), or multivariate gamma-distributions

- Parameter instantiations
 - Relative frequencies according to probability distributions


. . .

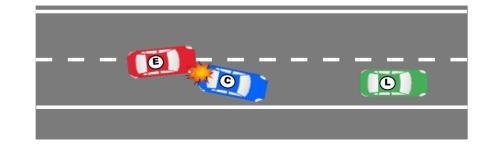
Criticality of Scenarios

- Criticality of a scenario
 - $\sum_{h\in H} C_h * S_h$
 - *H*: Set of harmful outcomes *h*
 - C: probability of occurrence of the outcome
 - S: severity of the outcome (injuries, fatalities)

Severity

- Classes in ISO 26262
 - S0: No injuries
 - S1: Light and moderate injuries
 - S2: Severe and life-threatening injuries (survival probable)
 - S3: Life-threatening injuries (survival uncertain), fatal injuries

- <u>Refined</u> severity classes required, e.g.:
 - S0, S1 remain
 - S2A: Severe injuries
 - S2B: Potentially life-threatening injuries
 - S3A: Life-threatening injuries
 - S3B: Probably fatal injuries
 - S3C: Fatal injuries
- Numeric scale for summation required (tbd.)
 - E.g. based on Abbreviated Injury Score

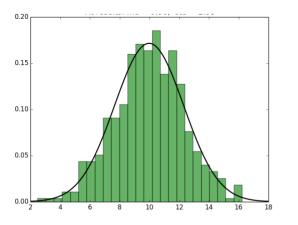


Criticality of Scenarios

- Criticality of a scenario
 - $\sum_{h\in H} C_h * S_h$
 - *H*: Set of harmful outcomes *h*
 - C: probability of occurrence of the outcome
 - S: severity of the outcome (injuries, fatalities)

Probability

- Classes in ISO 26262 (controllability)
 - C0: controllable in general
 - C1: Simply controllable (≥ 99 % of all drivers)
 - C2: normally controllable (≥ 90 % of all drivers)
 - C3: difficult to control or uncontrollable (< 90 % of all drivers)

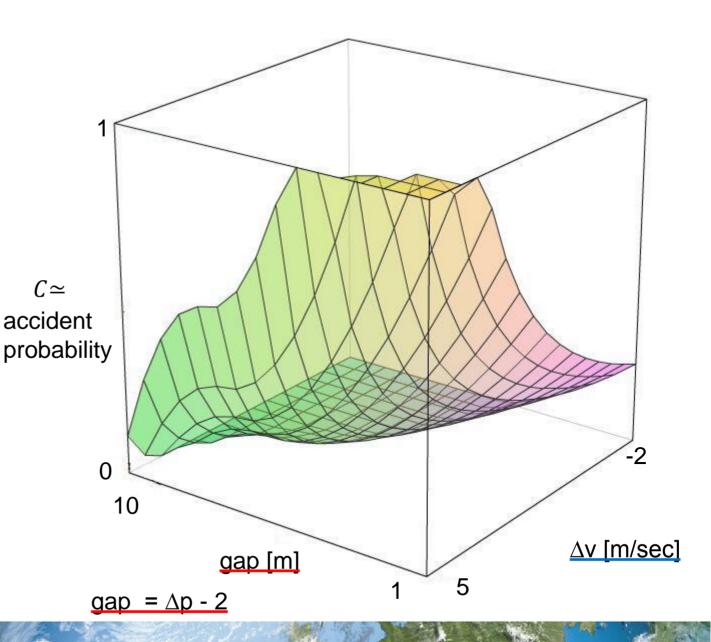

- <u>Numeric</u> probabilities required, or refined seminumeric scale
 - Estimated range: 10^{-10} to $1 (= 10^{0})$

Frequency of Scenarios

A logical scenario is to be weighted with two frequency figures (exposure): expected number of occurrence per time unit

- E_{driver} : average over human drivers
- E_{HAF} : automation to be tested
- Together with **severity** and **probability** this fixes the **risk** associated with the scenario.

