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Abstract

We derive new projection formulas for the model reduction
method based on thefrequency-weighted Hankel norm approx-
imation (FWHNA). These formulas extend the applicability
of the FWHNA method to frequency weights expressed as
antistable right/left invertible rational matrices. By comput-
ing the projections via the solution of appropriate generalized
Sylvester equations, an inversion-free solution of the FWHNA
problem is possible. The new projection formulas allows to
implement efficiently the FWHNA method as robust numeri-
cal software. We also discuss the solution of the frequency-
weightedL∞-norm model reduction problem and indicate how
to solve it in the most general setting.

1 Introduction

Consider then-th order original state-space modelG :=
(A, B,C, D) with thetransfer-function matrix(TFM)

G(λ) = C(λI −A)−1B + D,

and letGr := (Ar, Br, Cr, Dr) be anr-th order approxima-
tion of the original model(r < n), with the TFM

Gr(λ) = Cr(λI −Ar)−1Br + Dr.

According to the system type,λ is either the complex variables
appearing in the Laplace transform in the case of a continuous-
time system or the variablez appearing in theZ-transform in
the case of a discrete-time system.
Notation. Throughout the paper we use the bold-notationG to
denote a state-space system having the TFMG(λ) or G. This
notation is used consistently to denote systems corresponding
to particular TFMs:GK denotes the series coupling of two
systems having the TFMG(λ)K(λ), G−1 denotes the inverse
system corresponding to the inverse TFMG−1(λ), andG∼

denotes the conjugate system corresponding to the conjugate
TFM G∼(λ), whereG∼(s) = GT (−s) for a continuous-time
system andG∼(z) = GT (1/z) for a discrete-time system.

TheHankel-norm approximation(HNA) method [4] belongs to
the class of absolute (or additive) error model reduction meth-
ods and relies on a guaranteed error bound. Glover [4] has

shown that for a stableG, there exists anr-th order stable ap-
proximationGr such that

‖G−Gr‖H = σr+1(G) (1)

whereσr+1(G) is the(r + 1)-th largest Hankel singular value
of G. Note that, because the Hankel-norm is only a seminorm,
the choice ofDr in (1) plays no role on the achieved optimal
Hankel-norm of the approximation error.

The frequency-weightedHNA (FWHNA) problem has been
originally formulated in [7] to minimize the weighted-error

‖W∼
o (G−Gr)W∼

i ‖H (2)

whereWo andWi are systems whose TFMsWo andWi rep-
resent suitable output and input weighting, respectively. The
presence of weights usually reflects the desire that the approx-
imation be more accurate at those frequencies whereWo and
Wi have larger singular values. The standard assumptions in
[7] are: Wo andWi are biproper, stable and minimum-phase
TFMs. A solution of the FWHNA problem for scalar sys-
tems has been proposed by Latham and Anderson in [7] and
extended to the multivariable case by Hung and Glover in [5] .

In this paper we consider the alternative formulation of the
FWHNA problem to minimize

‖Wo(G−Gr)Wi‖H (3)

for which the corresponding standard assumptions become:
Wo andWi are biproper TFMs, having only unstable poles and
zeros. In this case, the optimal frequency-weighted approxima-
tion error satisfies [7, 5]

‖Wo(G−Gr)Wi‖H = σr+1(G1), (4)

whereG1 := [WoGWi]+ is the stable projection of the sys-
temWoGWi.

An efficient algorithm to solve the FWHNA problem in ei-
ther forms (2) or (3) has been derived by the author in [12].
This algorithm is based on explicit projection formulas and
avoids the forming of state space realizations of the form
W∼

o GW∼
i or WoGWi. To compute the projections, ap-

propriate continuous- or discrete-time Sylvester equations are
solved.



Several practical problems, as for example some controller re-
duction problems, do not fit into the standard formulations
above. This is why, the assumptions on weights have been re-
laxed in several ways. In what follows, we only discuss the
FWHNA formulation (3), but all considerations can be easily
adapted to the formulation (2). The first extension, done in
[5], allowsWo andWi to have arbitrary zeros, which however
must be different from the poles ofG1r, the HNA ofG1 ( this
is automatically satisfied when bothWo andWi have only un-
stable zeros). The projection formulas derived in [12] can be
employed also for this case.

