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Abstract

Fast and accurate object pose estimation algorithms are crucial for robotic tasks. Despite
intensive research, most approaches are not generally applicable on arbitrary object charac-
teristics and dynamic environment conditions.

Learning-based methods like Convolutional Neural Networks (CNNs) have proven good ge-
neralization properties given sufficient training data. However, annotating RGB images with
3D object orientations is difficult and requires expert knowledge.

In this work, a real-time approach for joint 2D object detection and 3D orientation estimation
is proposed. First, a CNN-based object detector [45] is used to localize objects in an image
plane. In the second step, an Autoencoder (AE) predicts the 3D orientation of the object from
the resulting scene crop.

The main contribution is a new training method for AEs that allows learning 3D object orien-
tations from synthetic views of a 3D model, dispensing with the need to annotate orientations
in real sensor data.

The AE is trained to revert augmentations applied to the input and thus becomes robust
against irrelevant color changes, background clutter and occlusions. It learns to produce low-
dimensional representations of synthetic object orientations which can be compared to the
representations of real RGB test data in a k-Nearest-Neighbor (kNN) search.

Experiments on the pose annotated dataset T-LESS [23] prove the performance of the ap-
proach on different sensors. Finally, the training on synthetic data is shown to be almost on
par with the training on real data.
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1 Introduction

Mobile industrial robots and service robots need to interpret dynamic and unknown environ-
ments. Many traditional perception approaches are tuned for fixed environments and fail in
more general settings. These failures are critical and must be addressed since they limit the
areas of application. Autonomous robotic behaviors require rich and reliable models of the ro-
bot’s surroundings that are robust in all conceivable conditions. A large number of dangerous,
repetitive or assisting tasks could potentially be solved if these limitations are overcome.

Many applications such as robotic manipulation and assembly, augmented reality and auto-
nomous driving require the position and orientation of nearby objects. In Figure 1.1 DLR’s
robot Justin is attempting to grasp a cup. Therefore, it needs to accurately determine the
pose of the cup as well as the pose of its end-effector hands. Without this information physical
interactions and high-level scene interpretation are hardly possible.

Fig. 1.1: DLR Justin Fig. 1.2: Coordinate transformation

6D object pose estimation is the task of finding the 3D translation and 3D rotation from
a camera to an object. Figure 1.2 sketches the corresponding homogeneous transformation.
The goal is to recognize one or more known objects from a single scene and determine their
positions and orientations efficiently. It constitutes an important subtask of robotic perception.
Commonly, color (RGB), depth information or a combination of both is used for this process.

The field evolved from pick-and-place systems that used cameras to locate objects in sta-
tic, fenced in environments. Driven by new applications, the demand and requirements have
steadily grown. Today, it is one of the main research areas in computer vision.
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1 Introduction

Depending on the use-case, the requirements related to runtime and accuracy of pose esti-
mation algorithms differ substantially. In case of augmented reality we seek for real-time
capabilities while decreased accuracy is often sufficient to satisfy human cognition [39]. On
the other hand, autonomous robotic assembly need a very precise perception of the manipu-
lated objects [8]. Ideally, both goals can be met at the same time. However, visual perception
is often the temporal bottle-neck of robotic tasks.

The main challenges in 6D pose estimation of rigid bodies can be summarized as:

Foreground occlusions: incomplete and disturbed representations

Background clutter: object - background distinction

Huge 6D search space: millions of possible 3D orientations + 3D translations

Object symmetries: ambiguous or almost ambiguous poses

Environment/Sensor changes: differences in hue, saturation, light, noise,..

Texture-less objects no recognizable texture for feature extraction

Multi-instance objects: multiple object instances in one scene

Limited data availability: 3D models and pose annotated viewpoint data

Many of these problems have been individually addressed in previous works. However, even
the most complex approaches often rely on strong assumptions related to object characte-
ristics, environment conditions or available data. Therefore, they can only be applied to a
narrow range of scenarios. In consequence, object pose estimation inside operating robots still
frequently depends on simple but non-general methods including AprilTags [44], table top
segmentation or color blob detection.

A main issue in designing efficient and robust pose estimation algorithms is the size of the
6 dimensional geometric search space. Considering a moving camera around an object, there
exist millions of possible views even when the dimensions are sampled at rather broad intervals.
Naive template-based approaches are therefore computationally intractable. To decrease the
number of combinations, the problem can be divided into individually estimating the image-
plane translation, depth and 3D orientation of the object.