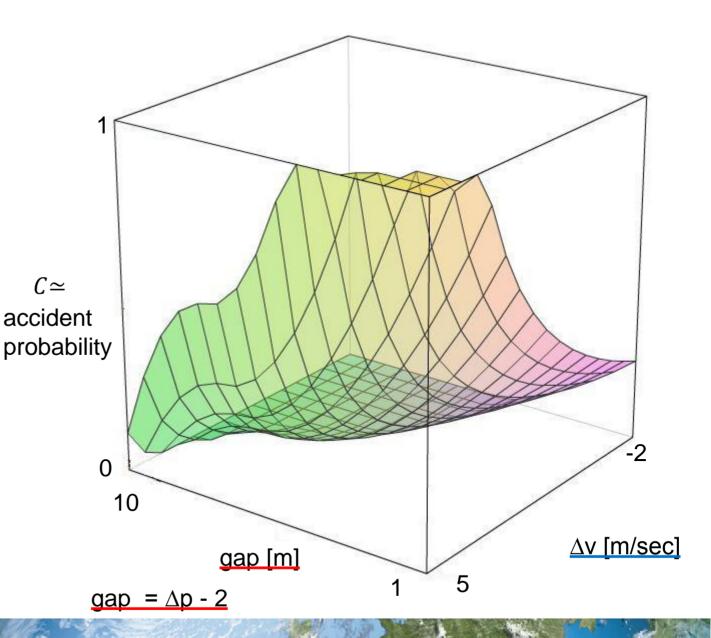
Determining frequencies


- E_{driver} : average over human drivers
 - Field data
 - Simulations with validated driver models
 - Adjustments/estimations by experts
- E_{HAF} : automation to be tested
 - Simulations with HAF
 - Adjustments/estimations by experts

Risk Computation Illustration Scenario "Cut-in": Accident Probability

Visualization of <u>accident probability</u> for cut-in depending on

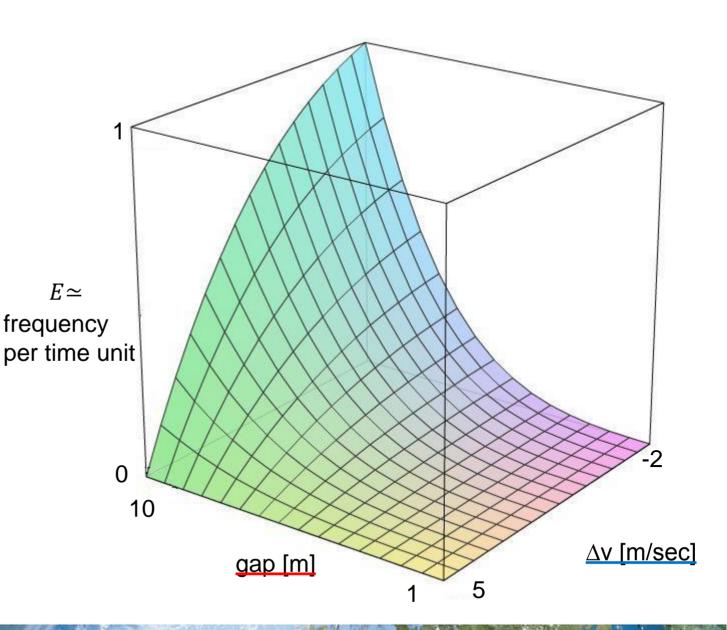
- <u>∆v [m/sec]</u>: velocity difference between Ego and Cut-in vehicle:
 - "5" means: Cut-in vehicle is 5 m/sec slower (dangerous)
- <u>gap [m]</u>: gap between Cut-in and Ego vehicle
 - "1" means: Cut-in happens with minimal distance (dangerous)



Risk Computation Illustration Scenario "Cut-in": Accident Probability

Cut-in (left, from behind)

