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Between Academics and Practice: Model-based
Development of Generic Safety-Critical Systems

Daniel Schwencke1, Hardi Hungar2, Mirko Caspar3

Abstract: Academically, the utilization of models promises a quite precise and formalized description
of system behavior already in early design stages. Practically, there are gaps between the necessary
and provided capabilities of formalism, tools, and processes. Based on experiences in modeling a
safety critical railway Radio Block Center, this paper presents the modeling method and experiences
from the development of the model. It discusses the questions of how to validate the model, how to
derive verification and testing schemes, and how to verify the conformance of implementations to the
model. Gaps between academic needs and practical reality are discussed. Hence, this work aims to
focus the further development of model-based approaches in the safety-critical embedded domain.
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1 Introduction

Already in early stages of system development models can be used for capturing system
behavior. The formal or at least semi-formal nature of models allows for reaching a high
precision in the formulation. Additionally, it constitutes the basis for a number of techniques
which can support or even automate design activities. In particular this includes verification,
validation and code generation.

In the article at hand, aspects of modeling a radio block center (RBC) are presented. Being
part of the European Train Control System (ETCS), an RBC constitutes the radio interface
between train and interlocking (see Fig. 1). The work aims at the creation of a system
which can serve as a reference of an RBC in the ETCS: on the one hand the model shall
be utilizable in product specifications and substantially support their completeness and
correctness, as demanded e.g. by the German new type approval ("Neue Typzulassung"
or NTZ, cf. [Su11]). On the other hand, after annotation with program instructions and
addition of further components, program code can be generated from the model. So far,
the basic RBC functionality has been modeled so that simple operational scenarios can be
managed by the generated and executed RBC code.
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A particular challenge for employing model based techniques is the generic nature of
systems like the RBC. Such generic systems are to be instantiated to the particular track
layout and control equipment of the area where they are be installed. Thus, the models have
to represent mere patterns of concrete facilities. In the case of the model at hand, this has
been achieved so that the generated code can be configured for a particular railway line,
becoming an implementation. The implementation in turn can be validated in simulations
and then provides a behavioral reference—for that configuration. This does not yet solve
the problem of general verification and validation. This is addressed by elaborating the
questions in more detail and presenting approaches how to proceed adequately.

Fig. 1: The RBC as part of the ETCS level 2/3 (simplified presentation, ILS = interlocking system)

The model development is related to activities of the German railway infrastructure manager
DB Netz AG and further European infrastructure managers towards the standardization of
interfaces in the interlocking area (the DB project "Neuausrichtung der Produktionssteue-
rung", NeuPro for short, and the "European Initiative Linking Interlocking Subsystems",
EULYNX for short, see [14b] for the latter). Results from those activities could already
serve as patterns for parts of the model. A more detailed look into the model than can be
provided here has been given in the article [SH16] which focuses on the ILS interface of the
RBC.

In the remainder of this article, first an overview of the general framework of the model
development (relevant specifications, languages and tools) is given in Section 2 (taken from
[SH16]). In Section 3, the need of generic models in railway signalling is motivated and
our approach and directions for improvement are discussed. Experiences regarding the
usage of state charts and manually written code are discussed in Section 4. An elaboration
on the challenges of validation and verification in the pursued model-based approach is
presented in Sections 5 and 6. Section 7 concludes with a presentation of future plans and a
preliminary evaluation of the model-based approach.
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2 General Framework of the Modeling Activities

2.1 Relevant Specifications

The ETCS is being specified by the EU Agency for Railways (formerly European Railway
Agency), the Union Industry of Signalling (UNISIG) as well as the European Rail Traffic
Management System (ERTMS) Users Group in a variety of documents, the so-called
subsets. The central document is the system requirements specification [14e], which is
complemented by various specifications for single system components and interfaces. For
the RBC, the functional interface specification for the handover of trains between RBC
[14f] is of importance. A specification of the RBC as such however is not part of the subsets
but left to the respective manufacturers and national infrastructure managers, for which they
have to take into account the European specifications.

