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Model Reduction Software in
the SLICOT Library

Andras Varga

ABSTRACT We describe the model reduction software developed recently
for the control and systems library SLICOT. Besides a powerful collection
of Fortran 77 routines implementing the last algorithmic developments for
several well-known balancing related methods, we also describe model re-
duction tools developed to facilitate the usage of SLICOT routines in user
friendly environments like MATLAB or Scilab. Extensive testing of the im-
plemented tools has been done using both special benchmark problems as well
as models of several complex industrial plants. Testing results and perfor-
mance comparisons show the superiority of SLICOT model reduction tools
over existing model reduction software.

7.1 Introduction

Model reduction is of fundamental importance in many modeling and con-
trol applications. Still, reliable and high quality model reduction software
tools are scarce. Even the model reduction tools available in commercial
packages have strong limitations because using either inappropriate algo-
rithms or poor software implementations. The lack of good general purpose
model reduction software was the motivation to develop with the highest
priority a model reduction chapter for the control and systems library SLI-
COT in the framework of the NICONET project® [3].

In this paper we describe the recently developed model reduction software
for SLICOT. A powerful collection of user callable Fortran 77 routines has
been implemented based on the latest algorithmic developments for three
balancing related methods: the balanced truncation approximation (BTA)
method [14], the singular perturbation approzimation (SPA) method [11]
and the Hankel-norm approzimation (HNA) method [8]. These methods

lhttp://www.win.tue.nl/niconet/niconet.html
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belong to the class of additive error methods and rely on guaranteed error
bounds. They are primarily intended for the reduction of linear, stable,
continuous- or discrete-time systems. However, in combination with addi-
tive spectral decomposition or coprime factorization techniques the basic
methods can be used to reduce unstable systems too. Most of new model
reduction tools and related software included in SLICOT originate from
the collection of routines available in the RASP-MODRED library [20].

The new model reduction routines for SLICOT are among the most pow-
erful and numerically most reliable software tools available for model re-
duction. To facilitate the usage of the new model reduction routines, easy-
to-use and flexible interfaces have been developed to integrate them in two
popular user friendly computing environments for engineering and scien-
tific applications: the commercial package MATLAB? and the free software
Scilab [5]. The basis for integration was a subset of the new model reduc-
tion routines which address the reduction of unstable systems. The same
software can be also used without any computational overhead for the re-
duction of stable systems.

Several benchmark examples have been employed for testing and per-
formance comparisons. Simple well behaving models have been primarily
used to check the correct installation of the software. Besides them, several
real industrial models exhibiting some challenging features like poor scal-
ing, lack of minimality, presence of unstable modes, have been employed
for performance and functional testing. The test results and performance
comparisons show the superiority of SLICOT model reduction tools over
existing model reduction software.

7.2 Development of model reduction subroutines

In this section we present the standardization effort done within the Eu-
ropean project NICONET [3] to develop numerically reliable software for
model reduction for the SLICOT library. After a short overview of bal-
ancing related model reduction methods underlying the implemented algo-
rithms, we describe the modular approach used to implement the model
reduction software for SLICOT. Important byproducts of the standard-
ization activity for the model reduction software are many useful routines
of more general use implemented in conjunction with or for the special
need of model reduction software. These additional routines represent im-
portant extensions of existing chapters or constitute even completely new
chapters of the SLICOT library, as for example, the routines for transfer-
function matrix factorization, spectral decomposition, computation of sys-
tem norms, or system similarity transformations.

2MATLAB is a registered trademark of The MathWorks, Inc.



Chapter 7. Model reduction software for SLICOT 3

7.2.1 Balancing related model reduction methods

Three basic model reduction algorithms belonging to the class of meth-
ods based on or related to balancing techniques [14, 11, 8] form the basis
of model reduction software in SLICOT. These methods are primarily in-
tended for the reduction of linear, stable, continuous- or discrete-time sys-
tems. They rely on guaranteed error bounds and have particular features
which recommend them for use in specific applications. In what follows we
present succinctly the main features of balancing related model reduction.
Consider the n-th order original state-space model G := (A, B,C, D)
with the transfer-function matriz (TFM) G(\) = C(A — A)"'B + D, and
let G, := (4,, B;,Cy, D,) be an r-th order approximation of the original
model (r < n), with the TFM G, = C.(A\I — A,)"!'B,. + D,.. According to
the system type, A is either the complex variable s appearing in the Laplace
transform in case of a continuous-time system or the variable z appearing
in the Z-transform in case of a discrete-time system. In our overview we
focus on the so-called absolute (or additive) error model reduction method
which essentially tries to minimize the absolute approximation error

”G*Gr”oo (7.1)

An important class of model reduction methods, including the popular
BTA method, can be interpreted as performing a similarity transformation
Z yielding

Z7'AZ | Z27'B A A | By
CZ | D :| = Agl A22 BQ 5 (72)
Ci G | D

and then defining the reduced model G, as the leading diagonal system
(A’r‘aBT'7CTaD7‘) = (Alla Bly Cla D) (73)

When writing Z and Z~! in partitioned form

L
— -1._
Z=[TU)|, Z '_{V]’
then LT = I,. and Il = T'L is a projection matrix. Thus the reduced system
is given by

(A, B,,C,,D,) = (LAT, LB, CT, D).

The matrices L and T are called truncation matrices.
The partitioned system matrices in (7.2) can be used to construct a so-
called singular perturbation approzimation (SPA):

A, = Ap+ Ap(W] — Agg)t Ay,
Br - Bl + AlQ(’YI - A22)7IBQ ) (7 4)
Cr = C1+Co(yl — Ag) 1Ay, ’

>

= D+ Co(vl—Ap)'B,,
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where v = 0 for a continuous-time system and v = 1 for a discrete-time
system. Note that SPA formulas preserve the DC-gains of stable original
systems.

Another class of so-called modal approzimation methods, determine Z
such that

Z'AZ | Z7'B An 01 B
CZ | D = 0 AQQ BQ s (75)
¢, C | D

and A;; and Ass contain the dominant and non-dominant modes of the
system, respectively. Thus, the reduced model (7.3) contains essentially the
dominant dynamics of the system. The modal approach can be easily used
in combination with balancing related methods for reduction of unstable
systems. In this case, the dominant part includes all unstable dynamics and
the model reduction is performed only on the non-dominant stable part.

In selecting numerical algorithms for model reduction, specific require-
ments for a satisfactory algorithm have been formulated to assess its suit-
ability to serve as basis for robust numerical software implementations:
(1) general applicability regardless the original system is minimal or not;
(2) emphasis on enhancing the numerical accuracy of computations; (3)
relying on numerically reliable procedures; (4) independence of results of
state space coordinate scaling. In what follows we discuss these aspects
for the numerical algorithms used for the class of balancing related model
reduction methods.

The first requirement is very important because, in practice, due to the
presence of roundoff errors, it is often impossible to distinguish between a
true non-minimal and a nearly non-minimal system. At algorithmic level,
this requirement can be fulfilled by using algorithms which compute L and
T directly, without determining Z or Z~'. In particular, if the original
system is non-minimal, then L and T can be chosen to compute an exact
minimal realization of the original system [19]. In this way, model reduc-
tion can also serve as a numerically sound alternative to solve minimal
realization problems.

The emphasis on improving the accuracy of computations led to so-
called algorithms with enhanced accuracy. In the balancing related model
reduction methods, the truncation matrices L and T are usually determined
from the controllability and observability gramians P and @, satisfying a
pair of continuous-time (c) or discrete-time (d) Lyapunov equations

|
~

{ AP + PAT + BBT

0 APAT + BBT
ATQ+QA+CTC () {

0 ATQA + CTC (d)

|
O

Since P and @ are positive semi-definite symmetric matrices, they can be
expressed in Cholesky factorized forms P = SST and Q = RTR with S
and R upper-triangular matrices. The Cholesky factors can be computed
directly by solving (¢) or (d) using numerically reliable algorithms pro-
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posed by Hammarling [9] to solve non-negative definite Lyapunov equa-
tions. Then, the computation of L and T can be done entirely on basis of
the Cholesky factors S and R, leading to the so-called square-root (SR)
methods for model reduction.