In recent years, a concept that addresses the lack of generality has revolutionized computer
vision. CNNs learn to extract complex features in unstructured data such as images from
the demonstration of examples. Through their high dimensionality and hierarchy, the expres-
siveness of CNN features is often only limited by the versatility of presented data. They are
state-of-the-art in high-level vision tasks such as object classification [29], detection [24] and
segmentation [15].

In 3D orientation estimation CNN architectures have not had similar breakthroughs, yet. One
reason is that most supervised deep learning algorithms require great amounts of labeled data
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1 Introduction

Fig. 1.3: Proposed object pose estimation pipeline

for training. However, generating pose annotated image data requires expert knowledge and a
complex setup. Furthermore, the training data is usually produced in controlled environments
which increases the risk of over-fitting.

In comparison, generating 2D bounding box annotations in images to train object detection
algorithms is relatively easy. Object detection, i.e. localizing and classifying objects in an
image plane, can be seen as a subtask of object pose estimation, reducing the 6D search space
by two dimensions. Recently, a variety of CNNs has been introduced that efficiently solve this
task even under the challenging conditions described above [48, 36, 37].

Therefore, in this work, the Single Shot Multibox Detector (SSD) [36], a CNN for object
detection, is trained to locate and classify all considered objects in a scene image. The object
detection is depicted as the first step of a pose estimation pipeline in Figure 1.3. The predicted
bounding boxes are utilized to produce object crops from the scene image.

In a second step, these crops are served to a CNN-based AE architecture to obtain the 3D
object orientation. Typically, AEs are neural networks that can be trained to learn low-
dimensional encodings of the input data. This thesis presents a novel approach to steer AEs
to efficiently produce codes that strongly correlate with the 3D orientations of an object in
test image crops.

Why Autoencoders? In machine learning, problems are usually categorized into classification
or regression. Treating the 3D orientation estimation as a classification problem would on-
ly be feasible for large sampling intervals as otherwise the number of classes and thus the
number of parameters in the last fully connected layer would explode. On the other hand,
the direct regression of SO(3) representations like rotation matrices or quaternions is difficult
due to representational ambiguities or constraints and due to indistinguishable orientations of
symmetric objects or views. These issues will be described and discussed in detail in chapter
3.

Instead of regressing fixed orientation representations, this work proposes to learn a represen-
tation which only depends on the appearance of different object orientations. For this purpose,
an Autoencoder CNN architecture is trained to reconstruct input images depicting an object
at random 3D orientations. The input is first encoded to a lower dimension, then decoded
to the original input size. After training, the low-dimensional bottle-neck of the AE can be
used as a descriptor for an input image. Since the object appearance is tightly coupled with
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1 Introduction

the object orientation, similar descriptors usually originate from similar orientations. At test
time, the encoder can produce a descriptor from a scene image crop containing the object.
In a Nearest Neighbor search, the next training descriptor whose corresponding orientation is
known determines the object orientation in the test image.

Our proposed solution to cope with the limited data availability is to learn the object orien-
tation from synthetic camera views of textured 3D models.

Today, hand-held RGB-D sensors can be used to produce accurate, textured 3D model recon-
structions. By approximately orbiting the device around an object, algorithms like KinectFu-
sion [42] can fuse the recorded sequence to a consistent 3D model. This enables the production
of large datasets of surface 3D models [4]. The 3D reconstructions can be used as an infinite
data source of pose annotated, virtual views.

The remaining challenge is the generalization from synthetic training data to real RGB test
data. The test data distribution is clearly different to the training data distribution. Therefore,
there is a great risk of over-fitting to features in the synthetic training data that do not exist
in the same form in the test sensor data. Furthermore, the test scene crops might include
unseen background and foreground occlusions which disturb the representation.

The AE architecture can explicitly be trained to become invariant against these differences.
This is achieved by applying strong augmentations at the input side of the AE but letting the
decoder reconstruct clean object views. This method is inspired by the denoising Autoencoder
[58] which takes noisy images as input and reconstructs a clean version of the input image.
Here, the augmentations ensure that the descriptors become invariant against irrelevant color
differences, lighting conditions, background clutter and foreground occlusions.

The augmentations have a key role to make this method work. The result is a robust, real-time
2D detection and 3D orientation estimation pipeline.
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2 Related Work

There exists a vast amount of literature about object pose estimation. In this chapter I will
briefly categorize different approaches and describe their advantages and disadvantages. Of
course, the perfect fit depends on a number of prerequisites. Can we obtain appropriate data
for training? How does the environment look like and what sensors depict it? What are the
time constraints? The following approaches were designed with different scenarios in mind.