ETCS is used in different countries to different extent and with different parametrizations.
In Germany this is laid down in the specification [14a] of DB Netze. Finally, as part of
the NeuPro activities, DB Netze specified the interface between an electronic interlocking
system (ILS) and an RBC, called Standard Communication Interface RBC (SCI-RBC)
[14d]. Such national specifications are of importance for the manufacturer of an RBC for
the respective country.

The specifications differ considerably in their abstraction level: even the European specifi-
cations range from functional requirements over system states and procedures to concrete
data formats and values, depending on the importance of a system component for European
interoperability. As a basis for modeling activities, a detailed and well-structured system
specification is advantageous. Whereas most of the aforementioned specifications mainly
consist of textual requirements, the SCI-RBC already is of semi-formal nature. Besides
explanatory text, here the mandatory behavior of the interface is specified in SysML state
diagrams.

2.2 Approach

The DB specification SCI-RBC largely uses SysML (Systems Modeling Language) diagrams
and thus represents a good starting point for modeling the RBC. Besides other types of
diagrams mainly state machines are used. They bindingly specify the behavior defined by
the semantics of the diagram elements, but not the use of such diagrams or their architecture
in the further development. The system actions in the state machines however are only
given in textual form and are not yet formalized precisely. Consequently it is not possible to
generate code directly from those state machines. Furthermore some requirements which
are not expressible in diagrams remain in textual form.

For the formal modeling of the RBC it seemed sensible to use SysML as well: besides being
able to stay close to the specification, SysML has the advantage of being widespread and
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having rich support by modeling tools, code and test case generators. As target language
for code generation from the model an object oriented language is favorable, enabling
the configuration of a (generic) RBC for different railway infrastructures by means of
instantiation of classes; here C++ was chosen. Regarding a suitable tool for modeling and
code generation, PTC Integrity Modeler (through 2014: Atego Modeler) together with PTC
Automatic Code Synchronizer (formerly Artisan Studio Automatic Code Synchronizer) was
identified. The Code Synchronizer supports code generation for SysML block definition
diagrams/internal block diagrams and SysML state machine diagrams.

3 Creating a Generic Model

3.1 The Complexity and Diversity of Railway Signaling Systems

Classically, the central component of railway signaling is the interlocking system (ILS). It
sets and secures the routes for the trains within the area it manages. In order to do so, it
needs to be connected to up to several hundreds of field elements in that area – e.g. signals,
switches, axle counters and level crossings. For train operation with ETCS Level 2, the
additional component RBC (Fig. 1) enters the picture, which manages GSM-R (Global
System for Mobile Communications — Rail(way)) radio connections to a number of trains
currently in an area that typically is wider than an ILS area. Thus it is connected to several
ILS which provide information necessary to generate the so-called movement authorities for
the trains. Other less central interfaces to command and control workplaces and neighbor
RBC shall be ignored in the sequel. Since the RBC obtains state information from the ILS
(regarding signals and switches) and from the trains, it needs to manage all those elements
internally.

Typically, within one RBC area the signaling equipment differs. Different ILS areas have
been equipped by different manufacturers, and even within one ILS area typically there
are several variants of signals due to cost reasons (only the signal functionality needed is
installed for a certain signal with a certain purpose). The variety can be enormous and is
inherited from the operational scenarios which need to be realized by the infrastructure.

In order to manage train operations, the RBC needs to know about certain aspects of that
variety. Fortunately, for the ILS side including signals and switches, these aspects have been
identified by DB in the interface specification SCI-RBC [14d]. For the train side the variants
can be derived from the ETCS specification [14e] which defines a train data packet which is
sent to the RBC after successfully establishing a communication session between a train
and the RBC.

