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AbStraCt ”G - GT‘HH = 0r+1(G) (1)
We derive new projection formulas for the model reductioff"€révr+1(G) is the(r + 1)-th largest Hankel singular value
method based on tHeequency-weighted Hankel norm approx9f G. Npte that, pecause the Hankel-norm is oqu a seminorm,
imation (FWHNA). These formulas extend the applicabilit)}he choice ofD;. in (1) playg no_role on the achieved optimal
of the FWHNA method to frequency weights expressed agnkel-norm of the approximation error.

antistable right/left invertible rational matrices. By computfhe frequency-weightedHNA (FWHNA) problem has been

ing the projections via the solution of appropriate generalizegiginally formulated in [7] to minimize the weighted-error
Sylvester equations, an inversion-free solution of the FWHNA

problem is possible. The new projection formulas allows to WG -G )W | 2
implement efficiently the FWHNA method as robust numeri-

cal software. We also discuss the solution of the frequensyhereW, andW; are systems whose TFME&, andW; rep-
weightedL ..-norm model reduction problem and indicate howesent suitable output and input weighting, respectively. The
to solve it in the most general setting. presence of weights usually reflects the desire that the approx-
imation be more accurate at those frequencies whéyeand

W; have larger singular values. The standard assumptions in
[7] are: W, andW; are biproper, stable and minimum-phase
Consider then-th order original state-space modél := TFMs. A solution of the FWHNA problem for scalar sys-

(A, B, C, D) with thetransfer-function matriXTFM) tems has been proposed by Latham and Anderson in [7] and
. extended to the multivariable case by Hung and Glover in [5] .
GAN)=C(\M —-A)~"B+D,

and letG, := (4,, B,,C,, D,) be anr-th order approxima-
tion of the original mode(r < n), with the TFM

Gr(\) = Cr(M — A,)"'B, 4+ D,. [Wo(G — Gr)Willu 3)

1 Introduction

In this paper we consider the alternative formulation of the
FWHNA problem to minimize

According to the system typais either the complex variable for which the corresponding standard assumptions become:
appearing in the Lapla(_:e transform_m the case of a continuoys: andv; are biproper TEMs, having only unstable poles and
time system or the variable appearing in theZ-transform in - zeros. In this case, the optimal frequency-weighted approxima-

the case of a discrete-time system. tion error satisfies [7, 5]
Notation. Throughout the paper we use the bold-notatito
denote a state-space system having the THMW) or G. This Wo(G — G IWillg = 0r41(G1), (4)

notation is used consistently to denote systems corresponding
to particular TFMs: GK denotes the series coupling of twavhereG; := [W,GW,] is the stable projection of the sys-
systems having the TFMF(\) K (\), G~! denotes the inversetemW ,GW,.

. ; 1 -
system corresponding to the inverse TRKF (), and G An efficient algorithm to solve the FWHNA problem in ei-

denotes the conjugate system corresponding to the conjugate . .
TEM G~()\), whereG~ (s) — GT(—s) for a continuous-time qger forms (2) or (3) has been derived by the author in [12].

system and>~ (=) — GT(1/) for a discrete-time system. Th|s_ algorithm is based on explicit prolt_actlt_)n formulas and
avoids the forming of state space realizations of the form

TheHankel-norm approximatio(HNA) method [4] belongsto W, GW;7* or W,GW,. To compute the projections, ap-
the class of absolute (or additive) error model reduction metbropriate continuous- or discrete-time Sylvester equations are
ods and relies on a guaranteed error bound. Glover [4] rsadved.