Consider the singular value decomposition (SVD)

RS=[U1 U, |diag(S1,%) [ Vi Vo ]"

, (7.6)
where
Zl = diag(alv"'vo-’r')a 22 = diag(0'7-+1,-.-,0'n),

and 01 > ... > 0, > 0pp1 > ... > 0, > 0 are the Hankel singular values
of the system. The SR method for the BTA approach of [14] determines L
and T as [17]

L=x;"?UTR, T=sSvy"%

If r is the order of a minimal realization of G then the gramians corre-
sponding to the resulting realization are diagonal and equal. In this case the
minimal realization is called balanced. Since the SR method can be used to
compute balanced minimal representations resulting in a partitioned form
like in (7.2), it can also be used for computing reduced order models by
using the SPA formulas [11] or as the preliminary step in performing the
HNA [8]. The SR approach is usually very accurate for well-equilibrated
systems. However if the original system is highly unbalanced, potential
accuracy losses can be induced in the reduced model if either L or T is
ill-conditioned (i.e., nearly losses maximal rank).

In order to avoid computations with ill-conditioned truncation matrices,
a balancing-free (BF') approach has been proposed in [16] in which always
well-conditioned matrices L and T can be determined. These matrices are
computed from two orthogonal matrices whose columns span the right and
left eigenspaces of the product PQ corresponding to the first r largest eigen-

values 02,..., 02, respectively. Because of the need to compute explicitly

P and @ as well as their product, this approach is usually less accurate for
moderately ill-balanced systems than the SR approach.

A balancing-free square-root (BFSR) algorithm for the BTA method,
combining the main advantages of the BF and SR approaches has been

introduced in [19]. The truncation matrices L and T can be determined as
L=yTx)"'v" = T=X,

where X and Y are n x r matrices with orthogonal columns computed from
two QR decompositions

SVi = XW, RTU, =YZ,

with W and Z non-singular upper-triangular matrices. The accuracy of the
BFSR algorithm is usually better than either of SR or BF approaches.
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A BFSR method for the SPA approach has been proposed in [18]. The
matrices L and T are computed such that the system (LAT, LB,CT, D) is
minimal and the product of corresponding gramians has a block-diagonal
structure which allows the application of the SPA formulas.

Concerning the numerical reliability aspect, all computational steps for
the SR or BFSR methods can be performed by using exclusively numer-
ically stable algorithms. In the case of the HNA method for a continuous-
time system, straightforward matrix expressions [8] are used to determine
a system whose stable part represents the optimal Hankel-norm approx-
imate model G, of the original G (see section 7.2.2 for more details on
the modal separation technique). Since the formulas for the discrete-time
case are much more involved, we preferred to use an approach based on
discrete-to-continuous bilinear transformations, which allows the usage of
continuous-time formulas for the discrete-time case as well.

The independence of scaling is a very important aspect for the overall
applicability of the BTA, SPA or HNA methods to possibly badly scaled
models. In theory, the Hankel singular values are input-output system in-
variants, and therefore are not affected by coordinate transformations. In
particular, they are not affected by state coordinate scaling with diagonal
matrices. However, the numerical accuracy of computed Hankel singular
values can be tremendously affected by scaling since their computation in-
volves two critical numerical computations which are not independent of
the scaling: (1) the solution of Lyapunov equations with possibly badly
scaled system matrices; and (2) the SVD determination from the product
of two matrices resulted from previous step having possibly quite different
ranges of elements. It is therefore clear that the accuracy of singular values
and of all subsequent computations can be substantially improved by a
proper scaling of the original system by trying to reduce the 1-norm of the
scaled system matrix

s_[Z2'Az z7'B
~ | oz 0o |

with an appropriate positive definite diagonal scaling matrix Z. Such an
optional preliminary scaling is part of each model reduction routine imple-
mented for SLICOT.

For all three methods BTA, SPA and HNA the absolute approximation
error G — G, for an r-th order approximation satisfies

IG-Gille<2 Y an (7.7)
k=r+1

Note that the actual error may be considerably less than the above error
bound, so that this formula can be seen generally as a guide to choose the
appropriate order of the reduced system. In case of optimal HNA method,
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the optimum G, achieves
lanG — GT”H = Or41

and even a feedtrough matrix D, can be chosen (see [8] for details) such
that the error bound in (7.7) is half of the bound for BTA and SPA. This
feature is however not available in the implemented SLICOT routine for
HNA.

7.2.2  Reduction of unstable systems

The reduction of unstable systems can be performed by using the meth-
ods for stable systems in conjunction with two embedding techniques. One
important requirement for these techniques is that they must not have
computational overhead when applied to stable systems. By fulfilling this
requirement, a single routine can be used in principle for reducing both
stable and unstable systems.

The first approach consists in reducing only the stable projection of G
and then including the unstable projection unmodified in the resulting
reduced model. The following is a simple procedure for this computation:

1. Decompose additively G as G = G1 + G3, such that G has only
stable poles and G2 has only unstable poles.

2. Determine G, a reduced order approximation of the stable part G;.
3. Assemble the reduced model G, as G, = G1, + Ga.

For the model reduction at step 2 any of methods available for stable
systems can be used. The stable-unstable spectral separation at step 1 is
done by performing a system similarity transformation as in (7.5), where
Aj1 contains the stable eigenvalues and Az contains the unstable eigenval-
ues of A. This separation is performed in two steps. First the state matrix
A is reduced to an ordered real Schur form with the diagonal 1 x 1 or
2 x 2 blocks ordered according to the desired stable-unstable eigenvalue
splitting. This reduction is performed by using only orthogonal transfor-
mations. Then the (1,2)-block of the resulting partitioned Schur matrix
is zeroed by performing an additional non-orthogonal similarity transfor-
mation. This transformation involves the solution of a Sylvester equation
with the coefficient matrices in real Schur form. Note that for a stable sys-
tem this step is not performed and thus no computational overhead occurs
since the reduction to the Schur form is always necessary when employing
Hammarling’s method [9] to compute the Cholesky factors of gramians.

The second approach is based on reducing the factors of a stable rational
coprime factorization of G. For example, consider the left coprime factor-
ization G = M !N, where M and N are stable rational TFMs. Note that
the factors are left coprime if there exist stable rational X and Y such
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that MX + NY = I. The following procedure can be used to compute
an r-th order approximation G, of an arbitrary n-th order system G by
approximating the factors of its left coprime factorization:

1. Compute a left coprime factorization of G as G = M~IN, with M
and NV stable TFMs.

2. Compute for the stable system of order n with the TFM [N M| an
approximation [ N,. M,.] of order r.

3. Form the 7-th order approximation G, = M, ' N,.

The usefulness of this approach relies on the assumption that the McMil-
lan degree of G = M~!'N is generally that of [N M ] and similarly for
G, = M 'N, and [N, M,]. In this way the reduction of the McMillan
degree of [N M ] through approximation by [N, M, ] is equivalent to re-
duction of the McMillan degree of G by G, which is our objective. The
factorization methods proposed in [21, 22] fulfill the above assumptions,
and thus can be employed to implement the above procedure. Note that
the approximations computed for the factors of a coprime factorization
with inner denominator by using the SPA method preserve this property
for the reduced factors [22].

The coprime factorization approach used in conjunction with the BTA
method fits well in the general projection formulation introduced in pre-
vious subsection. The gramians necessary to compute the projection are
the gramians of the extended system with the TFM [ N M |. The resulting
truncation matrices L and T' determined by using either the SR or BFSR
methods can be directly applied to the matrices of the original system.

The requirement for an efficient embedding which prevents computa-
tional overheads for stable systems can be also fulfilled by using the factor-
ization algorithms of [21, 22]. These algorithms are based on numerically
reliable Schur techniques for pole assignment and can be used to compute
coprime factorizations with prescribed stability degree of the factors [21]
or with inner denominators [22]. In both cases, the resulting state matrix
is common to both factors and is in a real Schur form. Thus the model re-
duction method has no overhead if the original system G is already stable,
because in this case N = G and M = I and the reduction of state matrix
to the real Schur form is still necessary to compute the gramians.

7.2.8  Implementation of software for model reduction

The basis for implementation of the model reduction routines in SLICOT
formed the collection of routines available in the RASP-MODRED library
[20], implemented on the basis of the standard linear algebra package LA-
PACK [1]. All new SLICOT routines originating from the RASP-MODRED
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library have been practically rewritten. Several routines represent com-
pletely new implementations. A special emphasis has been put on an ap-
propriate modularization of the routines in the model reduction chapter of
SLICOT. For this purpose, a computational kernel formed of three basic
routines is shared by all higher level user callable routines.