The signaling equipment manufacturers handle the above sketched complexity by developing
generic products (safe computers, signal controllers, axle counters, etc.) which are grouped
to form a generic application (e.g. an electronic interlocking, which is here understood
to include the field elements and their connections). For each real system that is installed
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(the specific application), the generic application is configured according to the track and
route layout (see e.g. [07]). This comprises the choice, number and variants of the generic
products needed as well as the design of the communication and energy network for them.

Classically, the communication of signaling components is based on the manufacturer’s
proprietary message formats and protocols. Meanwhile DB specified a standard protocol
[14c] for IP-based communication for the ILS interfaces; the GSM-R radio communication
for the RBC-train interface is laid down in the ETCS-specifications [15]. However, a
model for signaling equipment testing purposes should allow for flexible communication
mechanisms anyway to be ready for connecting to stubs or to laboratories (on-site or remote).

Finally, the RBC internal passing of information needs to be flexible, too: some messages
from the ILS regard single elements, some regard certain groups of elements (group outage
telegrams for signals and switches).

3.2 Modeling Approach

The complexity and diversity discussed above is mirrored in the RBC model. It comprises
RBC internal representations of ILS areas, signals, switches and trains. Aspects and states
of these elements are relevant for the RBC and, hence, need to be synchronized between
RBC and ILS.

Generally, the approach for the RBC-internal representations of elements whose number
depends on the configuration is the use of classes in the model so that they may be instantiated
as often as needed at runtime (theoretically, an earlier instantiation in the specification, in
the model or in the code is possible but makes no sense due to the repeated work for each
RBC and bad maintainability). Currently, the instantiation code (see Listing 1) is provided
in a separate configuration file which is referenced by the model.

//Add ILS area to RBC

ILSArea * ilsAreaHBS = addILSArea(mLogger );

ILSArea * ilsAreaHGLI = addILSArea(mLogger );

//Add points to ILS area

PointElement * w1 = ilsAreaHGLI ->addPoint (3434343 , "W1");

PointElement * w2 = ilsAreaHGLI ->addPoint (3434343 , "W2");

// Create track topology

Track * t1 = mInfrastructure.addTrack (5000);

Track * t2 = mInfrastructure.addTrack (150);

mInfrastructure.connectTrackParts(w1, 1, t2, 0);

mInfrastructure.connectTrackParts(t2, 1, w2, 1);
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//Add signals to ILS area

ilsAreaHBS ->addSignal (5656565 , "30N2", 0, t1, 4850, 1);

ilsAreaHBS ->addSignal (3434343 , "Bk4141", 0, t4, 21170, 1);

//Add balise groups to RBC infrastructure

mInfrastructure.addBaliseGroup (96, 201, 1, 3, 0, t1, 1980, 1);

//Add gradient profile to tracks

t1->addGradient (2, true , 0, 1);

t1->addGradient (3, false , 500, 1);

//Add basic speed profile to tracks

t1->addBasicSpeed (12, 0, 1);

t1->addBasicSpeed (12, 5000, -1);

List. 1: Example configuration code for the RBC

For the realization of variants in the model, different approaches have been exploited: in
one case where only two variants existed, those have been modeled separately. In another
case, Boolean or enum-type constants/variables guarding state chart transitions and code
segments which belong to the respective variants have been used. In a third case, an abstract
method together with a standard implementation has been provided which might be replaced
for different variants.

Flexibility regarding the communication mechanism has been realized via generalization as
well (abstract methods for connection set-up, (dis-)connecting, send/receive, connection
status). This way arbitrary implementations for different communication mechanisms can
now be developed without changing the model. To keep purely code-written variants which
regard the model interfaces out of the model is a good principle anyway: in the RBC model,
it has also been applied to an optional train message version converter module. This tool
can just be activated or deactivated by setting a Boolean constant in the model, otherwise
the converter is external to the model.

Message broadcasting has been realized by providing an abstract field element class from
which signals and switches inherit group/subgroup IDs as well as a group outage event (in
form of a method). The broadcast, containing the target group/subgroup IDs, is passed to
each element; comparing with its own IDs the element decides whether it accepts or rejects
the message.