The assumption for biproper weights has been relaxed to proper
and right/left invertible weights by Zhou [17]. However, the
suggested computational solution has only a theoretical value,
because it involves the reduction of the state matrix ofG1r to
the Jordan canonical form. In general, this reduction relies on
using possibly ill-conditioned non-orthogonal similarity trans-
formations and thus, can not be performed in a numerically
reliable way.

In this paper we develop a numerically reliable computational
approach to solve the FWHNA problem with antistable weights
Wo andWi, such thatWo is full row rank andWi is full column
rank. The procedure has the following main steps:

FWHNA Procedure

1.Compute then-th order stable projection

G1 = [WoGWi]+

2.ComputeG1r, the optimalr-th order HNA ofG1.

3.ComputeGr, ther-th order projection ofWR
o G1rWL

i con-
taining the poles ofG1r, whereWR

o is a right-inverse ofWo

andWL
i is a left-inverse ofWi.

This procedure is applicable forWo andWi having arbitrary
zeros, provided the finite zeros ofWo andWi are distinct from
the poles ofG1r, the optimal HNA computed at step 2 of the
above procedure. With obvious replacements, the same proce-
dure can be employed to solve the FWHNA problem (2).

For an efficient implementation of theFWHNA Procedure,
we derive new projection formulas based on descriptor system
descriptions. These formulas allow an inversion-free imple-
mentation of theFWHNA Procedure, for both formulations
(2) and (3) of the FWHNA problem. The proposed compu-
tational solution of the FWHNA problem represents a general
numerically reliable alternative to the procedure proposed in
[17]. Interestingly, our approach can be employed even if the
weights are improper, a possibility also mentioned in [17].

We also address the solution of the frequency-weighted
L∞-norm model reduction problem by using the FWHNA
method. Specifically, we consider the computation of anL∞-
optimal feedthrough matrixDr and discuss methods to con-
vert non-standard problems to the standard-form required by
theFWHNA Procedure.

2 Projection formulas for WoGWi

We assume thatWo andWi are antistable TFMs with descriptor
realizations of the form

Wo = (Ao − λEo, Bo, Co, Do)
Wi = (Ai − λEi, Bi, Ci, Di)

satisfying

Wo(λ) = Co(λEo −Ao)−1Bo + Do

Wi(λ) = Ci(λEi −Ai)−1Bi + Di

We also assume thatG = (A,B, C,D) is stable and thus has
all its poles distinct from those ofWo andWi. We can easily
construct the system

WoGWi := (Aw − λEw, Bw, Cw, Dw)

where

Aw − λEw =




Ao − λEo BoC BoDCi

0 A− λI BCi

0 0 Ai − λEi


 ,

Bw =




BoDDi

BDi

Bi


 ,

Cw =
[

Co DoC DoDCi

]
,

Dw = DoDDi

Let U andV be the transformation matrices defined by

U =




I −EoX 0
0 I −Y
0 0 I


 , V =




I X 0
0 I Y Ei

0 0 I




whereX andY satisfy the generalized Sylvester equations

AoX − EoXA + BoC = 0 (5)

AY Ei − Y Ai + BCi = 0 (6)

Since the generalized eigenvalues of the pairs(Ao, Eo) and
(Ai, Ei) are distinct from the eigenvalues ofA, each of the
equations (5) and (6) has always a unique solution. WhenWo

andWi are proper rational matrices, andEo = I, Ei = I, then
the generalized Sylvester equations (5) and (6) become stan-
dard Sylvester equations.