Although the boundaries sometimes overlap, pose estimation algorithms for rigid bodies can
be divided into template-based and local feature-based methods. Some techniques require a
learning phase and others only need to extract features in advance.

2.1 Local feature-based approaches

Local feature points represent image patterns such as corners or edges. More complex fea-
tures like the Scaled Invariant Feature Transform (SIFT) and Speeded Up Robust Features
(SURF) also come with a descriptor of the surrounding patch which can be compared to
other descriptors in a database. Most feature-based pose estimation methods identify 2D-3D
feature correspondences between a textured 3D model and a scene image [38, 6]. Using a
Perspective-n-Point (PnP) algorithm [35] at least four spatial correspondences yield a defi-
nite pose estimate, assuming the intrinsic camera parameters are known. In practice, several
hundred of these features are found and a computationally intensive algorithm like RANSAC
has to be used to eliminate outliers.

While local feature-based approaches work quite well on textured objects where unique feature
positions can be found, the performance drops significantly on untextured objects where the
feature positions are ambiguous. Furthermore, the features are mostly handcrafted and thus
are sensitive to perturbations such as contrast changes and clutter. For that reasons the
research community recently shifted to learning robust features. Most of these approaches
utilize Random Forrests (RFs) or CNNs.

Crivellaro et al. [5] predefine 3D object coordinates and manually label their respective projec-
tions in a set of training images. Using a CNN for 2D point detection, the authors regress the
positions of the projected 3D points in the image plane. At test time, the key-point positions
in a scene image image can be determined which enables the use of a PnP algorithm for pose
estimation. Their method is robust to partial occlusions and a variety of image perturbations.
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Unfortunately, the generation of the training set is costly and the approach has not been
evaluated against public datasets, yet.

Recently, Rad and Lepetit [47] presented a similar method by matching 2D-3D correspon-
dences of 3D bounding box corners. These coordinates are only available if training images
with registered 3D models are available. The authors build a classifier to manually distinguish
object symmetries and in total their approach consists of 5 CNNs which makes it computa-
tionally expensive. On the LineMOD dataset [20] they claim state-of-the-art performance in
the RGB-only domain.

In the RGB-D domain most local-feature approaches rely on patch descriptors or densely sam-
pled features. The reason is that depth point distributions are often rather coarse, especially
if the object is further away.

Brachmann et al. [2] introduce a dense feature-based approach where a RF separately predicts
for each RGB-D pixel the object class and coordinate on a 3D object. For training, segmented
objects and arbitrary background RGB-D data are required. The advantage of this method is
that it works accurately even under moderate occlusions. After an average of 160ms around 200
pose hypotheses are obtained. The following pose optimization step depends on a RANSAC
algorithm and takes about 400ms on a powerful CPU. While the optimization is crucial for
their accurate pose estimation, it slows down the whole pipeline significantly. The work was
extended to articulated [41] and deformable [30] objects as shown in subsequent papers.

Kehl et al. [25] also uses an Autoencoder to learn descriptors from random local patches of
real RGB-D data. Then they use the Autoencoder to create a descriptor database for each
synthetic view of a textured 3D model together with the corresponding 6D pose. At test
time, descriptors are generated again from random patches in an RGB-D scene which vote for
the 6D object pose. Depending on the local consistency of votes the final 6D object pose is
determined. The approach requires to evaluate a lot of patches in a scene and therefore takes
about 670ms per prediction.

Local feature points or patches circumvent the extensive search in the 6D pose space and
are robust to occlusions. However, spatial relations between the features are hardly exploited.
They are at risk to miss small artifacts that distinguish object poses. Dense feature-based
approaches address this issue but usually require a time-consuming RANSAC step.

2.2 Global descriptor/template-based approaches

In contrast, global template-based approaches determine a description of the whole object
from different viewpoints. Afterwards, these holistic templates are matched against a scene
where a similarity measure produces the most likely pose. The descriptor can either depict
a template image of the object that can be spatially matched to the scene or an abstract
low-dimensional vector which can be matched in a kNN search.
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Some approaches rely on recognizing annotated real recordings of objects in test scenes. Others
only use synthetic data generated from 3D models. The latter is favorable since pose annotated
data is rarely available outside dataset science.