Several practical problems, as for example some controller - Projection formulas for W,GW;

duction problems, do not fit into the standard formulations ) ] ]
above. This is why, the assumptions on weights have been Y& assume that’, andiv’; are antistable TFMs with descriptor
laxed in several ways. In what follows, we only discuss tH&alizations of the form

FWHNA formulation (3),. but all considgrations can be easily W, = (A, —AE,,B,,Cy,D,)

adapted to the formulation (2). The first extension, done in W, = (A —\E;,B;,C;,D;

[5], allows W, andWW; to have arbitrary zeros, which however T

must be different from the poles G, the HNA of G, (this  gatisfying

is automatically satisfied when bot#i, andWW; have only un-

stable zeros). The projection formulas derived in [12] can be W,(\) = C,(\E,— A,)"'B,+ D,
employed also for this case. Wi(\) = Ci(\E; — A;)"'B; + D;

The a_ssumptlpn for_blpropt_arwelghts has been relaxed to prower also assume tha@ — (4, B, C, D) is stable and thus has
and right/left invertible weights by Zhou [17]. However, the " - .

. . . all its poles distinct from those aV, andW,. We can easily
suggested computational solution has only a theoretical Valgghstruct the svstem
because it involves the reduction of the state matrixof. to y
the Jordan canonical form. In general, this reduction relies on W,GW, := (Ay — AEw, Bu, Cu, D)
using possibly ill-conditioned non-orthogonal similarity trans- ° v v e e

formations and thus, can not be performed in a numericajy,qre

reliable way.
In this paper we develop a numerically reliable computationaIA \E. — Ao I)AE” AB_"gj. BE%CZ
approach to solve the FWHNA problem with antistable weights™™* — ~~*  — 0 0 A /<E ’
W, andW;, such thal¥/,, is full row rank andi¥; is full column L A
rank. The procedure has the following main steps: [ B,DD;

B, = BD; )
FWHNA Procedure B;
1. Compute the:-th order stable projection Cyu = [ c, D,C D,DC; } ,

D, = D,DD;

G1 = [WOGWi]J,_
Let U andV be the transformation matrices defined by
2.ComputeGy ., the optimalr--th order HNA of G, .

o I -E,X 0 I X 0
3.ComputeG.,., ther-th order projection oW G, W, con- uv=1o0 I y v=lo I YE
taining the poles of/+,., whereW £ is a right-inverse oW, 0 0 I ’ 0 0 I

andWF is a left-inverse oW .

This procedure is applicable fa¥, and W; having arbitrary whereX andY satisfy the generalized Sylvester equations

zeros, provided the finite zeros Bf, andWW; are distinct from _
the poles ofG4,., the optimal HNA computed at step 2 of the Ao X = Bo XA+ B,C = 0 ©)
above procedure. With obvious replacements, the same proce- AYE; =Y A;+BC; = 0 (6)

dure can be employed to solve the FWHNA problem (2). . ) . )
Since the generalized eigenvalues of the péits, E,) and

For an efficient implementation of tHeWHNA Procedure, (4, E;) are distinct from the eigenvalues df, each of the
we derive new projection formulas based on descriptor systeuations (5) and (6) has always a unique solution. \Wign
descriptions. These formulas allow an inversion-free implgnd; are proper rational matrices, afty = I, E; = I, then

mentation of theFWHNA Procedure, for both formulations the genera"zed Sy|Vester equations (5) and (6) become stan-
(2) and (3) of the FWHNA problem. The proposed COMpltard Sy|vester equations_

tational solution of the FWHNA problem represents a general )
numerically reliable alternative to the procedure proposed S Straightforward to check that
[17]. Interestingly, our approach can be employed even if the

; . - - . A, — \E, 0 *
weights are improper, a possibility also mentioned in [17]. U(Ay — \E)V = 0 AT 0 7
We also address the solution of the frequency-weighted 0 0 A; — \E;
L.,-norm model reduction problem by using the FWHNA _
method. Specifically, we consider the computation of ag *
optimal feedthrough matrixD,. and discuss methods to con- UBw = | BDi —YB;
vert non-standard problems to the standard-form required by L B

the FWHNA Procedure. .,V
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wherex denotes arbitrary matrices not important in the preseatight inverse can be computed using the formula
context. ThusW,GW; can be additively decomposed

uniquely as WEN) =[0 I, ]SEMN [ 0 }
W,GW,; = G, + G, ) 1p
whereG; andG- are given by wheresS, () is the full row rank system pencil
G1 = (A7 BDZ — YB“ COX + DOC, DODDZ) A — \FE B
So(A) = ’ c, ¢ D:

A, — \E, * *
Go q 0 A; — \E; } ’ [ B; ] ’ [CO ¥ ] ’0> By using the above formula, the computation of a right-inverse

of W, can be accomplished by computing a right-inverse of the
In (7), G1 can be generally seen as the projectioM0fGW,;  associated system pencil.

which contains the poles @&. . .
The computation ofS2(\) can be done by reducing,())

. R L to an appropriate Kronecker-like form from which a maximal
3 Projection formulas for W GW; rank regular sub-pencil can be easily separated.(.ahd Z
be orthogonal matrices to redusg()\) to the Kronecker-like

We assume thalV/, is full row rank andW; is full column form

rank to ensure the existence of a right inveVBg® such that
W,WE = I and of a left invers@V} such thatVi W, = I. _ B,
Having explicit realizations foW * andW! we can apply the So(A) 1= Q5(N)Z = [ 0
projection formulas of previous section to compute the projec-

tion necessary at step 3 of tR@VHNA Procedure. In what where the regular part, — AE, contains the finite and infinite
follows we discuss only the computation of a right inverse faeros ofiV,, and the paif A,, — AE,., B,.) is controllable with
W,. However, the approach which we present is also applic&; nonsingular (see [13] for how to obtain such a Kronecker-
ble to compute a leftinverse &F; by computing a rightinverse like form). The controllability of the paifA, — AE,, B,.) is

for W' (the dual of ). the consequence of the full row rank assumptioVign

A'r - >\Er Ar,z - )\Er,z
0 A, — AE,

We consider first the case of a square invertiblg. If D, is Itis easy to see that a right inverse can be defined as
invertible, we can form the explicit inverse o N
W/ = (A1 — AE12,B1,0>,0),
W= (A, - B,D;'C, — \E,,—B,D;',D;1C,, D; 1)
where
The main advantage in tHeWHNA Procedure of using the
explicit inverses is that the resulting feedthrough matrigef Ay — NEqg :=

at step 3 appears in the expressiogf

Ay —AE, A,.—AE,.
0 A, —\E, |’

If W, is invertible as a rational matrix, b, is ill-conditioned B 0 _
or singular, then we can employ the implicit form of the inverse B, | I | [C1C2]:=[0 -1, ]Z
A, B E, 0 0 The eigenvalues of the right inverse are
-1 _ o o . o .
Wo ({Co Do} A{o 0}’[1]’[0 ILO)

A(A127 E12) = Afi.'ced U Aspu,TiOUSa
in conjunction with the developed projection formulas. The ]
main advantage if this approach is the inversion-free formuidhereéArizca = A(A:, E.) are the eigenvalues of the regu-
tion. A possible disadvantage of using implicit inverses in tHgr part and thus, contain the system zeros, agg.ious =
FWHNA Procedure is that the resulting feedthrough matrix(A-, Er) are the finite "spurious” zeros originating from the
D, at step 3 is always zero. Since the Hankel-norm is orfiplumn singularity ofi¥/, (X).

a seminorm, this has no consequence on the Hankel-norm @pile the system zeros are always among the poles of the right
proximation error. Still, if we use the FWHNA to obtain a googhyerse, the spurious poles can be arbitrarily chosen. To show
approximation by m|n|m|Z|ng théoo'norm of the We|ghted er- this’ consider a transformation matmof the form

ror, thenD,. must be determined separately by solving a convex

optimization problem as suggested in [17].