It is straightforward to check that

U(Aw − λEw)V =




Ao − λEo 0 ∗
0 A− λI 0
0 0 Ai − λEi


 ,

UBw =




∗
BDi − Y Bi

Bi




CwV =
[

Co CoX + DoC ∗ ]
,



where∗ denotes arbitrary matrices not important in the present
context. ThusWoGWi can be additively decomposed
uniquely as

WoGWi = G1 + G2 (7)

whereG1 andG2 are given by

G1 = (A,BDi − Y Bi, CoX + DoC, DoDDi)

G2 =
([

Ao − λEo ∗
0 Ai − λEi

]
,

[ ∗
Bi

]
,
[

Co ∗ ]
, 0

)

In (7),G1 can be generally seen as the projection ofWoGWi

which contains the poles ofG.

3 Projection formulas for WR
o GWL

i

We assume thatWo is full row rank andWi is full column
rank to ensure the existence of a right inverseWR

o such that
WoW

R
o = I and of a left inverseWL

i such thatWL
i Wi = I.

Having explicit realizations forWR
o andWL

i we can apply the
projection formulas of previous section to compute the projec-
tion necessary at step 3 of theFWHNA Procedure. In what
follows we discuss only the computation of a right inverse for
Wo. However, the approach which we present is also applica-
ble to compute a left inverse ofWi by computing a right inverse
for WT

i (the dual ofWi).

We consider first the case of a square invertibleWo. If Do is
invertible, we can form the explicit inverse

W−1
o = (Ao −BoD

−1
o Co − λEo,−BoD

−1
o , D−1

o Co, D
−1
o )

The main advantage in theFWHNA Procedure of using the
explicit inverses is that the resulting feedthrough matrix ofG1r

at step 3 appears in the expression ofDr.

If Wo is invertible as a rational matrix, butDo is ill-conditioned
or singular, then we can employ the implicit form of the inverse

W−1
o =

([
Ao Bo

Co Do

]
− λ

[
Eo 0
0 0

]
,

[
0
I

]
,
[

0 −I
]
, 0

)

in conjunction with the developed projection formulas. The
main advantage if this approach is the inversion-free formula-
tion. A possible disadvantage of using implicit inverses in the
FWHNA Procedure is that the resulting feedthrough matrix
Dr at step 3 is always zero. Since the Hankel-norm is only
a seminorm, this has no consequence on the Hankel-norm ap-
proximation error. Still, if we use the FWHNA to obtain a good
approximation by minimizing theL∞-norm of the weighted er-
ror, thenDr must be determined separately by solving a convex
optimization problem as suggested in [17].

If Wo is non-square, an appropriate right inverseWR
o must

be determined such thatWR
o andG1r have no common poles.

In what follows we present a computational approach derived
from the more general technique to determine weak general-
ized inverses proposed by the author in [15]. It is straightfor-
ward to show that for ap×m full row rank rational matrixWo,

a right inverse can be computed using the formula

WR
o (λ) =

[
0 Im

]
SR

o (λ)
[

0
Ip

]

whereSo(λ) is the full row rank system pencil

So(λ) =
[

Ao − λEo Bo

Co Do

]

By using the above formula, the computation of a right-inverse
of Wo can be accomplished by computing a right-inverse of the
associated system pencil.

The computation ofSR
o (λ) can be done by reducingSo(λ)

to an appropriate Kronecker-like form from which a maximal
rank regular sub-pencil can be easily separated. LetQ andZ
be orthogonal matrices to reduceSo(λ) to the Kronecker-like
form

So(λ) := QSo(λ)Z =
[

Br Ar − λEr Ar,z − λEr,z

0 0 Az − λEz

]

where the regular partAz−λEz contains the finite and infinite
zeros ofWo, and the pair(Ar − λEr, Br) is controllable with
Er nonsingular (see [13] for how to obtain such a Kronecker-
like form). The controllability of the pair(Ar − λEr, Br) is
the consequence of the full row rank assumption onWo.

It is easy to see that a right inverse can be defined as

WR
o := (A12 − λE12, B1, C2, 0),

where

A12 − λE12 :=
[

Ar − λEr Ar,z − λEr,z

0 Az − λEz

]
,

[
B1

B2

]
:= Q

[
0
Ip

]
, [ C1 C2 ] := [ 0 − Im ]Z

The eigenvalues of the right inverse are

Λ(A12, E12) = Λfixed ∪ Λspurious,

whereΛfixed = Λ(Az, Ez) are the eigenvalues of the regu-
lar part and thus, contain the system zeros, andΛspurious =
Λ(Ar, Er) are the finite ”spurious” zeros originating from the
column singularity ofWo(λ).