3.3 Discussion and Possibilities for Improvement

Having available a class/instantiation concept for modeling is essential since many systems
contain multiple instances of some elements. However, especially in models of railway
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signaling systems which need to be configured according to the local track infrastructure
and the intended routes, it is desirable to have the possibility to specify at least an initial
configuration of instances in a separate (part of the) model. This should include the choice
of the element variant and the setting of initial parameters and might be extended to a
mechanism for the dynamic instantiation and destruction of elements during runtime.

Regarding the modeling of variants there exist several options such as

• each variant separately,

• through child classes of a parent class (inheritance),

• Orthogonal Variability Model (OVM) including assignment of transitions/operations
to one or several variants, or

• Boolean/enum constant which is set during instantiation and evaluated as precondition
to the execution of transitions or code.

Some have been used in the RBC model as explained in Section 3.2. The experience from
that modeling activity is that each case needs to be considered separately and that the
decision for a modeling option depends on

• the number of variants,

• what varies (attributes, behavior),

• how much it varies (how many model elements are concerned),

• the relation of the variants (orthogonal, overlapping, excluded/enforced combinations),
and

• the need for dynamic change of the variant.

Generally, the use of variant diagrams (OVM) is desirable in order to quickly identify
variation points and variants (except for the modeling through inheritance which usually is
captured diagrammatically already). Those model alternatives [RF14] and describes one
aspect of a class or block having different or extended detailed behaviors. OVM can be
realized in SysML by block diagrams or extended profiles. The PTC Integrity Modeler
supports such diagrams; however, the code generator does not. So if code generation is
desired as in the case of the RBC model, a different approach based on elements supported
by the code generator needs to be taken. Unfortunately, the limited number of diagrams and
elements for which code can be generated is a problem encountered in several situations, cf.
Chapter 4.

The use of generalization/abstract methods for creating flexible interfaces of the model has
been quite a positive experience. Of course this mechanism has been designed for such
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purposes in object-oriented programming (code/code interfaces), but here it has proved
well-suited for model/code interfaces as well.

Finally let us remark that for model internal message broadcasting there are several
approaches which range from a central to a distributed logic in order to identify the
addressed elements. They differ in performance, distribution in the model, their impact on
the model structure and the extent to which they are captured in diagrams. The decision for
an approach must also exhibit a solution which reasonably supports all message flows to
the single elements, e.g. additional direct forwarding of messages to an element. But since
message broadcasting is a topic in itself which, we shall not discuss this further here.

4 Diagrams versus Handwritten Code

4.1 Use of Diagrams in the Model

Both structure and behavior of a system can be modeled by diagrams. SysML provides
different types of diagrams for both categories. However for the RBC model we were
restricted to Block Definition Diagrams/Internal Block Diagrams for structure and State
Diagrams for behavior since they are supported by the code generator (the PTC Integrity
Modeler Automatic Code Synchronizer). Additionally, package diagrams may be used but
provide not much advantage since a package hierarchy is a relatively simple structure which
can be overseen well in the classic folder view.

To model the structure of a system via blocks and their dependencies seems possible for
nearly every system. Even if there are no dependencies at all, blocks can be used just
to group operations which are manually coded. But of course the benefits of modeling
comes with capturing complexity in diagrams. The RBC model contains block definition
diagrams ranging from such simple grouping functionality (e.g. for operations assembling
message packets) to quite complex structures, the most complex one being the RBC internal
infrastructure image (including the track topology, different field elements and track profiles).

