TRANSIENT BROAD SPECULAR REFLECTIONS FROM TITAN'S NORTH POLE Rajani Dhingra¹, J. W. Barnes¹, R. H. Brown², B J. Buratti³, C. Sotin³, P. D. Nicholson⁴, K. H. Baines⁵, R. N. Clark⁶, J. M. Soderblom⁷, Ralph Jaumann⁸, Sebastien Rodriguez⁹ and Stéphane Le Mouélic¹⁰ ¹Dept. of Physics, University of Idaho, ID, USA, ¹rdhingra@uidaho.edu, ²Dept. of Planetary Sciences, University of Arizona, AZ, USA, ³JPL, Caltech, CA, USA, ⁴Cornell University, Astronomy Dept., NY, USA, ⁵Space Science & Engineering Center, University of Wisconsin-Madison, 1225 West Dayton St., WI, USA, ⁶Planetary Science Institute, Arizona, USA, ⁷Dept. of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, USA, ⁸Deutsches Zentrum für Luft- und Raumfahrt, 12489, Germany, ⁹Laboratoire AIM, Centre d'etude de Saclay, DAPNIA/Sap, Centre de lorme des Merisiers, 91191 Gif/Yvette, France, ¹⁰Laboratoire de Planetologie et Geodynamique, CNRS UMR6112, Universite de Nantes, France. Introduction: The recent Cassini VIMS (Visual and Infrared Mapping Spectrometer) T120 observation of Titan show extensive north polar surface features which might correspond to a broad, off-specular reflection from a wet, rough, solid surface. The observation appears similar in spectral nature to previous specular reflection observations and also has the appropriate geometry. Figure 1 illustrates the geometry of specular reflection from Jingpo Lacus [1], waves from Punga Mare [2] and T120 observation of broad off-specular reflections apart from the observation of broad specular reflection and extensive clouds in the T120 flyby. Our initial mapping shows that the off-specular reflections occur only over land surfaces. This could be plausible evidence for rainfall on Titan's surface. Accordingly, these observations are referred to as 'wet sidewalk effect' [2]. We have used the broad specular reflections in conjunction with the distribution of clouds in that area, using *Cassini* VIMS T120 flyby, to evaluate whether the observations could be consistent with recent *rainfall-wetted* surfaces. At the same time we are actively considering alternative hypotheses such as a mudflat [3], mirage, low-lying clouds or other lower atmospheric phenomenon. **Objectives:** The objectives of this study are to: 1) Provide the spatial context for the specular regions, - off-specular regions, and the clouds in the T120 flyby. This would aid in determining the origin of the off-specular reflections which correspond to solid land. - 2) Determine and evaluate the spectral character of regions corresponding to the broad specular reflection using *Cassini* VIMS. - 3) Model this off-specular reflection phenomenon in a SRTC++ (Spherical Radiative Transfer in C++) code (currently in progress). - 4) Study the brightness change over time for the off-specular pixels. Any brightness change in the remaining Cassini flybys of Titan's North pole (post T120) might indicate subsequent change in the surface properties of those regions. **Figure 1** (a) illustrates the specular reflection [1] observed from Jingpo Lacus at the North Pole of Titan. (b) illustrates the waves observed in Punga Mare as a reflection in the form of a lambertian cone from the different facets of the waves. (c) shows the broad off-specular reflection from the land surface of the North Pole and (d) shows the T120 VIMS color composite (R:5 μ m, G: 2 μ m, B:1.3 μ m) **Data and Observations:** We used VIMS spectral cubes obtained at high phase angles (35⁰-84⁰) (CM_1844022476_1.cub, CM_1844023503_1.cub) during the T120 flyby along with RADAR data to correlate the surface features. Figure 2 shows the VIMS T120 observation of clouds, specular reflection from a north polar hydrocarbon lake, and broad off-specular reflection from the solid surface. **Figure 2** False color composite (R:5μm, G: 2μm, B:2.75μm) of Titan's north polar region showing the specular reflection as very bright orange patches, the rainfall-wetted surfaces (wet-sidewalk effect) as less brighter orange patches and clouds in purplish-blue tones. The extent of Kraken Mare (the north polar largest hydrocarbon sea) is also marked for reference. **Results:** Figure 3a indicates the spatial extents of the north polar seas in black and lakes in maroon on a VIMS color composite (R:5, G:2, B: 2.7 μm) overlain on a *Cassini* RADAR map. The extended bright orange patch on the lower left portion of the image is the proposed wetted surface. Figure 3b shows a cloud color composite (R:2μm, G: 2.7μm, B:2.6μm) which shows haze in reddish hue, clouds as bluish-white and surface as green. The arrows mark the putative rainwetted surfaces which appear greenish in the cloud color composite indicating that the feature is near the surface. Figure 3 VIMS false color composites of the North Pole with the seas marked in black and lakes in ma- We extracted the spectra corresponding to specular, rain-wetted surface, lakes and dry land regions to compare and contrast their reflectances as shown in Figure 4a. The red spectrum is brighter than the land and sea at 5 μ m similar to previously observed specular reflections. We also compared the spectra of the rain-wetted region in T120 to the same region in previous flyby (T104) in order to obtain the change in surface characteristics (Figure 4b). **Figure 4** (a) Spectra corresponding to the specular, rain-wetted or wet-land surface, land and sea. (b) Spectra of the region exhibiting wet-sidewalk effect in T120 as compared to T104. In order to account for the geometry both the observations are high phase. T104 phase is 103° while T120 is 84°. **References:** [1] Stephane et al. (2010) *Geophysical Research Letters*, 37, L07104 [2] Barnes et al. (2014) *Planetary Science*, 3:3 [3] Clark et al. (2010) JGR., 115, E10005