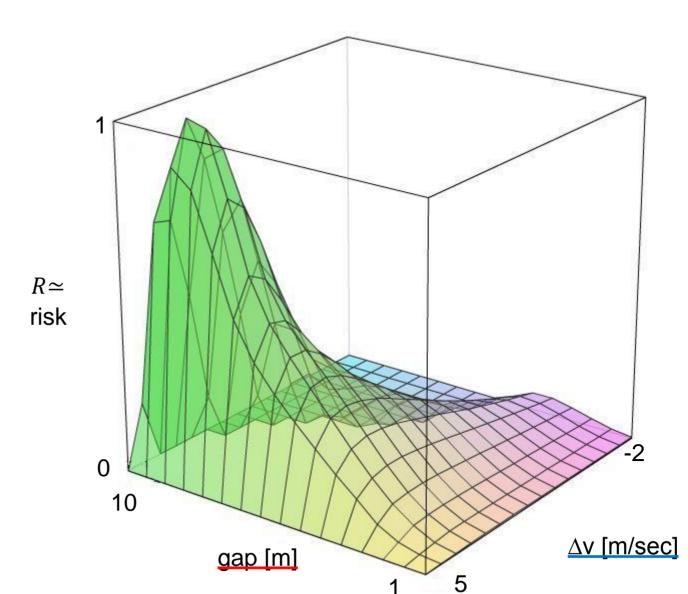
- Step 1:
 - Velocity [m/sec]: E , L: [22]; C-E: [1,45];
 - Position [m]: L-E: [33,100]; E-C: [0,30];
 - ...
- Step 2: Cut-in starts (C crosses lane marking) ∆t: [2,20]
 - Velocity [m/sec]: ∆ L: [-7,+7]; ∆ C: [-40,+4]; C-E: [-5,2]; C-L:[-9,12]
 - Position [m]: L-E: [25,110]; <u>C-E: [3.12];</u> L-E: [15,100]
 - ...
- Step 3: Cut-in completed (C has crossed lane marking halfway) ∆t: [0.5,4]
 - Velocity [Δ m/sec]: ...
 - ...



Risk Computation Illustration Scenario "Cut-in": Exposure

Visualization of <u>frequency</u> of cut-in depending on

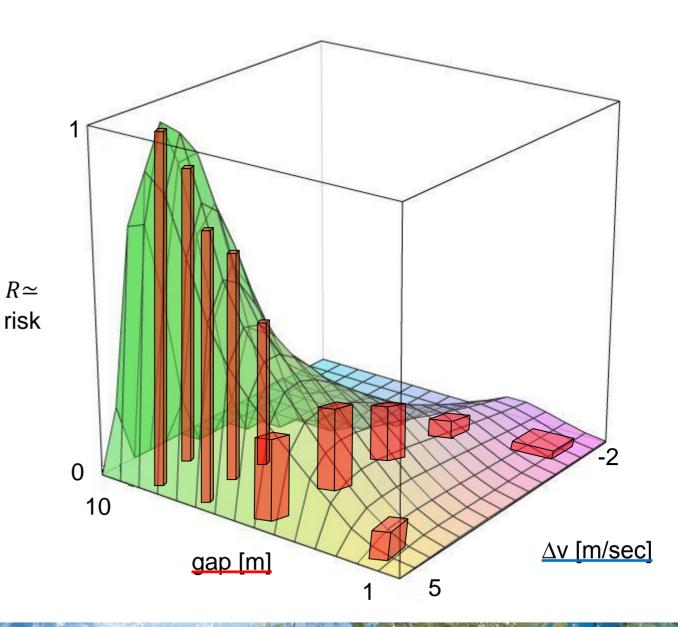
- <u>∆v [m/sec]</u>: velocity difference between Ego vehicle and Cut-in vehicle
 - The frequency <u>decreases</u> for <u>relatively</u> <u>slower</u> Cut-in vehicle
 - Usually, the Cut-in vehicle is <u>faster</u> than the Ego vehicle (negative values of Δv)
- <u>gap [m]</u>: gap between Cut-in and Ego vehicle:
 - The frequency *increases* with gap size
 - Usually, the gap is reasonably large



Risk Computation Illustration Scenario "Cut-in": Risk

Visualization of <u>risk</u>* of cut-in

- Risk is highest for
 - a rather high velocity difference <u>∆v ≈ 4 [m/sec]</u>
 - A narrow (but not minimal) gap gap ≈ 9 [m]
 - The highly dangerous situations occur less often
- The numeric risk is to be computed as the integral of the risk function
- * The severity is assumed to be constant, here