The model based approach makes even more sense where behavior is captured diagramma-
tically as well. It does however not always make sense to use state charts – our experience
with the PTC Integrity Modeler is that ideally those should only be drawn where there are
block internal states which rule the block’s behavior. This is because in order to make states
permanently available block externally extra variables and actions need to be foreseen which
duplicate the state and clutter the state diagram; but sometimes such drawbacks simply
need to be accepted. In the RBC model state charts primarily model the behavior of the
most important RBC internal images of external elements (ILS, signal, switch, train; for an
example see Fig. 2) whose state changes are reported to the RBC through incoming messages.
Furthermore, the central RBC logic which connects train- and ILS-side is modeled in state
charts which forward events to the concerned elements.
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Fig. 2: SysML state diagram for the logical switch element of the RBC

4.2 Use of Direct Code in the Model

As indicated in the previous section, it does not always make sense to capture behavior by
state charts. In addition to the above discussion, also "algorithmic" behavior which consists
of calculations or depends on complex data structures is not suited for being modeled in
state charts; it is formulated easier and more compact in program code. In other cases, the
missing support of diagram types or of code generation of certain statements enforces a
direct implementation. In the RBC model, handwritten C++ code was added mainly for the
following purposes:

• main program loop, initialization and configuration code;

• add/remove methods for objects to/from lists or variables (instantiation/destruction of
objects is not supported by code generation);

• iteration over instances of a class;

• central algorithms such as traversing the infrastructure image;

• algorithms for (de-)coding messages including parsing and integrity checks;

• mapping between message data and events (method calls) or storing variables, possibly
including data conversions and get/set methods; and

• logging functionality.
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4.3 How to Improve

Generally it is desirable to capture more aspects of a system by diagrams than could be
achieved in the case of the RBC model. This could further increase comprehensibility,
maintainability and automation in system development. An exception may be those cases
which are at a very fine-grained level where a sequence of statements is easier written down
and overseen than putting it into a diagram. Concrete ideas towards a "more model-based"
approach include:

1. For a wider applicability of state charts, a state publication/inquiry feature should be
added to the model and code generation in order to easily and permanently provide
the current state locally/globally.

2. Variant diagrams to create orthogonal variability models are already supported by
the PTC Integrity Modeler. What is missing is the code generation capability.

3. For providing (initial) system configurations by instantiation of blocks and setting
block properties, object diagrams may be used. They are available in the Integrity
Modeler as well, so a generation of a configuration code seems feasible and should
be added.

4. Control flow diagrams can be used for modeling the structure of algorithms. They
should be provided for modeling operations, and also to generate code from them
should not be difficult.

Another possibility for more formalization (not necessarily by means of a diagram) might
be a structured management of input/output inside the model: from our experience with
repeatedly handwritten logging messages the idea would be to allow for assigning a block
to a logger which organizes message types, messages, message formats and output channels.
Then a message could be inserted using drag and drop in different places in the model and
the correct output statement could be generated. Finally, the generation of get/set methods
for variables or even better, other easy means of accessing a model element from other parts
of the model would be helpful.

5 Verification of the Model

The RBC model presented in this paper shall be a reference model that can be used as
base for a concrete implementation, as test oracle, or even as base for deriving test cases.
Naturally, this model - or its representation in a formal tool - needs to be checked extensively.
Using formal verification techniques is an obvious approach since state machines are used
for modeling the system behavior. However, these concepts are not in the focus of this paper
but the question of model based verification and testing.
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5.1 Instances, Projections, Coverage

One challenging question is how the formal reference model can be used for the verification
of implementations. The aim is to reach a full test coverage, i.e. having test cases that
cover each state transition defined in the reference model. Dynamic testing is a common
concept for black-box verification. Here two aspects are relevant: the definition of model
instances and the derivation of test cases. Whereas the second aspect is subject to intensive
research and development, questions of model instantiation and configuration as well as the
influences on the test coverage have not been analyzed in detail yet.

As described in Section 3.1, the RBC model is generic. The state machines describe the
behavior for different abstract subcomponents, e.g. a light signal. All possible behavioral
combinations for all types of signals are modeled (e.g. see requirement 1335 in [14d], p. 25).
A generic implementation needs to realize all parts of it since the specified functionality
is mandatory and a generic type approval can be reached. But practically, there might be
no physical instance of this component that uses all behavioral combinations. It might be
configured for a concrete usage. E.g. a station entry signal has other signal aspects than a
block signal.