Both the SR and BFSR versions of the BTA and SPA algorithms are
implemented in SLICOT library. The implementation of the HNA method
uses the SR BTA method to compute a balanced minimal realization of
the original system. The following table contains the complete list of model
reduction routines available in SLICOT for stable model reduction:

Name Function

ABO09AD | computes reduced (or minimal) order balanced models us-
ing either the SR or the BFSR BTA method

ABO09BD | computes reduced order models using the SR or BFSR
SPA method

ABO09CD | computes reduced order models using the optimal HNA
method based on SR balancing

ABO09DD | computes reduced order models using the singular pertur-
bation formulas (7.4)

AB09AX | computes reduced (or minimal) order balanced models us-
ing either the SR or the BFSR BTA method for a system
with state matrix in real Schur form

AB09BX | computes reduced order models using the SR or BFSR
SPA method for a system with state matrix in real Schur
form

ABO09CX | computes reduced order models using the optimal HNA
method based on SR balancing for a system with state
matrix in real Schur form

Three user callable routines AB09AD, AB09BD and AB09CD imple-
ment the three basic algorithms for BTA, SPA and HNA methods, re-
spectively. All these routines perform optionally the scaling of the orig-
inal system. Each of routines handles both continuous-time as well as
discrete-time systems. For implementing the discrete-time HNA method,
bilinear continuous-to-discrete transformation techniques have been em-
ployed. ABO9AX, AB0O9BX and ABO9CX are lower level supporting rou-
tines which perform basically the same reductions as the corresponding
main user callable routines, but for systems with the state matrix already
reduced to the real Schur form and possibly already scaled. These routines
form the computational kernel of the whole model reduction software in
SLICOT being called by the user-callable routines for reduction of both
stable and unstable systems.

SLICOT also provides tools to perform the reduction of unstable sys-
tems. On the basis of newly implemented routines to compute left/right
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coprime factorizations with prescribed stability degree or with inner de-
nominators, or to compute additive spectral decompositions, several user
callable routines have been implemented for reduction of unstable systems.
A modular implementation allowed flexible combinations between various
factorization/decomposition and model reduction methods for stable sys-
tems. The following routines are available to perform model reduction of
unstable systems:

Name Function

ABO9MD | computes reduced order models for unstable systems us-
ing the BTA method in conjunction with additive sta-
ble/unstable spectral decomposition

ABO9ND | computes reduced order models for unstable systems us-
ing the SPA method in conjunction with stable/unstable
additive spectral decomposition

ABO9ED | computes reduced order models for unstable systems us-
ing the optimal HNA method in conjunction with additive
stable/unstable spectral decomposition

ABO9FD | computes reduced order models for unstable systems us-
ing the SR or BFSR BTA method in conjunction with
left /right coprime factorization methods
ABO09GD | computes reduced order models for unstable systems us-
ing the SR or BFSR SPA method in conjunction with
left /right coprime factorization methods

The routines ABO9MD, ABOIND and ABO9ED implement the spectral
separation approach in combination with BTA, SPA and HNA methods,
respectively. They provide an additional flexibility by allowing to specify
an arbitrary stability boundary inside the standard stability regions (con-
tinuous or discrete). The dominant part of the system having poles only
in the "unstable” region is retained in the reduced model, and only the
”stable” part is approximated. This leads to an effective combination of
balancing methods with the modal reduction approach (see also [24]). The
coprime factorization based routines ABO9FD and ABO9GD allows arbi-
trary combinations of BTA and SPA methods, respectively, with four types
of coprime factorizations.

It is important to emphasize that the model reduction routines for un-
stable systems can be applied with practically no efficiency loss to reduce
stable systems too. Since these routines can be seen as completely general
tools for order reduction of linear time-invariant systems, they form the ba-
sis to implement the interface software to user-friendly environments (see
Section 7.3).

An important number of new routines to perform system similarity trans-
formations, to compute system norms, special factorizations or decomposi-
tions, have been implemented for the special needs of the model reduction
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routines. Two user callable transformation routines implement frequently
used similarity transformations on system matrices:

Name Function

TBO1WD | performs an orthogonal similarity transformation to reduce
the system state matrix to a real Schur form

TBO1LD | performs an orthogonal similarity transformation to reduce
the system state matrix to an ordered real Schur form

The following routines have been implemented for computing system

norms:
Name Function
AB13AD | computes the Hankel norm and the Hankel singular values
of the stable projection of a transfer-function matrix
AB13BD computes the Hs- or Lo-norm of a transfer-function matrix
AB13CD? | computes the H,.-norm of a continuous-time transfer-
function matrix

Several factorization and decomposition routines of TFMs have been
implemented for the special needs of model reduction of unstable systems:

Name Function

TBO1KD | computes an additive spectral decomposition of a transfer-
function matrix with respect to a specified region of the
complex plane

SBO8CD | computes the state-space representations of the factors of
a left coprime factorization with inner denominator

SBO8DD | computes the state-space representations of the factors of
a right coprime factorization with inner denominator

SBOSED | computes the state-space representations of the factors of a
left coprime factorization with prescribed stability degree

SBOSFD | computes the state-space representations of the factors of a
right coprime factorization with prescribed stability degree

SBO8SGD | computes the state-space representation corresponding to
a left coprime factorization

SBOSHD | computes the state-space representation corresponding to
a right coprime factorization

A complete list of implemented model reduction and auxiliary routines
is given in the NICONET Report NIC1999-8.4 A typical user interface is
presented in Appendix 7.A for the user callable Fortran subroutine ABO9MD.

3implemented by P. Petkov from the Technical University of Sofia
4available at ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/NIC1999-8.ps.Z
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7.3 Integration in user-friendly environments

One of the main objectives of the NICONET project is to provide, ad-
ditionally to standardized Fortran codes, high quality software embedded
into user-friendly environments for computer aided control system design
(CACSD). Two target environments have been envisaged: the popular com-
mercial numerical computational environment MATLAB and the public do-
main MATLAB-like environment Scilab. Both allows to easily add external
functions implemented in general purpose programming languages like C or
Fortran. In case of MATLAB, the external functions are called mez-functions
and have to be programmed according to precise programming standards.
In Scilab, external functions can be similarly implemented and only several
minor modifications were necessary to the MATLAB mez-functions to adapt
them to Scilab. It is expected that generally MATLAB mez-functions could
also serve a starting points for implementing external function interfaces
to other similar CACSD environments (e.g., MATRIXx ).

7.3.1 Integration in MATLAB

One important aspect implementing mez-functions was to keep their to-
tal size as small as possible. Since the standardized model reduction pro-
grams in SLICOT share many routines from BLAS, LAPACK and SLI-
COT, it was decided to implement a single function covering all model
reduction functionality provided in SLICOT. The mez-function for model
reduction is called sysred and provides a flexible interface to practically
all functional features provided by the model reduction routines ABO9MD,
ABO9ND, ABO9ED, AB09FD, AB0O9GD for reduction of stable/unstable
linear systems using the BTA, SPA and HNA methods in conjunction with
stable coprime factorization and stable/unstable spectral decomposition.
The MATLAB help function of this mez-function is listed in Appendix 7.B.

The mez-function sysred has been implemented in Fortran 90. However,
the only used feature of Fortran 90 is the use of ALLOCATE and related
statements for internal workspace management (i.e., allocating or deleting
workspace for arrays). The parts of the codes using Fortran 90 features are
clearly delimited by comments and can be easily converted to Fortran 77
by using calls to special MATLAB storage allocation routines.

To provide a convenient interface to work with control objects defined
in the Control Toolbox, several easy-to-use higher level model reduction
functions have been additionally implemented explicitly addressing some
of available features. The Table 7.1 contains the list of implemented m-
functions. A sample m-function, bta.m, is listed in Appendix 7.C.
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TABLE 7.1. Model reduction m-functions

Name Function

bta BFSR BTA combined with additive spectral decompo-
sition

btabal SR BTA combined with additive spectral decomposition

bta_cf BFSR BTA combined with stable coprime factorizations

btabal _cf | SR BTA combined with stable coprime factorizations

spa BFSR SPA combined with additive spectral decompo-
sition

spabal SR SPA combined with additive spectral decomposition

spa_cft BFSR SPA combined with stable coprime factorizations

spabal_cf | SR SPA combined with stable coprime factorizations

hna SR HNA combined with additive spectral decomposition

7.3.2  Integration in Scilab

The Scilab interface® is essentially the same as that for MATLAB. In par-
ticular, the names of the mez-file and m-files are the same. The source
code of the mex-files for MATLAB served as basis for the Scilab inter-
face. For an increased portability, it was decided do not use the Fortran
90 ALLOCATE statement for workspace management. Instead, the needed
workspace for each variable is allocated on the internal stack of Scilab
using the CREATEVAR routine of Scilab. For example, a variable A is re-
ferred in the Scilab interface program as stk(ptrA), where ptrA is the
pointer determined by CREATEVAR when allocating storage for A. These
minor modifications allow the use of a freely available Fortran 77 compiler
like g77 and facilitate also an automatic translation to C using f2c.