While the system zeros are always among the poles of the right
inverse, the spurious poles can be arbitrarily chosen. To show
this, consider a transformation matrixV of the form

V =




I Fr 0
0 I 0
0 0 I




Then, the transformed system pencil is given by

Ŝ(λ) := So(λ)V =
[

Br Ar + BrFr − λEr Ar,z − λEr,z

0 0 Az − λEz

]



A right inverse can be defined this time as

WR
o := (Â12 − λÊ12, B̂1, Ĉ2, 0),

where

Â12 − λÊ12 :=
[

Ar + BrFr − λEr Ar,z − λEr,z

0 Az − λEz

]
,

[
B̂1

B̂2

]
:= Q

[
0
Ip

]
, [ Ĉ1 Ĉ2 ] := [ 0 − Im ]ZV.

To obtain a right inverse with all spurious poles lying in the
antistable domain of the complex plane|Ca, we chooseFr such
thatΛ(Ar+BrFr, Er) ⊂ |Ca by solving a standard pole assign-
ment problem (withEr nonsingular). This is always possible
because the pair(Ar − λEr, Br) is controllable.

4 Projection formulas for W∼
o GW∼

i

The projection formulas are dependent on the type of the sys-
tem. Therefore, we derive distinct formulas for continuous-
time and discrete-time systems. In this section, we assume that
G, Wo andWi are stable.

4.1 Continuous-time system

For a continuous-time system we have the following explicit
formulas forW∼

o andW∼
i

W∼
o = (−AT

o − λET
o ,−CT

o , BT
o , DT

o )

W∼
i = (−AT

i − λET
i ,−CT

i , BT
i , DT

i )

Using the results of section 2, we obtain the required projection
of W∼

o GW∼
i as

G1 = (A,BDT
i + Y CT

i , BT
o X + DT

o C, DT
o DDT

i )

whereX andY satisfy the generalized Sylvester equations

AT
o X + ET

o XA + CT
o C = 0 (8)

AY ET
i + Y AT

i + BBT
i = 0 (9)

4.2 Discrete-time system

To derive the analogous discrete-time formulas, we can use ex-
plicit state space realizations forW∼

o andW∼
i only in the case

when the corresponding state matricesAo andAi are invert-
ible. Therefore, we derive the projection formulas avoiding the
explicit inversion of these matrices.

To simplify the presentation, we derive the projection in two
steps: first we determine the projectioñG1 of W∼

o G and then
the projectionG1 of G̃1W∼

i . Using the expression ofW∼
o (z)

W∼
o (z) = BT

o (z−1ET
o −AT

o )−1CT
o + DT

o

we can compute

W∼
o (z)G(z) = BT

o (z−1ET
o −AT

o )−1CT
o C(zI −A)−1B

+ BT
o (z−1ET

o −AT
o )−1CT

o D
+ DT

o C(zI −A)−1B + DT
o D

Let X be the solution of the generalized Sylvester equation

ET
o X −AT

o XA = CT
o C (10)

and consider the straightforward identity

(z−1ET
o −AT

o )X(zI −A) + (z−1ET
o −AT

o )XA
+AT

o X(zI −A) = ET
o X −AT

o XA
(11)

Combining (10) and (11), we can express the first term of
W∼

o (z)G(z) as

BT
o (z−1ET

o −AT
o )−1CT

o C(zI −A)−1B =
BT

o XB + BT
o XA(zI −A)−1B+

BT
o (z−1ET

o −AT
o )−1AT

o XB

It follows that the projectioñG1 containing the poles ofG can
be expressed as

G̃1 = (A,B, DT
o C + BT

o XA,BT
o XB + DT

o D)

Similarly, we can derive the expression of projectionĜ1 of
GW∼

i

Ĝ1 = (A,BDT
i + AY CT

i , C, DDT
i + CY CT

i )

whereY satisfies the generalized Sylvester equation

Y ET
i −AY AT

i = BBT
i (12)

Applying the above approach to compute the projectionG1 of
G̃1W∼

i , we get

G1 = (A,BDT
i + AY CT

i , DT
o C + BT

o XA, D1)

where

D1 = DT
o DDT

i + BT
o XBDT

i + DT
o CY CT

i + BT
o XAY CT

i

Note that for properWo andWi with Eo = I, Ei = I, the
generalized Sylvester equations (10) and (12) become the dis-
crete Sylvester equations derived in [12].