Hence, the question is what parts of the model can be tested by which configured instance
(projection is the common term in railway sector) of its implementation. The number
of combinations of necessary instances may become very high if several components of
complex models are considered and a full coverage of model transitions needs to be reached.
Practically in railway domain, the generation and set-up of each projection is extensive
and expensive. Accordingly, the optimization of necessary and useful projections helps to
decrease the verification costs.

A formal representation of the model and the implementation variations is necessary in order
to optimize the set of configurations automatically. This may contain information about
instantiation, addressing, inheritances, alternative functionalities, and relations between
instances. As stated in Section 3.2, SysML can express only some of these aspects, e.g.
the inheritances. In literature in industry, additional concepts exists in order to manage
variabilities in modeled systems. Feature Modeling is one of these approaches [LKL02].
Features of a system are categorized and formalized. This concept is mainly used for
product variation management. Another approach to manage alternatives in models or
implementations is the Orthogonal Variability Modeling (OVM), see Section 3.3 above.

As mentioned, OVM diagrams are used in the RBC specification [14d] but cannot be
evaluated formally yet. For verification purposes, the OVM can be extended by a relational
semantics that helps to automatically derive excluding combinations of variations. It is also
possible to construct a set of valid variations if the semantics offers according constructs.

However, variants are not the only aspects that influences the test coverage and the
test case selection. These may result not only from the modeled system but also from the
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implementation (e.g. by code generation). An obvious example is the concept of instantiation
and identification of concrete objects of the same class.

Currently we are investigating possibilities of automated projection optimizations in the
railway domain, among others on the presented RBC model. A practical problem is how the
model can be accessed if commercial modeling tools are used.

5.2 Dynamic Test of the RBC Model

Dynamic tests were conducted for the proposed model – in particular for its ILS interface
– in order to verify the model and additional manually coded components. All tests are
based on the execution of the program code obtained after code generation and compilation.
To this end, different calls of test routines were added to the generated code in the main
function before compilation.

In a first step, telegrams and routines have been added to a separate package of the model for
testing the telegram parsing, the telegram data checking and the composing of telegrams.

As a second step, further telegrams and routines have been added in order to test the telegram
processing of the single interface parts. This includes positive testing for the most common
telegram messages as well as tests of erroneous situations, where the selection of the latter
was done along the lines of the SCI-RBC test specification [13]. For that second step
both interface parts have been configured according to a fictitious station and the expected
behavior was compared to the states logged and error messages produced during execution.

Thirdly, in order to test whether the whole interface exhibits the intended behavior, external
events have been simulated and the logged messages of both interface parts have been
examined.

One basic experience of the conducted tests is, that the combination of automated and
handwritten code is a main source of errors. Accordingly, the discussed improvements in
Section 4.3 may help to improve the design process.

Finally, a validation of the RBC model was conducted by means of coupling it via TCP/IP
with the Rail Simulation and Testing (RailSiTe) laboratory of the German Aerospace Center
(DLR), which acted as ILS and as train.

6 Towards Using the Model for Verification of Implementations

6.1 Refinement Relations

The task of proving the correctness of an implementation is an instance of the well-known
problem of establishing a refinement relation. Two systems S1 = (I,O,V1) and S2 = (I,O,V2)
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having the same external interface of input and output variables I and O (or channels, or
any other name) but different internals V1 and V2 are behaviorally equivalent if

[[S1]]|I,O = [[S2]]|I,O , (1)

i.e., if their behaviors agree on the external variables. Refinement means behavioral inclusion:

[[S2]]|I,O ⊆ [[S1]]|I,O . (2)

in the formulas above, [[S]] may denote a set of traces as the semantics of a system S. Given
a domain for time T and one for variable valuesV, the set of traces S are the mappings

[T → [X → V]]

which assign to each point in time a variable valuation. Equivalently, we can view each
variable semantically as a sequence of values, arriving at

[X → [T → V]]

as semantical domain, and treat the semantics of a system like a logical formula. Then,
refinement is expressed by the logical formula

∃V2 . [[S2]] ⇒ ∃V1 . [[S1]] . (3)

This is essentially the form in which Lamport [La91] studied refinement in his “temporal
logic of actions”.