F,
: . Co V= 1
If W, is non-square, an appropriate right inveM&? must 0
be determined such th&Z andG ,. have no common poles. L
In what follows we present a computational approach deriquj,en, the transformed system pencil is given by
from the more general technique to determine weak general-
ized inverses proposed by the author in [15]. It is straightfor~

ward to show that for @ x m full row rank rational matrixv/,, S(A) = SNV =

O Ol
~N oo

B7' Ar + B7'F7' - AE‘7 A7',z - )\E'r,z
0 0 A, — \E,




A right inverse can be defined this time as Let X be the solution of the generalized Sylvester equation

Wf = (A\12 - )\E127§1a 6270)7 EgX — AZXA = CZC (10)
where and consider the straightforward identity
A\12 . )\E12 — |:Ar + BrO-Fr - /\Er AZZ : igr,z , (ZflEg“ o AZ)X(ZI _ A) + (Zflng _ AZ)XA (11)
: ; +ATX (21 — A)=ETX — ATX A
By =0 { 0 ] 7 [51 Cy ]:=[0 — I, ]2V Combining (10) and (11), we can express the first term of
By Iy W (2)G(z) as
To obtain a right inverse with all spurious poles lying in the BT (:7'ET — AY-1CTC(2] — A)7'B =
antistable domain of the complex plabg we choosd-,. such BTYXB+ BTXA(zI — A)"'B+
thatA(A,+ B, F,, E,.) C C, by solving a standard pole assign- BI(:7'ET — AT)-1ATXB
ment problem (withE,. nonsingular). This is always possible _
because the paid, — A\E,, B,) is controllable. It follows that the projectiorG; containing the poles d& can
be expressed as
4 Projection formulas for W) GW 7~ G, = (4,B,DTC + BTXA,BTXB+ DID)

The projection formulas are dependent on the type of the S¥¥milarly, we can derive the expression of projectién of
tem. Therefore, we derive distinct formulas for continuougzw ~

time and discrete-time systems. In this section, we assume that *
G, W, andW; are stable. G, = (4, BDT + AycT,c,DDT + cYCT)

41 Continuous-time system whereY satisfies the generalized Sylvester equation

T T _ T
For a continuous-time system we have the following explicit YE; —AY A, = BB; (12)
formulas forlV;* and W Applying the above approach to compute the projec@nof
W = (—AT — \ET,—cT, BT, D7) G W7, we get
Wi = (=AT - \ET, T, BT, DY) Gi = (4, BD] + AYC{, DI C + Bl XA, Dy)

Using the results of section 2, we obtain the required projectigmere
of W;yGW?” as

T T T T T T T T
G\ = (A BDT + YCT. BTX + DI'C. DT DDT) D, =D,DD; +B, XBD; +D,CYC; + B, XAYC;
Note that for propeW, and W, with E, = I, E; = I, the
generalized Sylvester equations (10) and (12) become the dis-
ATX +ETXA+CTCc = 0 (8) crete Sylvester equations derived in [12].

AYE! + YAl + BBl = 0 9)

whereX andY satisfy the generalized Sylvester equations

5 Projection formulas for (W)2G(W7)E

The projection of W5 )G (W)L containing the poles d&

To derive the analogous discrete-time formulas, we can use e&n be obtained by applying the appropriate approach in Sec-
plicit state space realizations f8¥7’ andW;” only in the case tion 4 to compute the projection ¢W ')~ G(WFX)~. Appro-
when the corresponding state matricés and A; are invert- priate right and left inverses can be computed using the meth-
ible. Therefore, we derive the projection formulas avoiding ttgls described in Section 3.

explicit inversion of these matrices.

To simplify the presentation, we derive the projection in tw® Numerical aspects
steps: first we determine the projectiGh of W' G and then
the projectionG; of G; W, Using the expression &V, (z)

4.2 Discrete-time system

In this section we give an implementable, inversion-free ver-
sion of theFWHNA Procedure based on the projection for-

W (z) = BI(z'ET — AT)='cT + DT mulas derived in Section 2. We assu@e = (A, B,C, D)
stable W, = (A, — \E,, B,, C,, D,) antistable, with¥, ()
we can compute full row rank andW; = (4; — AE;, B;, C;, D;) antistable with
W (2)G(2) = BT (:\ET — AT)=1CTC(2] — A)~'B Wi (M) full column rank. Further, we tacitly assume that the
+ BT(»"1ET — AT)-1CTD HNA G, computed at Step 2 of tHeWHNA Procedure has

+ DIC(2I — A)"'B+DTD no poles which are zeros of eith&, or W,.