5 Projection formulas for (W∼
o )RG(W∼

i )L

The projection of(W∼
o )RG(W∼

i )L containing the poles ofG
can be obtained by applying the appropriate approach in Sec-
tion 4 to compute the projection of(WR

o )∼G(WL
i )∼. Appro-

priate right and left inverses can be computed using the meth-
ods described in Section 3.

6 Numerical aspects

In this section we give an implementable, inversion-free ver-
sion of theFWHNA Procedure based on the projection for-
mulas derived in Section 2. We assumeG = (A,B, C, D)
stable,Wo = (Ao − λEo, Bo, Co, Do) antistable, withWo(λ)
full row rank andWi = (Ai−λEi, Bi, Ci, Di) antistable with
Wi(λ) full column rank. Further, we tacitly assume that the
HNA G1r computed at Step 2 of theFWHNA Procedure has
no poles which are zeros of eitherWo or Wi.



FWHNA Algorithm

1.Compute an orthogonal transformation matrixQ to reduce
A to thereal Schur form(RSF) and compute

A ← QT AQ, B ← QT B, C ← CQ

2.Compute orthogonal matricesQo andZo to reduce the pair
(Ao, Eo) to the generalized real Schur form(GRSF) and
compute

Ao−λEo ← QT
o (Ao−λEo)Zo, Bo ← QT

o Bo, Co ← CoZo

3.Solve forX andU the Sylvester system

AoX − UA + BoC = 0
EoX − U = 0

4.Compute orthogonal matricesQi andZi to reduce the pair
(Ai, Ei) to the GRSF and compute

Ai − λEi ← QT
i (Ai − λEi)Zi, Bi ← QT

i Bi, Ci ← CiZi

5.Solve forV andY the Sylvester system

AV − Y Ai + BCi = 0
V − Y Ei = 0

6.Compute anr-th order approximation

G1r = (Ar, B1r, C1r, D1r)

of the system

G1 = (A,BDi − Y Bi, CoX + DoC, DoDDi)

using the HNA method [4].

7.Form a right inverse systemWR
o = (Ão−λẼo, B̃o, C̃o, D̃o).

8.Compute orthogonal matrices̃Qo andZ̃o to reduce the pair
(Ão, Ẽo) to the GRSF and compute

Ão−λẼo ← Q̃T
o (Ão−λẼo)Z̃o, B̃o ← Q̃T

o B̃o, C̃o ← C̃oZ̃o

9.Solve forX̃ andŨ the Sylvester system

ÃoX̃ − ŨAr + B̃oC1r = 0
ẼoX̃ − Ũ = 0

10.Form a left inverse systemWL
i = (Ãi − λẼi, B̃i, C̃i, D̃i).

11.Compute orthogonal matrices̃Qi andZ̃i to reduce the pair
(Ãi, Ẽi) to the GRSF and compute

Ãi − λẼi ← Q̃T
i (Ãi − λẼi)Z̃i, B̃i ← Q̃T

i B̃i, C̃i ← C̃iZ̃i

12.Solve forṼ andỸ the Sylvester system

ArṼ − Ỹ Ãi + B1rC̃i = 0
Ṽ − Ỹ Ẽi = 0

13.Compute ther-th order reduced model

Gr = (Ar, B1rD̃i − Ỹ B̃i, C̃oX̃ + D̃oC1r, D̃oD1rD̃i)

At Steps 3, 5, 9 and 12, the generalized Schur method is
used to solve the Sylvester systems [6]. These systems arise
from an equivalent reformulation of the respective generalized
Sylvester equations. WhenWo and Wi are proper, then the
Schur method [2] can be used to solve these equations as stan-
dard Sylvester equations. Note that in both cases the reduction
of A to the RSF is necessary, being also the first step when per-
forming the HNA at Step 6. Because the last computation in
the HNA algorithm of [4] is an additive stable-unstable spec-
tral separation, the resultingAr can be assumed to be already
in a RSF (used to reorder the eigenvalues), thus no further re-
duction ofAr is necessary.