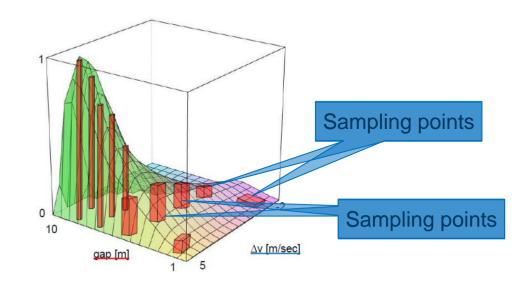


Risk Computation Illustration Scenario "Cut-in": Risk Integral

Computation by <u>approximate discrete</u> <u>summation</u>

- Like <u>Riemann integral</u> approximation
- Each <u>column</u> represents the result of a <u>test</u> <u>run</u> (simulation / proving ground / field)
- Lower test density in regions with low accident probability

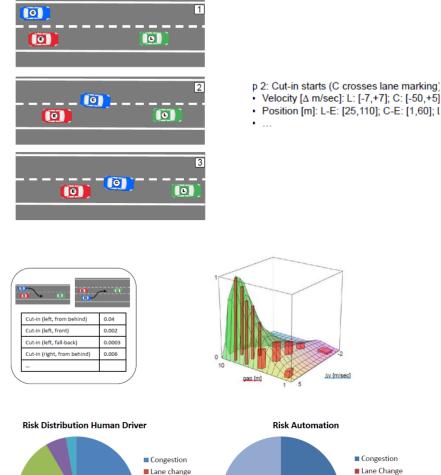
Test Specification and Test Definition

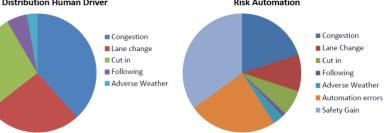

• The test specification consists of

- The full set of logical scenarios
- Annotated with frequencies (HAF)
 - Scenario overlap taken into account: Evolutions are counted only once

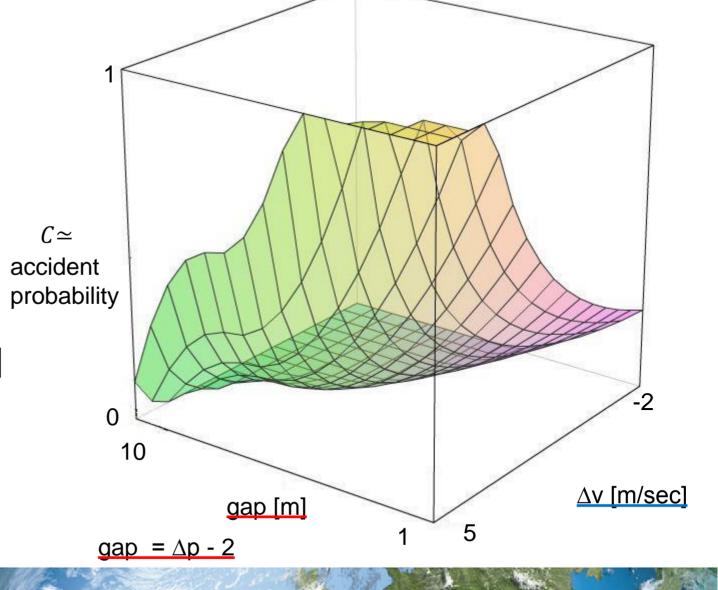
	→ ©)	
Cut-in (left, from behind)	0.04	
Cut-in (left, front)	0.002	
Cut-in (left, fall-back)	0.0003	
Cut-in (right, from behind)	0.006	