The MATLAB m-files also required some modifications to cope with the
syntax of the Scilab command language. As an illustration, in Appendix
7.D is the Scilab code bta.sci corresponding to the MATLAB m-file bta.m
given in Appendix 7.C. Observe that the calling sequences are the same
both in MATLAB and Scilab, and even the help files are very similar. The
only difference is that Scilab help files are formatted ASCII texts which
are automatically generated from the corresponding m-files.

7.4 Testing and performance comparisons on
benchmark problems

Extensive testing of the implemented software has been performed using
several benchmark problems. In what follows we describe examples used to

5implemented by F. Delebecque from INRIA-Rocquencourt
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test the model reduction routines for stable and unstable systems.

7.4.1 PS: Power system model — continuous-time.

This is a continuous-time linearized state space model of a two-area inter-
connected power system [7]. The model has the form

= Ax+ Biu-+ Byw
y = Cr

where 2 € R7 is the state vector, u € R? is the command input vector,
w € R? is the disturbance input vector and y € R? is the measurable
output vector. The matrices of this model are given in Appendix 7.E. Note
that the partial model (A, By, C) has been used as test example by several
SLICOT test programs.

The PS model is stable, minimal and has the Hankel-singular values

{3.9137, 3.5944, 2.5277, 1.0888, 0.6526, 0.0276, 0.0275 }.

Taking into account the gap between the 5-th and 6-th singular values, a
5-th order model seems to be appropriate for a lower order approximation.
The BTA, SPA and HNA methods produced reduced order models of or-
der 5, PSy, PS; and PS3, respectively, which approximately preserve the
dominant poles of the original system

Poles of PS Poles of PS: Poles of PS» Poles of PS3

—0.5181 + 3.12597 —0.5053 + 3.1206: —0.5186 + 3.1228: —0.5118 + 3.12217
—0.5181 — 3.12597 —0.5053 — 3.1206¢ —0.5186 — 3.1228; —0.5118 — 3.12214
—1.3550 4 2.18667 —1.2923 4-2.1162¢ —1.3598 + 2.1692: —1.3250 + 2.1430¢
—1.3550 — 2.18667 —1.2923 — 2.11627 —1.3598 — 2.1692: —1.3250 — 2.1430¢
—1.6916 —1.4233 —1.6578 —1.5351

—13.1438

—13.1617

However, the three methods approximate differently the zeros of the original
system, the BTA and SPA methods producing even non-minimum phase zeros:

Zeros of PS Zeros of PS; Zeros of PS» Zeros of PSs3
[e'e) 1.4438 1.4438 —9.2069
o) 00 0 o)
00 o0 )
00

There is little difference in step responses for different input-output chan-
nels and also the Nyquist plots show good agreements. In Figure 7.1 the
Nyquist plots for the u;—y; channel are presented. Each of the computed
5-th order approximate models is suitable to perform controller synthesis.
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Nyquist Diagrams
From: U(1)

Imaginary Axis
To: Y(1)
o

Real Axis
FIGURE 7.1. Frequency responses for element gi1(s) of PS.

7.4.2 PSD: Power system model — discrete-time.

This is the PS model discretized with a sampling period of T" = 0.1 sec.
The matrices of sampled-data system matrices are given in Appendix 7.E.
Three 5-th order approximations have been computed using the BTA, SPA
and HNA methods. Figure 7.2 shows the good agreement both in time
domain and frequency-domain of the original and reduced models.

7.4.3 TGEN: Nuclear plant turbo-generator model.

This is a 10-th order linearized model of a 1072 MVA nuclear powered
turbo-generator [10]. The system is stable and minimal phase. The Hankel-
singular values of the system are

{455.98, 76.52, 68.57, 10.429, 7.24, 0.27, 0.11, 0.0022, 0.0019, 0.0014 },

thus a 5-th order approximation seems to be appropriate. Figure 7.3 com-
pares the results obtained with all three methods: BTA (dashed line), SPA
(dashdot line), and HNA (dotted line), on basis of element g11(s) of the
TFM. It is easy to see the good low frequency approximation property of
SPA method and the good high-frequency approximation property of BTA
and HNA methods. Note that all three methods produce non-minimum
phase approximations.
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FIGURE 7.2. Time and frequency responses for elements gi1(s) and
912(5) of PSD.

7.4.4 PSU: Unstable continuous-time model.

This model served only for numerical test and resulted by replacing in the
PS model A by A+al, for different values of a leading to unstable systems.
For a = 1 we applied the BTA method to the PSU model in combination
with additive spectral decomposition and four types of coprime factoriza-
tions: stable letft /rigth coprime factorizations and letft /rigth right coprime
factorizations with inner denominators. Figure 7.4 shows good agreements
of the Nyquist plots for the transfer function of u;—y; input/output chan-
nel for all five methods. Similar results have been obtained with the SPA
and HNA methods used in combination with factorization/decomposition
techniques.

7.4.5 ACT: Badly scaled actuator model

This 5-th order single-input model resulted from the physical modelling
of a hydraulic actuator for helicopter active vibration damping. The state
space representation for this model is given in Appendix 7.E. Due to its
extremely poor scaling originated from the usage of International System
(SI) units, it is expected that this model will pose numerical difficulties to
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FIGURE 7.3. Frequency responses for element g¢11(s) of TGEN.

many category of programs thus leading often to wrong numerical results.
The computed Hankel singular values with sysred are:

{1.38934 - 107, 6.10346 - 10°, 1.04050 - 10°, 1.03985 - 10°, 8.26634 - 10° }

However, the Hankel singular values computed with the MATLAB function
balreal are completely wrong:

{3.3357 - 10%, 1.92108 - 10%, 9.92157 - 10°, 1.47773 - 10*, 1.91871 - 10° }.

7.4.6  Uncertainty models

The newly developed model reduction tools are well-suited to be employed
as basic computational tools for exact and approximate order reduction of
parametric uncertainty models described by linear fractional transforma-
tions (LFTs). An LFT model arises, for example, by expressing the state
space matrices A(p), B(p), C(p), D(p) of a symbolically linearized system
depending rationally on parameters in a vector p, as a diagonal struc-
tured feedback around a constant linear system. LFT-models are basically
multi-dimensional (m-D) systems and no general algorithms are known to
compute m-D minimal realizations or approximations. Since the resulting
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Nyquist Diagrams
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FIGURE 7.4. Frequency responses for element g¢11(s) of PSU.

orders of ad-hoc built LFTs are typically high even for relatively simple
parametric models, order reduction (exact or approximate) is an impor-
tant aspect of LF'Ts based modeling. Sequential 1-D minimal realization
techniques can be successfully employed to achieve substantial order reduc-
tion. Since most of LFT descriptions are basically assimilated to discrete-
time systems, model reduction techniques able to handle non-minimal 1-D
discrete-time systems can be employed not only to perform exact reduc-
tions but also to compute lower order approximations. In [26], several LFT-
models have been generated starting from a parametric linear state space
model of a civil aircraft. The order of initial LF'T models were up to 300
and reductions employing the mez-function sysred led to manageable low
order exact and approximate LFT models. The high accuracy of approxi-
mations was assessed by using Monte-Carlo analysis. Note that the typical
model features required for such an order reduction (i.e, discrete-time, non-
minimal, unstable) are not available in the commercial CACSD software
(see also Table 7.3).
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7.4.7 Timing results

Randomly generated systems have been used to compare the speed of meth-
ods with carefully implemented MATLAB m-functions from the HTOOLS
Toolbox [25]. In the following table, we present timing results for randomly
generated stable systems of orders up to 512 comparing for the square-root
BTA method the efficiency of the mez-function sysred, the m-functions
sqrmr from HTOOLS and balreal from the Control Toolbox [12]. Note that
for dimensions above n = 32, balreal systematically exited with the mes-
sage "System must be reachable", which is evidently a nonsense. The
results in Table 7.2 have been obtained on a Pentium II 400 MHz Personal
Computer running under Windows NT 4.0. The mez-function sysred has
been produced using Digital/Compaq Visual Fortran V 5.1.

Order Times [sec]
sysred | sqrmr | balread
16 0.003 0.17 0.04
32 0.01 0.5 0.17
64 0.11 2.14 *
128 0.78 10.55 *
256 6.12 63.75 *
512 76.23 | 478.69 *

TABLE 7.2. Timing results for sysred, sqrmr and balreal.

A speed-up of order 10 or higher can be observed when using the For-
tran based implementation sysred instead of the pure MATLAB imple-
mentations in sqrmr and balreal. The above table also illustrates the in-
creased numerical robustness of structure exploiting algorithms used both
in sysred and sqrmr, in comparison with the less accurate and numerically
fragile method implemented in the MATLAB function balreal.