If the feedthrough matricesDo andDi are invertible and well
conditioned, then the explicit inverses ofWo andWi can be
used, without any practically significant accuracy loss. The
advantage of using explicit inverses is that the resultingDr is
related to the HNA computed at Step 6. For an efficient im-
plementation of the FWHNA method, it is possible to further
refine the computation of projections, by exploiting all struc-
tural features of the problem. For example, ifDo is square and
well-conditioned, andDi is square but ill-conditioned or singu-
lar, it is possible to compute the projection ofW−1

o G1rW−1
i

by employing an explicit inverse forW−1
o and the implicit in-

verse forW−1
i .

To solve (2), completely similar procedures for continuous-
time and discrete-time systems can be used for the FWHNA
method based on the projection formulas developed in Sec-
tion 4. The only difference appears in the discrete-time case
for proper weights, where the projection formulas involves the
solution of discrete Sylvester equations for which algorithms
proposed in [11] can be used.

7 WeightedL∞-norm model reduction

One of the main usage of the FWHNA method is in solv-
ing the frequency-weightedL∞-approximation problem. The
FWHNA can be used to produce good approximation errors in
theL∞-norm, which satisfy

σr+1(G1) ≤ ‖Wo(G−Gr)Wi‖∞
where the bestDr can be determined by a convex optimization
[17]. For the computation of an optimalDr and possiblyCr or
Br, recently developed fast algorithms can be employed [16].

For theL∞-norm approximation, we only need to assume that
the weights have no poles on the imaginary axis in continuous-
time or on the unit circle in discrete-time. In the case when
Wo and/orWi have stable poles, then left/right coprime fac-
torizations with antistable all-pass denominators can be deter-
mined forWo andWi using the methods proposed in [14, 9].
If Wo = M−1

o No andWi = NiM
−1
i are the respective factor-

izations withNo andNi antistable, then

‖Wo(G−Gr)Wi‖∞ = ‖No(G−Gr)Ni‖∞



It was empirically observed that lower errors result if bothWo

andWi have only antistable zeros. Therefore, ifNo has no full
row rank or has some stable zeros, then an all-pass factorM̃o

can be determined (see [10] for the continuous-time case and
[8] for the discrete-time case) such that

No = M̃o

[
Ño

0

]

whereÑo has full row rank and has only unstable zeros. Simi-
larly, by applying the same procedure toNT

i we can determine
an all-pass factor̃Mi such that

Ni =
[

Ñi 0
]
M̃i

whereÑi has full column rank and has only unstable zeros. It
follows that

‖No(G−Gr)Ni‖∞ = ‖Ño(G−Gr)Ñi‖∞
which is in the standard form required for the application of the
FWHNA Algorithm .

8 Conclusion

We derived projection formulas for the two standard formu-
lations of the FWHNA problem and we proposed an imple-
mentable algorithm for the solution of the FWHNA problem in
the most general setting. The proposed FWHNA algorithm ex-
ploits all structural features of the underlying problem and can
be employed to solve the frequency-weightedL∞-norm ap-
proximation problem without any restrictions on the weights.
The proposedFWHNA Algorithm has been implemented in
Fortran 77 as a robust numerical software and is freely avail-
able in the current release of the systems and control library
SLICOT1 (see also [3] for a description of SLICOT). The im-
plementation relies on powerful and flexible solvers for various
Sylvester equations and Sylvester system which are available in
SLICOT and in the linear algebra package LAPACK [1]. User
friendly m- andmex-file based interfaces to the new SLICOT
software have been also implemented to execute theFWHNA
Algorithm underMATLAB .
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