FWHNA Algorithm

1.Compute an orthogonal transformation matf)xto reduce
A to thereal Schur form(RSF) and compute

A—QTAQ, B—QTB, C—CQ

2.Compute orthogonal matricég, and Z, to reduce the pair
(A,, E,) to the generalized real Schur forflGRSF) and
compute

Ao—AE, — QZ‘(Aoi)\EO)Z07 B, — QZBOa C, — CoZ,

3.Solve for X andU the Sylvester system

AX ~UA+B,C =

0
E,X-U 0

4.Compute orthogonal matric€3; and Z; to reduce the pair
(A;, E;) to the GRSF and compute

A; — \E; — QI (A; — \E)Z;, B; — QI'B;, C; — CiZ;
5.Solve forV andY the Sylvester system

AV —YA;+BC; = 0
V-YE, = 0

6.Compute amr-th order approximation
Gir = (A, Byy, Ciyy Dyy)
of the system
G, = (A,BD; — YB;,C,X + D,C, D,DD;)

using the HNA method [4].
7.Form arightinverse systeW 2 = (Z(,—)\Eo, EO, 50, 130).

8.Compute orthogonal matriceiéo and Z, to reduce the pair
(Ao, E,) to the GRSF and compute

Ay—AE, — QT(A,—A\E,)Z,, B, — QTB,, C, — C,Z,
9.Solve forX andU the Sylvester system
%o):( - [ZA,. +B,Ci, = 0
E, X -U = 0
10.Form a left inverse systetW X = (A; — AE;, B;, C;, D;).

11.Compute orthogonal matrice@ and Z; to reduce the pair
(4;, E;) to the GRSF and compute

Ai = \E; — QT (A; = \E;)Z;, B; — QT By, C; — CiZ;
12.Solve forV andY the Sylvester system

AV —YA + B, C; =
V-YE; _

o o

13.Compute the--th order reduced model
G, = (A'm Blrﬁi - ?Eza 6055 + 506111”7 5oDlrﬁi)

At Steps 3, 5, 9 and 12, the generalized Schur method is
used to solve the Sylvester systems [6]. These systems arise
from an equivalent reformulation of the respective generalized
Sylvester equations. Whéelw, and W, are proper, then the
Schur method [2] can be used to solve these equations as stan-
dard Sylvester equations. Note that in both cases the reduction
of A to the RSF is necessary, being also the first step when per-
forming the HNA at Step 6. Because the last computation in
the HNA algorithm of [4] is an additive stable-unstable spec-
tral separation, the resulting,. can be assumed to be already

in a RSF (used to reorder the eigenvalues), thus no further re-
duction of A,. is necessary.

If the feedthrough matrice®, and D, are invertible and well
conditioned, then the explicit inverses @f, and W, can be
used, without any practically significant accuracy loss. The
advantage of using explicit inverses is that the resulfings
related to the HNA computed at Step 6. For an efficient im-
plementation of the FWHNA method, it is possible to further
refine the computation of projections, by exploiting all struc-
tural features of the problem. For exampleDif is square and
well-conditioned, and; is square but ill-conditioned or singu-
lar, it is possible to compute the projection‘@f;lGlTW;1

by employing an explicit inverse foW ! and the implicit in-
verse forw; ',

To solve (2), completely similar procedures for continuous-

time and discrete-time systems can be used for the FWHNA
method based on the projection formulas developed in Sec-
tion 4. The only difference appears in the discrete-time case
for proper weights, where the projection formulas involves the

solution of discrete Sylvester equations for which algorithms

proposed in [11] can be used.

7 Weighted L..-norm model reduction

One of the main usage of the FWHNA method is in solv-
ing the frequency-weighted ,-approximation problem. The
FWHNA can be used to produce good approximation errors in
the L..-norm, which satisfy

or1(G1) < [Wo(G = Gr)Willoo

where the besb,. can be determined by a convex optimization
[17]. For the computation of an optimal,. and possiblyC'. or
B, recently developed fast algorithms can be employed [16].