7.5 Testing on industrial benchmark problems

7.5.1 ATTAS: Linearized aircraft model

This model describes the linearized rigid body dynamics of the Advanced
Technology Testing Aircraft System (ATTAS) of DLR® during the landing
approach. The nonlinear model of ATTAS used for linearization has been
obtained using the object oriented modelling tool Dymola [6]. Besides flight
dynamics, this model includes actuators and sensors dynamics, as well as
engine dynamics. Several low pass filters to eliminate structure induced

6German Aerospace Center
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dynamics in outputs are also included. The total order of the model is 51.
The linearized model has an unstable spiral mode. Moreover, because of
presence of position states, there are three pure integrators in the model
and an additional one for the heading angle. There are 6 control inputs and
3 wind disturbance inputs, and 9 measurement outputs. This model serves
basically for the evaluation of linear handling criteria in a multi-model
based robust autopilot design.

To speed-up the evaluation of different handling quality criteria, lower
order design models have been determined by using the BTA model re-
duction approach. A 15-th order approximation has been computed using
model reduction followed by minimal realization. The reduced order model
fits almost exactly the original 51-th order model both in time as well as
in frequency domain. Figure 7.5 shows very good agreements between the
frequency responses of the original and reduced model for elements goo of
the corresponding TFMs.
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FIGURE 7.5. Frequency responses for element g22(s) of ATTAS.

For longitudinal flight, a minimal order stable model has been derived
by combining model reduction and minimal realization techniques. The
reduced longitudinal ATTAS model has 7 states, 4 inputs and 4 outputs.
For lateral flight, a minimal order model has been computed having 10
states, 2 inputs and 5 outputs. Both these models approximate practically
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exactly the corresponding parts of the dynamics of the original 51 order
model. Note that handling this model raises several difficulties for currently
available model reduction software such as the presence of unstable modes
or of redundant dynamics (non-minimal model). For instance, this model
is intractable with standard model reduction tools available in the Control
Toolbox of MATLAB.

7.5.2 CDP: CD-player finite element model

This is a 120-th order single-input single-output system which describes the
dynamics between the lens actuator and radial arm position of a portable
compact disc player discussed in [27]. Due to physical constraints on the size
of the systems’s controller, a reduced model with order r» < 15 is desired.
For testing purposes, three 10-th order models have been determined using
the BTA, SPA and HNA methods. Figure 7.6 compares the performance
of computed approximations on basis of their Bode plots (BTA — dashed
line, SPA — dashdot line, HNA — dotted line):

Bode Diagrams
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FIGURE 7.6. Frequency responses for CDP.

All methods approximate satisfactorily the central peek at a frequency
about 120 Hz, but have different approximation properties at low and high
frequencies. Both SPA and HNA approximations seems to be inappropriate,
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although the stationary error for the SPA method is zero. However, the
BTA methods appears to provide an acceptable 10-th order approximation.

7.5.83 GAS: Gasifier model

GEC ALSTHOM developed a detailed nonlinear gasifier model, to serve
as a benchmark problem for simulation and robust control. The model
includes all significant effects as drying of coal and limestone, pyrolysis
and volatilisation of coal, the gasification process itself and elutriation of
fines. This model has been validated using measured time histories from
the British Coal CTDD experimental test facility and it was shown that the
model predicts the main trends in the fuel gas quality. Linearized models at
0%, 50% and 100% loads have been generated to be used for a multi-model
based robust controller design. Numerical difficulties have been reported
in [15] for the 100% load model when using the model reduction tools in
MATLAB but also in the symbolic manipulation package Mathematica’.
The cause of difficulties is the poor scaling of the model. This can be seen
by comparing the step responses for element g11(s) for the original and
scaled system at 0% load in Figure 7.7.

Step Response

x10° From: U(1)
18 X T T

T T
— Original system at 0% load
— - Scaled system at 0% load

Amplitude
To: Y(1)

0 2 4 6 8 10 12 14

Time (sec.)

FIGURE 7.7. Step responses for original and scaled GAS models.

7 Mathematica is a trademark of Wolfram Research, Inc.
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The GAS model has order 25 and is non-minimal. The norms of state
matrices for the three models are about 10°, but after scaling with the
SLICOT routine TBO1ID, all norms can be reduced below 100. Such a
preliminary scaling is not necessary for using sysred, being an implicit
feature of this mez-function. Still, for simulations we used the scaled mod-
els to avoid numerical difficulties with MATLAB plotting functions and to
make the comparison more reliable. All three models are non-minimal. For
example, the last 10 Hankel singular values of the 100% load model are

o16-25 = {0.64046,1.0852 - 1074, 0,0,0,0,0,0,0,0, }

and the Hankel-norm for this model is 3.4078 - 10°. The same qualitative
results are true for the other two models. The computed three 16 order re-
duced models can be practically not distinguished from the original models
on basis of time or frequency responses. Several lower order approxima-
tions have been also computed of orders 6, 8 and 12. The 12 order models
represent very good approximation of the original models and can serve as
basis for designing a unique robust controller ensuring satisfactory perfor-
mance for all three models. A comparison on basis of elements gs5(s) of the
corresponding transfer-function matrices is shown in Figure 7.8.
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7.6 Comparison of available model reduction tools

We present shortly the model reductions tools available in other control
packages and compare them with the model reduction tools provided in
SLICOT. A summary of capabilities of the reviewed software is presented
in the Table 7.3. All reported test results for SLICOT have been obtained

via the mez-function sysred.

TABLE 7.3. Summary of comparison of model reduction tools.

5 B
sl S 5
I
|~
Software & 5 5 i‘ S @ g <]
N S NC I - B -l N =i
2151915 |5 |§1815 |8
ZlE |80 |8 |4 T = |E
| Provided features | | | | | | [ ] | |
continuous-time |+ | + |+ | + + |+ |+ |+ |+
discrete-time + 4+ [+ + — — T =1 =
unstable + |+ [+ - - 1T=-1T=71+
non-minimal + |+ |+ - + [T+ 71 +
[ Methods [ [ [ [ [ [ [ [ [ |
balancing + [ +T+T + T + T +T+7T+7T+
balancing-free (BF) | + | + |+ | — [TERN IR T VIR
square-root (SR) |+ | 4+ |+ | - -+ |+ -1+
BF-SR JFEN I T R R R R R -
| Problem classes | | | | | | [ ] | |
additive error + |+ |+ + + [ +1+]+1 +
relative error +|+ - - + [+ T+1T+71 =
frequency weighted | + | + | — | — — TR I R
controller reduction| — | + | — | — — - T=T+1T=

7.6.1 RASP

RASP is the control system design library of DLR®. The model reduction
tools available in RASP belong to the Fortran subroutines package RASP-
MODRED [23]. Since the standardized SLICOT model reduction soft-
ware originates mainly from equivalent RASP-MODRED routines, there
is no significant difference between the provided functionalities in RASP-
MODRED and SLICOT for the class of additive error methods. The stan-

8German Aerospace Center
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dardized SLICOT implementations are slightly more efficient and possi-
bly also numerically more robust than the original codes from RASP-
MODRED, because of extensive error checking and more robust imple-
mentation of several supporting mathematical routines. RASP-MODRED
contains additionally routines for relative error model reduction based on
the balanced stochastic truncation approach as well as some supporting
software to allow frequency weighted model reduction. These latter rou-
tines served as starting point to implement recently a new set of SLICOT
routines covering the main aspects of the controller reduction problem.
The new routines for the relative error method, frequency-weighted model
reduction and controller reduction have been recently included in SLICOT.

7.6.2 Scilab

In the previous versions of Scilab no dedicated model reduction functions
were available. Still model reduction was possible using several supporting
functions to compute gramians, Hankel-singular values, factors of the pro-
jection associated with the small eigenvalues of the product of gramians,
and computation of projected systems. The current version of Scilab relies
on the new SLICOT routines and thus provides the same model reduction
functionality as that available for MATLAB (see section 7.3).