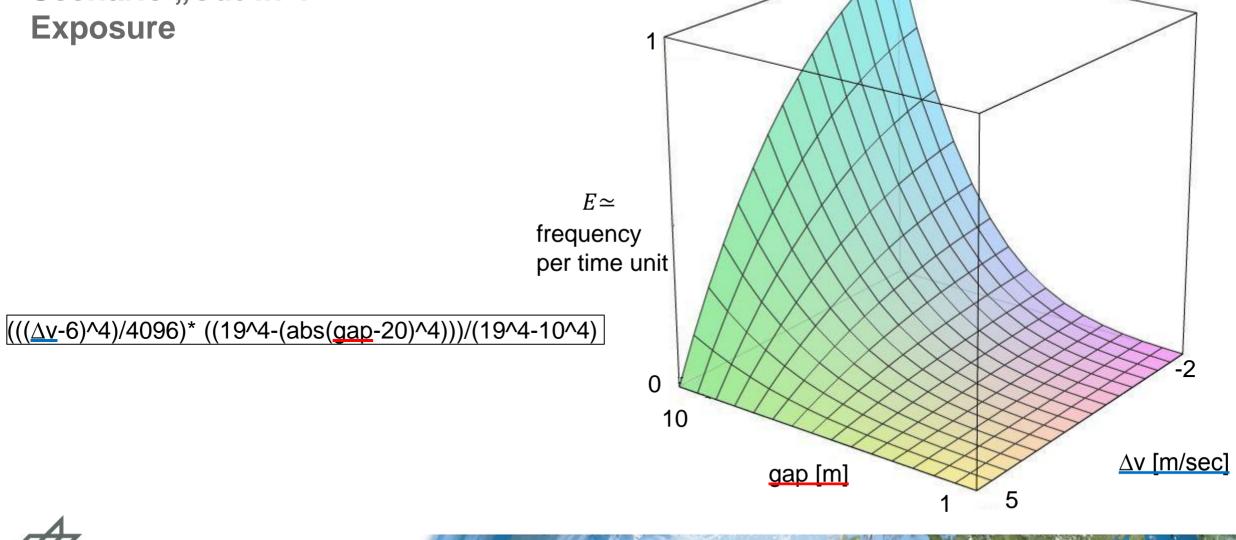
Cut-through (left, from behind)	0.002	
Cut-through (left, front)	0.0005	
Cut-through (left, fall-back)	0.00001	
Cut-through (right, from behind)	0.0008	


- The <u>test cases</u> of the **test definition** are <u>dynamically constructed</u>
 - <u>Concrete scenarios</u> sampling the risk function
 - Low risk: low density of sampling points
 - High risk: high density of sampling points

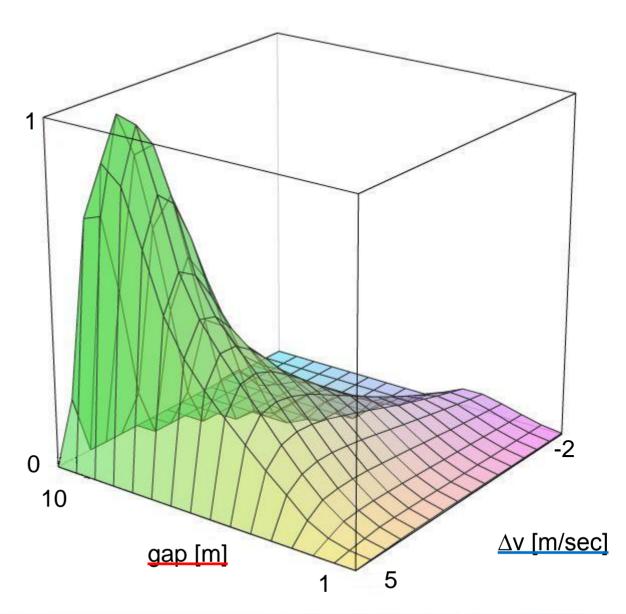


Summary


- Test definition based on <u>Scenarios</u>
 - Functional: high-level specification
 - Logical: precise specification
 - <u>Concrete</u>: test cases
- Formalization of test definition
 - Systematic derivation process
 - Supporting risk estimation by testing
- Usage for safety case along the lines of ISO 26262
 - More complex argumentation required for HAF homologation than foreseen in the standard


Risk Computation Illustration Scenario "Cut-in": Accident Probability

 $(\max(\min(\Delta v^*abs(\Delta v)/(2^*gap) + 3/gap, 5), 0.5) - 0.5)$


Risk Computation Illustration Scenario "Cut-in": Exposure

Risk Computation Illustration Scenario "Cut-in": Risk

R≃ risk

 $(\max(\min(\Delta v^*abs(\Delta v)/(2^*gap) + 3/gap,5),0.5)-0.5) *$ $(((\Delta v^-6)^4)/4096)* ((19^4-(abs(gap-20)^4)))/(19^4-10^4)$