For theL.,-norm approximation, we only need to assume that
the weights have no poles on the imaginary axis in continuous-
time or on the unit circle in discrete-time. In the case when
W, and/orW; have stable poles, then left/right coprime fac-
torizations with antistable all-pass denominators can be deter-
mined forW, andW; using the methods proposed in [14, 9].

If W, = M;'N, andW,; = Nl-Mi‘1 are the respective factor-
izations with NV, and V; antistable, then

[Wo(G — Gr)Willoo = [[No(G — Gr)Nillo



It was empirically observed that lower errors result if boith control theory. In B. N. Datta, editoApplied and Com-
andW, have only antistable zeros. Therefore)Vif has noﬂll putational Control, Signals and Circuitsol. 1, pp. 499—
row rank or has some stable zeros, then an all-pass fagtor 539, Birkrauser, 1999.

can be determined (see [10] for the continuous-time case arfgl
[8] for the discrete-time case) such that

K. Glover. All optimal Hankel-norm approximations of
linear multivariable systems and thdif°-error bounds.
— [ NO } Int. J. Control 39:1115-1193, 1974.

[5] Y.S. Hungand K. Glover. Optimal Hankel-norm approxi-
mation of stable systems with first-order stable weighting

whereﬁo has full row rank and has only unstable zeros. Simi- functions. Systems Control Lett, 7:165-172, 1986.
larly, by applying the same procedureXy we can determine ' ’

an all-pass factoi/; such that [6] B. Kagstom and L. Westin. Generalized Schur meth-
ods with condition estimators for solving the generalized
N, = { N, 0 ]Mi Sylvester equatiodEEE Trans. Autom. ContrpB4:745—
751, 1989.

whereN; has full column rank and has only unstable zeros. I17] G. A. Latham and B. D. O. Anderson. Frequency-
follows that weighted optimal Hankel norm approximation of stable

- ~ transfer functions.System& Control Lett, 5:229-236,
”NO(G_GT)NZ'HOC = HNO(G_GT)NZ'HOO 1985.

which is in the standard form required for the application of thgg] C. Oag and A. Varga. The general inner-outer factoriza-
FWHNA Algorithm . tion problem for discrete-time system®roc. ECC’'99,

8 Conclusion [9]

Karlsruhe, Germany1999.

C. Oaa and A. Varga. Minimal degree coprime factor-

We derived projection formulas for the two standard formu-  ization of rational matricesSIAM J. Matrix Anal. Appl.
lations of the FWHNA problem and we proposed an imple-  21:245-278, 1999.

mentable algorithm for the solution of the FWHNA problem i 10]
the most general setting. The proposed FWHNA algorithm ex-

C. Oaa and A. Varga. Computation of general inner-outer
and spectral factorization$EEE Trans. Autom. Contrpl

ploits all structural features of the underlyjng problem and can 45:2307—-2325, 2000.

be employed to solve the frequency-weighteg -norm ap-

proximation problem without any restrictions on the weight$11] V. Sima. Comparison of some algorithms for solving Lya-
The proposed®WHNA Algorithm has been implemented in punov type equationsRev. Roum. Scie. Techn. — Elec-
Fortran 77 as a robust numerical software and is freely avail- trotech. et Energ.25:235-246, 1980.

able in the current release of the systems and control library o o )

SLICOT! (see also [3] for a description of SLICOT). The im{12] A. .Varga. Explicit formulas' for an efficient |mplgmen—
plementation relies on powerful and flexible solvers for various ~ tation of the frequency-weighted model reduction ap-
Sylvester equations and Sylvester system which are available in Proach. Proc. ECC'99, Groningen, NLpp. 693-696,
SLICOT and in the linear algebra package LAPACK [1]. User 1993.

friendly m- and mexfile based interfaces to the new SLICO‘IE13]
software have been also implemented to execut&WEeINA

A. Varga. Computation of Kronecker-like forms of a sys-
tem pencil: Applications, algorithms and softwaRyoc.

Algorithm underMATLAB . CACSD'96 Symposium, Dearborn, Mip. 77-82, 1996.
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