7.6.83 MATLAB Control Toolbox

The function balreal, available in Version 5.0, performs balancing by com-
puting first the gramians as solutions to appropriate Lyapunov equations
and then determines the Cholesky factors of the gramians. There are sev-
eral problems with this function. First, to use balreal, the original system
must be minimal. This is a serious limitation since, many systems are nu-
merically almost non-minimal, and this leads very often to the failure of
this function. For instance, this is the cause of failures reported in section
7.4.7 for random stable systems with orders larger than 25-30, which are
certainly minimal. At the algorithmic level, the problem is the consequence
of computing first the gramians and using them to compute the Cholesky
factors. Without exploiting the problem structure (i.e., without computing
directly the Cholesky factors) this approach is numerically unreliable be-
cause, due to roundoff, the computed gramians could become numerically
indefinite for nearly uncontrollable or unobservable systems. This leads
then automatically to the failure of Cholesky factorization function. Sec-
ond, by performing always balancing, additional accuracy loss can occur
in the case of poorly scaled systems. Further, since no scaling is performed
by this function, for badly scaled problems the results can be very inaccu-
rate (see also Section 7.4.5). Finally, there is no support in the toolbox for
reduction of unstable systems.
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7.6.4 MATLAB Robust Control Toolbox

There are several model reduction tools in the Robust Control Toolbox,
Version 2.0 [4], which cover similar model reduction problems as sysred.
The BTA method is implemented in the functions obalreal, balmr and
schmr and the optimal HNA method is implemented in ohklmr. Only
continuous-time systems can be reduced and for reduction of discrete-time
systems bilinear transformation techniques are recommended to be used.
obalreal is practically the same implementation as balreal from the Con-
trol Toolbox, thus has the same limitations. balmr, schmr and ohklmr can
be applied also to non-minimal systems as well as to unstable systems.
Without preliminary scaling, all this routines fail to compute accurate Han-
kel singular values for the ACT model. They also fail on unstable models
with eigenvalues on the imaginary axis like ATTAS. On a Pentium IT 400
MHz PC, schmr needed 17.2 sec to compute a 10-th order approximation
for the 120-th order CDP model. In comparison, sysred performed the
same computation in 0.27 sec.

Besides additive error methods, there are two functions for relative er-
ror model reduction via balanced stochastic truncation. These functions
are better suited to approximate uniformly the frequency responses than
the additive error methods. In particular, phase information is better ap-
proximated, thus approximations of minimum-phase models lead often to
minimum-phase reduced models. This functionality is covered by the newest
additions to SLICOT and will be presented elsewhere.

7.6.5 MATLAB p-Analysis and Synthesis Toolbox

There are several model reduction tools in the p-Analysis and Synthesis
Toolbox, Version 3.0 [2], which cover similar model reduction problems
as sysred. The square-root BTA method is implemented in the functions
sysbal and the optimal HNA method is implemented in hankmr. Only
continuous-time stable systems can be reduced and for the reduction of
discrete-time systems bilinear transformation techniques are recommended
to be used. sysbal and hankmr can be applied also to non-minimal systems.
Even without a preliminary scaling, sysbal was able to compute up to
5 digits accuracy the Hankel singular values for the ACT model. On a
Pentium IT 400 MHz PC, schmr needed 2.8 sec to compute a 10-th order
approximation for the 120-th order CDP model.

Besides additive error methods, there are functions for relative error
model reduction via balanced stochastic truncation, frequency weighted
model reduction and normalized coprime factorization based model reduc-
tion.
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7.6.6 HTOOLS

The model reduction tools in the HTOOLS (Hs,—Tools) Toolbox for MAT-
LAB [25] have been implemented having as basis the numerical algorithms
with enhanced accuracy described in [23]. Both continuous- and discrete-
time models can be reduced and a suite of square-root and balancing-
free square-root algorithms are implemented for both additive as well as
for stochastic balancing based relative methods. The structure exploiting
careful implementations of all functions ensured practically the same nu-
merical performances as those of robust Fortran implementations available
in RASP-MODRED and now also in SLICOT. For instance, positive Lya-
punov solvers are implemented using the Hammarling’s algorithms in both
continuous- as well as discrete-time variants. Still, the very detailed struc-
ture exploiting implementations have the consequence of much larger exe-
cution times as those of equivalent Fortran implementations. This aspect is
common to all model reduction tools implemented exclusively in MATLAB.

7.6.7 MATRIX x

The model reduction functions in the MATRIX x Model Reduction Module
[13] are very similar to those available in the Robust Control Toolbox of
MATLAB. No functions are provided to handle directly discrete-time or
unstable systems. Besides additive model reduction methods, also relative
error and frequency weighted methods are implemented. A comprehensive
documentation is provided with the package, which clearly presents the
restrictions of the module and offers valuable hints to overcome some of
them.

7.6.8 WOR-Toolbox

A collection of model reduction functions for frequency weighted order re-
duction forms the WOR-Toolbox for MATLAB. This toolbox has been im-
plemented in connection with the Ph.D. thesis of Wortelboer [27] and pro-
vides functions implementing several non-standard methods for model and
controller reduction. Functions are available for Hs-norm reduction, bal-
anced modal reduction, reduction of unstable systems using normalized
coprime factorization. Functions for interactive order reduction in a user-
defined configuration are also provided. This comprises both open-loop and
closed-loop, as well as frequency weighted and unweighted configurations.
The WoRr—Toolbox calls some low level functions of the u-Toolbox.
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7.7 Summary of results and perspectives

The model reduction tools of SLICOT consists of a functionally reach col-
lection of standardized, comprehensively documented and fully tested For-
tran routines implementing rigorously selected methods for order reduction
of continuous-/discrete-time, stable/unstable linear time-invariant systems.
The final model reduction package consists of 9 user-callable routines and
3 main supporting routines. All these routines are thoroughly documented.
The documentation is automatically generated from the comments in the
preamble of each routine (see Appendix 7.A for ABO9MD). The documenta-
tion is available in Atml-format and can be viewed with standard browsers
like Windows Internet Explorer or Netscape. The documentation also in-
cludes for each user callable routine a test program example, test data and
the corresponding test results. The documentation of all library routines
can be accessed on-line via the ftp-site of NICONET.?

Besides standardized Fortran routines, the SLICOT model reduction
tools include interface software to two popular user-friendly CACSD envi-
ronments: MATLAB and Scilab. A special mez-function sysred has been
implemented as Fortran interface to MATLAB to provide access to all fa-
cilities available in the SLICOT routines. This mez-function also served
to prepare the interface software for Scilab. Additionally, 9 easy-to-use
m-functions (see Section 7.3.1) have been implemented. They fully exploit
the advanced object oriented facilities available both in MATLAB Control
Toolbox as well as in Scilab to manipulate control objects. Standard help
facilities for the mez-function and m-functions are available both for MAT-
LAB and Scilab.

Two main directions are envisaged to continue the efforts to develop re-
liable numerical model reduction software for SLICOT. The first direction
focuses on the reduction of very high order systems using special imple-
mentations exploiting parallel architecture machines. The second direction
continues the efforts to develop model reduction software for relative er-
ror methods and frequency weighted problems, with the main objective to
have a powerful collection of tools for controller reduction. A powerful set of
routines together with MATLAB interfaces has been recently implemented
based on a preliminary selection of routines'® and is already available on
the SLICOT ftp-site. The controller reduction software complements the
Hy/H,, software developed recently for SLICOT!!.

9ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT/1libindex.html
10see ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/SLWN1999-18.ps.Z
Hsee ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/SLWN1999-12.ps.Z
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7.A  Sample user interface in Fortran

ecNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo oo NoNo Moo NoNoNo NN M)

SUBROUTINE ABOSMD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR,
$ ALPHA, A, LDA, B, LDB, C, LDC, NS, HSV,
$ TOL, IWORK, DWORK, LDWORK, IWARN, INFO )

RELEASE 4.0, WGS COPYRIGHT 1999.

PURPOSE

To compute a reduced order model (Ar,Br,Cr) for an original
state-space representation (A,B,C) by using either the
square-root or the balancing-free square-root

Balance & Truncate (B & T) model reduction method for

the ALPHA-stable part of the system.

ARGUMENTS

Mode Parameters

DICO CHARACTER*1
Specifies the type of the original system as follows:

= ’C’: continuous-time system;
= ’D’: discrete-time system.
JOB CHARACTER*1

Specifies the model reduction approach to be used
as follows:
= ’B’: use the square-root Balance & Truncate method;
= ’N’: wuse the balancing-free square-root
Balance & Truncate method.

EQUIL  CHARACTER*1
Specifies whether the user wishes to preliminarily
equilibrate the triplet (A,B,C) as follows:
= ’3’: perform equilibration (scaling);
= ’N’: do not perform equilibration.

ORDSEL CHARACTER*1
Specifies the order selection method as follows:
= ’F’: the resulting order NR is fixed;
= ’A’: the resulting order NR is automatically
determined on basis of the given tolerance TOL.

Input/Output Parameters
N (input) INTEGER

The order of the original state-space representation,
i.e. the order of the matrix A. N >= 0.



30

leNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNolNoNoNoNo oMo lNo oMo Mo e}

A. Varga

NR

ALPHA

(input) INTEGER
The number of system inputs. M >= 0.