To actually prove that S2 is a refinement of S1, the most common practical way is to define a
mapping from the internal variables of S2 to those of S1 (or, more general, a relation between
them) and show that this mapping induces a simulation. It may be said that this “practical
way” is already rather difficult. And there are even more general forms of refinement, cf.
[Br97], which are not easier to prove.

For a discussion of the problem at hand, the notion expressed in (3) can be taken as a
preliminary definition.

6.2 Refinement in Practice: Coping with Genericity

Having to show the correctness of some claimed refinement step is not a new concept in
safety-critical system development: Each step towards an implementation has to be verified.
For instance, when the architecture of a software is defined and the specifications of its
components are designed, it has to be shown that the software requirements are correctly
refined. It is the form of the requirements which is the cause for the difficulties, here.

Though model-based techniques are not adopted universally in the safety-critical domain,
there are numerous examples of their application. It makes a big difference, however,
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to introduce model-based techniques within one organisation, or to install them at an
organisational boundary. A rather widespread mode of how to develop within a model-based
way is to iteratively and incrementally refine some abstract design model. The end result
of this continuous refinement is the implementation. From the very concept of that idea,
high-level states are refined into lower-level ones. This does not need to be a strict refinement
in the mathematical sense above. But essentially, the development produces a chain of
refinement maps from the abstract to the concrete layer.

Comparing this with a situation where some manufacturer has a line of products verified (in
the practical meaning of that word) against standard, text-based specifications, and the next
version shall be proven consistent with a statechart specification. Usually, there will not be
any “simple” refinement map, as this would only be available if the product architecture
matches the one of the model. More often than not, for any system of notrivial complexity,
the implementation mechanics will differ considerably from that of the specification model,
and the existence of a useable refinement map is highly improbable. The example of the
RBC model is no exception to that general observation.

6.3 Refinement in Practice: Verification by Testing

Testing is the classical apporach to verify properties of a system. This could be done either
in the field or in lab. The different aspects are usually addressed in specifically targeted tests:

Safety: Tests focussed on extreme or erroneous behaviour

Conformity: Tests focussed on regular and typical functional behavior

Serviceability: Regular operational cases as well as operationally relevant disturbed cases.

These categories, with which all actors in the field are well acquainted, apply to complete
systems. They describe in which respect a system is validated once it is developed. A
safety validation step is required for any safety-critical system by the standards. During
development, white box tests for unit verification and gray-box test for integration checks
are applied. In the common depiction of standard development processes as a V, these tests
start at the bottom (unit tests) and are applied throughout the phases on the right.

Here, we use the terms “verification” and “validation” in their technical meaning as it
is defined in the CENELEC standards: Verification serves to establish that the output of
one development step is an implementation of its input requirement, i.e., the output of the
previous step. For instance, as a first step in a development, one may define the system
architecture and apportion the requirements to the system components. Then, it must be
verified that the combination of the components according to the architecture will satisfy
all input requirements. Validation checks the full system against user requirements. More
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general, validation is also used to denote checking whether some design artifact conforms
to a specification given several steps earlier. One may, for instance, validate the software of
the safety kernel after integrating its component modules against safety properties.

In model-based development as described above, testing begins already on the left side of
the V. One may perform verification as well as validation already in earlier phases. This
becomes possible if intermediate development artifacts take the form of executable models.

In the strictly regulated development of safety-critical rail systems, for each step a thorough
verification method has to be chosen to stand a chance of getting the result certified for field
use. We would consider systematic testing as a promising approach.

Here, the specification is an executable SysML specification composed of a few block
diagrams whose behavior in turn is given by statecharts, enriched by program code. Such a
specificaiton may be regarded, semantically, as an extended finite state machines (E-FSMs).