(input) INTEGER
The number of system outputs. P >= 0.

(input/output) INTEGER

On entry, with ORDSEL = ’F’, NR is the desired order of
the resulting reduced order system.

On exit, if INFO = O, NR is the order of the resulting
reduced order model. For a system with NU ALPHA-unstable
eigenvalues and NS ALPHA-stable eigenvalues (NU+NS=N),
NR is set as follows: if ORDSEL = ’F’, NR is equal to
NU+MIN(MAX (0,NR-NU) ,NMIN), where NR is the desired order
on entry, and NMIN is the order of a minimal realization
of ALPHA-stable part of the given system;

NMIN is determined as the number of Hankel singular
values greater than NS*EPS*HNORM(As,Bs,Cs), where EPS

is the machine precision (see LAPACK Library Routine
DLAMCH) and HNORM(As,Bs,Cs) is the Hankel norm of the
ALPHA-stable part of the given system computed in HSV(1);
if ORDSEL = ’A’, NR is the sum of NU and the number of
Hankel singular values greater than

MAX (TOL , NS*EPS*HNORM (As ,Bs,Cs)) .

(input) DOUBLE PRECISION.

Specifies the ALPHA-stability boundary for the
eigenvalues of the state dynamics matrix A.

For a continuous-time system (DICO = ’C’), ALPHA =< 0
is the boundary value for the real parts of eigenvalues,
while for a discrete-time system (DICO = ’D’),

1 >= ALPHA >= O represents the boundary value for the
moduli of eigenvalues.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the state dynamics matrix A.

On exit, if INFO = O, the leading NR-by-NR part of this
array contains the state dynamics matrix Ar of the
reduced order system. The resulting A has a block
diagonal form with two blocks.

For a system with NU ALPHA-unstable eigenvalues and

NS ALPHA-stable eigenvalues (NU+NS=N), the leading
NU-by-NU block contains the unreduced part of A
corresponding to ALPHA-unstable eigenvalues in an
upper real Schur form.

The trailing (NR+NS-N)-by-(NR+NS-N) block contains

the reduced part of A corresponding to ALPHA-stable
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eigenvalues.

LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).

B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the original input/state matrix B.
On exit, if INFO = O, the leading NR-by-M part
of this array contains the input/state matrix Br of
the reduced order system.

LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).

C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the original state/output matrix C.
On exit, if INFO = O, the leading P-by-NR part
of this array contains the state/output matrix Cr of
the reduced order system.

LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).

NS INTEGER
(output) The dimension of the ALPHA-stable subsystem.

HSV (output) DOUBLE PRECISION array, dimension (N)
If INFO = O, the leading NS elements of HSV contains
the Hankel singular values of the ALPHA-stable part of
the original system ordered decreasingly.
HSV(1) is the Hankel norm of the ALPHA-stable

subsystem.
Tolerances
TOL DOUBLE PRECISION

If ORDSEL = ’A’, TOL contains the tolerance for
determining the order of reduced system.

For model reduction, the recommended value is

TOL = c*HNORM(As,Bs,Cs), where ¢ is a constant in the
interval [0.00001,0.001], and HNORM(As,Bs,Cs) is the
Hankel-norm of the ALPHA-stable part of the given system
(computed in HSV(1)).

If TOL <= O on entry, the used default value is

TOL = NS*EPS*HNORM(As,Bs,Cs), where NS is the number of
ALPHA-stable eigenvalues of A and EPS is the

machine precision (see LAPACK Library Routine DLAMCH).
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This value is appropriate to compute a minimal
realization of the ALPHA-stable part.
If ORDSEL = ’F’, the value of TOL is ignored.

Workspace
IWORK  INTEGER array, dimension (LIWORK)

LIWORK = 0, if JOB = ’B’;
LIWORK = N, if JOB = °N’.

DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = O, DWORK(1) returns the optimal value
of LDWORK.

LDWORK INTEGER
The length of the array DWORK.
LDWORK >= MAX(1,N*(2*N+MAX(N,M,P)+5) + N*x(N+1)/2).
For optimum performance LDWORK should be larger.

Warning Indicator

IWARN  INTEGER

= 0: no warning;

= 1: with ORDSEL = ’F’ the selected order NR is greater
than NSMIN, the sum of order of the ALPHA-unstable
part and the order of a minimal realization of the
ALPHA-stable part of the given system. In this
case, the resulting NR is set equal to NSMIN.

= 2 with ORDSEL = ’F’ the selected order NR is less
than the order of the ALPHA-unstable part of the
given system. In this case NR is set equal to the
order of the ALPHA-unstable part.

Error Indicator

INFO INTEGER

= 0: successful exit;

< 0: if INFO = -i, the i-th argument had an illegal
value;

= 1: the computation of the ordered real Schur form of A
failed;

= 2: the separation of the ALPHA-stable/unstable diagonal
blocks failed because of very close eigenvalues;

= 3: the computation of Hankel singular values failed.

METHOD

Let be the following linear system
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dfx(t)]
y(t)

Ax(t) + Bu(t)
Ccx(t) (1)

where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
for a discrete-time system. The subroutine ABOOMD determines for
the given system (1), the matrices of a reduced order system

d[z(t)] = Ar*z(t) + Brxu(t)
yr(t) = Crx*z(t) (2)

such that
HSV(NR+NS-N) <= INFNORM(G-Gr) <= 2x[HSV(NR+NS-N+1)+...+HSV(NS)],

where G and Gr are transfer-function matrices of the systems
(A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
infinity-norm of G.

The following procedure is used to reduce a given G:
1) Decompose additively G as
G =Gl + G2

such that Gl = (As,Bs,Cs) has only ALPHA-stable poles and
G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.

2) Determine Glr, a reduced order approximation of the
ALPHA-stable part G1.

3) Assemble the reduced model Gr as
Gr = Glr + G2.

To reduce the ALPHA-stable part G1, if JOB = ’B’ the square-root
Balance & Truncate method of [1] is used and for a ALPHA-stable
continuous-time system (DICO = ’C’), the resulting reduced model
is balanced. For ALPHA-stable systems, setting TOL < O, the
routine can be used to compute balanced minimal state-space
realizations. If JOB = ’N’ the square-root balancing-free version
of the Balance & Truncate method is used [2] to reduce the
ALPHA-stable part Gi1.

REFERENCES

[1] Tombs M.S. and Postlethwaite I.
Truncated balanced realization of stable, non-minimal
state-space systems.
Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
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C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C Eds. A. E1 Moudni, P. Borne, S. G. Tzafestas,
¢ Vol. 2, pp. 42-46.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root
C or balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point
C operations.
C
C . Scalar Arguments
CHARACTER DICO, EQUIL, JOB, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N,
$ NR, NS, P
DOUBLE PRECISION ALPHA, TOL
C .. Array Arguments ..
INTEGER IWORK (%)
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ DWORK( * ), HSV(%)
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7B MATLAB mez-function interface

%SYSRED MEX-function based on SLICOT model reduction routines.
[Ar,Br,Cr,Dr,HSV] = SYSRED(METH,A,B,C,D,TOL,DISCR,ORDER,ALPHA)

SYSRED returns for an original continuous- or discrete-time

state-space system (A,B,C,D) a reduced order state space
system (Ar,Br,Cr,Dr) and the Hankel singular values HSV of
the ALPHA-stable part. The order of the reduced model is
determined either by the number of Hankel-singular values

greater

than TOL or by the desired order ORDER.

Description of other input parameters:

METH - method flag with decimal form c*10+m, where:
m specifies the basic model reduction method;
c specifies the comprime factorization approach to be
used in conjunction with the method specified by m.
Allowed values for m:
m = 1 : for Balance & Truncate method with balancing
m = 2 : for Balance & Truncate method (no balancing)
m = 3 : Singular Perturbation Approximation with
balancing
m = 4 : Singular Perturbation Approximation
(no balancing)
m = 5 : Optimal Hankel-Norm Approximation
Allowed values for c¢ (only for m = 1..4):
c = 0 : no coprime factorization is used (default)
¢ =1 : RCF with inner denominator
c = 2 : LCF with inner denominator
c = 3 : RCF with ALPHA stability degree
c =4 : LCF with ALPHA stability degree
TOL - (optional) tolerance vector for determining the order of
reduced system of form TOL = [toll, tol2, tol3], where:
toll specifies the tolerance for model reduction;
default: toll = epsilon_machine*Hankel norm(A,B,C)
tol2 specifies the tolerance for minimal realization in
case of m = 3, 4 or 5
default: tol2 = epsilon_machine*Hankel norm(A,B,C)
tol3 specifies the controllability/observability
tolerance for computing coprime factorizatioms,
as follows:
controllability tolerance in the case ¢ = 1 or 3
default: epsilon_machine*max(norm(A),norm(B))
observability tolerance in the case ¢ = 2 or 4
default: epsilon_machine*max(norm(A),norm(C))
ORDER - (optional) desired order of reduced system
default: ORDER = -1 (order determined automatically)
DISCR - (optional) type of system

= 0 : continuous-time (default)
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yA = 1 : discrete-time

% ALPHA - (optional) stability boundary for the eigenvalues of A
% default: sqrt(epsilon_machine) for continuous-time
% 1-sqrt(epsilon_machine) for discrete-time

7.C Sample MATLAB m-function interface

function [sysr,hsv] = bta(sys,tol,ord,alpha)
%BTA Balance & Truncate approximation without balancing.

% [SYSR,HSV] = BTA(SYS,TOL,ORD,ALPHA) calculates for the

% transfer function

h -1

h G(lambda) = C(lambdaI-A) B + D

h

% of an original system SYS = (A,B,C,D), an approximate

% transfer function

h -1

h Gr(lambda) = Cr(lambdaI-Ar) Br + Dr

h

% of a reduced order system SYSR = (Ar,Br,Cr,Dr) using the

YA balancing-free square-root Balance & Truncate approximation
% method on the ALPHA-stable part of SYS

% (see Method with ’type bta’).

h

% TOL is the tolerance for model reduction.

h

YA ORD specifies the desired order of the reduced system SYSR.
h

% ALPHA is the stability boundary for the eigenvalues of A.

h For a continuous-time system ALPHA <= 0 is the boundary value
% for the real parts of eigenvalues, while for a discrete-time
% system, 1 >= ALPHA >= O represents the boundary value for the
YA moduli of eigenvalues.

h

% HSV contains the decreasingly ordered Hankel singular values
% of the ALPHA-stable part of SYS.

h

% The order NR of the reduced system SYSR is determined as

A follows: let NU be the order of the ALPHA-unstable part of

% SYS and let NSMIN be the order of a minimal realization of

% the ALPHA-stable part. Then

% (1) if TOL > O and ORD < O, then NR = NU + min(NRS,NSMIN),
h where NRS is the number of Hankel singular values

yA greater than TOL;

YA (2) if ORD >= 0, then NR = NU+MIN(MAX(O,ORD-NU),NSMIN).

% SYSR = BTA(SYS) calculates for a stabilizable and detectable
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YA system SYS a minimal state-space realization SYSR.

A Method:

A The following approach is used to reduce a given G:

h

A 1) Decompose additively G as

yA

h G =Gl + G2

h

% such that Gl = (As,Bs,Cs,D) has only ALPHA-stable poles
% and G2 = (Au,Bu,Cu,0) has only ALPHA-unstable poles.
h

A 2) Determine Glr, a reduced order approximation of the
h ALPHA-stable part G1 using the balancing-free

A square-root Balance & Truncate Approximation method.
%

A 3) Assemble the reduced model Gr as

h

h Gr = Gir + G2.

h

A Interface M-function to the SLICOT-based MEX-function SYSRED.
yA A. Varga 04-05-1998.

if "isa(sys,’1lti’)
error (’The input system SYS must be an LTI object’)
end

ni = nargin; discr = sys.ts > 0;
if ni < 4
alpha = -sqrt(eps);
if discr
alpha = 1 + alpha;
end
end
if ni < 3
ord = -1;
end
if ni < 2
tol = 0;
end

[a,b,c,d]=ssdata(sys);
[ar,br,cr,dr,hsv]=sysred(2,a,b,c,d,tol,discr,ord,alpha);

sysr = ss(ar,br,cr,dr,sys);

% end bta
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7.D Sample Scilab sci-function interface
function [sysr,hsv] = bta(sys,tol,ord,alpha)

[no,nil=argn(0);
if “typeof (sys)==’state-space’

error (’The input system SYS must be a state-space system’)
end

discr = bool2s( sys(’dt’)=="4d’ );
if ni < 4
alpha = -sqrt(%eps);
if discr
alpha = 1 + alpha;
end
end
if ni < 3
ord = -1;
end
if ni < 2
tol = 0;
end

[a,b,c,d]=abcd(sys) ;
[ar,br,cr,dr,hsv]=sysred(2,a,b,c,d,tol,discr,ord,alpha);
sysr = syslin( sys(’dt’),ar,br,cr,dr);

// end bta
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7.E State space models for benchmark problems

Name

Description
Reference

Type

# states
# control inputs

# disturbance inputs

# outputs

[ —0.04165
-5.21

0

0.545

0

0

0

B,

Q
|

PS

Power system model

[7]

State space model, continuous-time

7

W NN

0 4.92 —-4.92

—12.5 0 0
3.33 —3.33 0
0 0 0
0 0 4.92
0 0 0
0 0 0
0 0]

5 0

0 0

0 0|, By=
0 0

0 125

0 0|
100000
000100
0000T10

o O O

0 0
0 0
0 0
—0.545 0
—0.04165 0
—521 -12.5
0 3.33
[ —4.92 0]
0 0
0 0
0 0
0 —4.92
0 0
L 0 0 .
D=0

39
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Name PSD
Description Sampled-data power system model (7" = 0.1 sec)
Reference [7]
Type State space model, discrete-time
# states 7
# control inputs 2
# disturbance inputs 2
# outputs 3
0.97277 0.049697 0.41432 —0.48531 0.013281
—0.29382 0.2793 —0.077754  0.087312 —0.0017394
—0.052626 0.15561 0.7078  0.0097701 —0.00014322
A= 0.053759 0.001022 0.011948 0.97337  —0.053759
0.013281 0.00013525 0.002015 0.48531 0.97277
—0.0017394 —1.2118e—5 —0.00021161 —0.087312 —0.29382
| —0.00014322 —6.829e—7 —1.3998e—5 —0.0097701  —0.052626
0.00013525 0.002015 |
—1.2118e—5 —0.00021161
—6.829¢—7 —1.3998e—5
—0.001022 —0.011948
0.049697 0.41432
0.2793 —0.077754
0.15561 0.7078 |
0.023476  3.5533e—5 | —0.4875 —0.0021858 |
0.71091 —2.6922¢—6 0.087539 0.00022642
0.12681 —1.2878e—7 0.0097849  1.481e—5
By = | 0.00034405 —0.00034405 |, By = —0.013314 0.013314
3.5533e—5 0.023476 —0.0021858 —0.4875
—2.6922¢—6 0.71091 0.00022642 0.087539
| —1.2878e—7 0.12681 | | 1.48le—5 0.0097849 |
10 000 00
cC=(000100UO0]|, D=0.
00001 O0O0



Name
Description
Reference

Type

# states

# control inputs
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TGEN

Nuclear-powered turbo-generator

[10]

State space model, continuous-time

10
2

# disturbance inputs 0

# outputs 2
[ 0 1 0 0
0 —0.11323 —0.98109 —11.847
324.121 —1.1755 —29.101 0.12722
—127.3 0.46167 11.4294 —1.0379
A —186.05 0.67475 16.7045 0.86092
341.917 1.09173 1052.75 756.465
—30.748 —0.09817 —94.674 —68.029
—302.36 —0.965643 —930.96 —668.95
0 0 0 0
i 0 0 0 0
0 0 0 0]
—34.339 —34.339 —27.645 0
—678.14 —678.14 0 —129.29
266.341 266.341 0 1054.85
389.268 389.268 0 —874.92
0.16507 3.27626 0 01’
—2.6558 4.88497 0 0
2.42028 —9.5603 0 0
0 0 —1.66667 0
0 0 0 —10 |
- 10 000 00
—0.49134 0 —0.63203 0 0 —0.20743 0O

0 0
—11.847 —63.08
2.83448 —967.73
13.1237 380.079
—17.068 555.502
756.465 —29.774
—68.029 2.67753
—668.95 26.3292

0 0

0 0

1.6666

OO OO oo oo
OO DD DO OO OO o

—

oo
!
Il
o

41
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Name ACT

Description Hydraulic actuator model
Reference

Type State space model, continuous-time
# states 5

# control inputs 2
# disturbance inputs 0
5

# outputs
0 1 0 0 0
—1580000 —1257 0 0 0
A= | 3.54le+14 0 —1434 0 —5.33e+11
0 0 0 0 1
0 0 0 —18630 —1.482
0 0
110.3 0
B = 0 0
0 0
0 0.008333
1 0 0 0 0
0 0 1 0 0
C= 0 0 0 1 0 , D=0
0.6664 0 —6.2¢e—13 0 0
0 0 —0.001 1896000 150.8
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