A method for checking behavioral conformance4 of some system with an FSM (propositional,
not “extended”) has been described by Chow in [Ch78]. Essentially, one checks that each
transition in the FSM is matched by an action the implementation. Lifting this idea to
extended FSMs, one would not only check each transition, but also take the set of variable
valuations into account, for instance, by requiring modified condition/decision coverage
(MC/DC). This is what advanced commercial test generation tools promise to automate
to a large extent. Rhapsody Automatic Test Generation (ATG) and RT-Tester are just two
examples of such tools.

A test suite which covers the requirement specification thoroughly can then be used to
verify that some other executable design model, or a program, conforms behaviorally
to the requirement SysML-model. Even if the architecture of the implementation differs
considerably from that of the requirement—what would complicate a refinement proof,
even an informal one—, a successful test would provide useful evidence for arguing the
correctness of the implementation.

7 Outlook and Conclusion

7.1 Future Use of the Model

The basic functionality of an ETCS RBC has been realized as a SysML model together with
complementing program code. Applying code generation and compilation to it, one obtains
an executable program which can communicate with ILS and trains. This program has been
integrated into the rail operation simulation of the RailSiTe laboratory of DLR, so that the
RBC can be utilized in the simulation of a demonstration scenario.

4 In this case, “behavioral conformance” is to be interpreted as conformance with the full behavior spectrum of the
requirement model—for implementing a model, all of the model’s behavior is to be considered “regular”.
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In order to test whether an implemented RBC exhibits a behavior equal to that of the model,
test cases are to be derived from the model systematically. This can be automated, at least in
parts, with the help of suitable tools. Corresponding trials using parts of the model have
already been conducted successfully and are to be continued in the future. The automated
generation and optimization of instances and configurations is also in the focus of our
ongoing work.

The use as a behavioral reference for a “real” RBC is always possible to the extent the
functionality under test has been modeled already. A complete RBC model would require
to model also the interface between two RBC. Besides that several practical questions such
as the handling of manufacturer and country specific RBC variants have to be solved before
the successful use for the test of “real” RBC.

7.2 Discussion and Conclusion

To construct a good model is a challenging task. In addition to familiarity with the system
which is to be modeled, the language(s) and tools involved, there need to be taken several
design decisions. Based on the experiences from modeling of a railway signalling system,
several aspects of creating a generic and flexible model have been discussed in the paper at
hand. In particular, alternatives and decision criteria for modeling of variants have been
presented.

Undoubtedly the model-based approach has many advantages: the diagrams are much clearer
and thus easier to maintain than program code; the automatic code generation reduces
the effort and error potential of programming. The precondition here is, of course, that
sufficiently many parts of the system can be captured in the form of diagrams. However, in
modeling practice one hits upon a limited supply of applicable model elements—the more
complex the data types in use (e.g. message between the RBC and neighboring systems)
and the more dynamic the system to be modeled (e.g. configurability of the RBC), the more
complementing program code needs to be written and maintained in addition to the model.
We have analyzed which parts of the RBC behavior could be modeled by state charts and
which parts needed to be coded by hand. We mainly identified missing code generation
abilities for several diagram types as a practical hindrance to achieve a higher degree of
formalization in our model.

Regarding the validation of the model and checking the conformance of an implementation
to the model, systematic testing is a plausible approach. In the case of generic systems like
the RBC, however, it is not obvious how to instantiate this in practice. This is usually not
addressed in conceptual accounts of model-based development processes. for a systematic
approach, it might be a good idea to capture the railway infrastructure data in a suitable
modeling language as well and to generate code from it for the configuration of the RBC.
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To summarize, the developed model of the RBC can be expected to form a good basis
for extensive, automatic and high-quality future tests of ETCS radio block centers and for
demonstration of compliance with well-defined test criteria. And it is a well-suited case
study for extending systematically to pure, model-based development approaches.
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