The LineMOD algorithm by Hinterstoisser et al. [18] is a template-based method that was
gradually improved to one of the most efficient learning-free methods. They generate multi-
modal templates from a reconstructed 3D model that include color gradients and depth surface
normals. By carefully tuning these handcrafted templates they achieve impressive performan-
ce on their own LineMOD dataset [20]. The greatest advantage is that due to their efficient
implementation, the runtime is only about 120ms on a CPU, not far from real-time. Howe-
ver, Brachmann [2] shows that the performance drops significantly under different lighting
conditions. The RGB-only version is called Line2D [19] which works considerably less well.

Ulrich et al. presented a method [57] where 3D edges from CAD models are extracted at
different viewpoints and matched against a monocular scene image. To be robust against
lighting changes, the similarity measure is only based on the dot-product between normalized
edge gradient directions. Their contribution is an efficient hierarchical search at different
resolutions and viewpoint intervals. That way, the exhaustive search over the viewpoint space
can be accelerated. Still, additional assumptions about the possible search space are necessary
to make this method applicable to most practical use-cases. Otherwise, the computational
effort is intractable. 1

A recent successful approach from Wohlhart and Lepetit [62] suggests to learn global descrip-
tors to discriminate objects and their 3D orientations using a CNN architecture. The network
is trained on real and synthetic images of the LineMOD dataset using ground truth pose
information. They propose a new loss function which consists of a triplet-wise loss term, a
pair-wise loss term and a regularization term. The three training samples for the triplet loss
are chosen as either / or

• 2 training samples with similar pose and 1 sample with different pose from same object

• 2 training poses from the same object and 1 sample from different object

The triplet loss maximizes/minimizes the L2 distance between the descriptors of dissimi-
lar/similar samples. The pair-wise loss is computed on similar samples where one is clean
and the other one is augmented by artificial illumination changes and noise. The L2 distance
between both is minimized to make the descriptor robust against these disturbances. After
training, descriptors are produced from clean, textured 3D models that are recorded from
virtual cameras placed on a viewsphere (varying azimuth and elevation). Then a test scene
crop is fed into the CNN producing a test descriptor for whom the k nearest virtual views can
be found. The pose and class of the nearest neighbor can be used to evaluate the algorithm.

1During my thesis I implemented a GPU-based version of this algorithm as a learning-free baseline
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It remains open how the 2D object bounding box detection is performed. The authors assume
it to be given just as the distance to the object (which is a reasonable assumption when we deal
with RGB-D data). Data greediness is arguably the biggest drawback due to the reliance on
real annotated sensor data. The performance is fast and robust, outperforming the LineMOD
algorithm on the LineMOD dataset where objects lie upright on a table. It also scales well
with the number of considered objects.

The method presented in this thesis has conceptual similarities to the approach of Wohlhart
and Lepetit as they also learn low-dimensional descriptors of object views using a CNN. Howe-
ver, their approach is supervised and symmetries in objects have to be explicitly determined
in advance.

2.3 2D object detection

2D object detection can be seen as a sub-problem of 6D object pose estimation. The goal is to
regress the 2D bounding boxes of all objects in an RGB image while concurrently determining
their classes. The 6D pose estimation problem can thus be reduced to search a particular
object at a particular spot in the scene image. It remains to estimate the depth and the 3D
rotation from the camera to the object.

Object detection is a well-studied problem in literature. Early approaches focused on certain
domains like face and pedestrian detection so that they could hand-design appropriate featu-
res. Viola et al. [59] achieved near real-time performance in object detection using a boosted
cascade of simple features. However, in recent years many computer vision challenges like
ImageNet [50] have proven that CNN-based approaches yield the most accurate and general
results in this domain. While the competition goal is to obtain the highest accuracy and con-
sequently all solutions are composed of big model ensembles, in a real world scenario runtime
and memory consumption are equally important.

Among the state-of-the-art practical detectors are namely FasterRCNN [48], the Single Shot
Multibox Detector (SSD) [36] and R-FCN [37]. What all three approaches have in common
is a base-network that acts as a feature extractor. The feature extractor consists of a stan-
dard convolutional neural network architecture where all fully-connected layers are removed.
Consequently, when feeding a high resolution image into the network, the resulting feature
maps after each convolutional layer correspond spatially to the input image. That way the
features for the whole image can be efficiently computed together and the predictions are
based on features appearing in a specific input region. For the feature extractor usually very
deep architectures as VGG-16 [53], ResNet101 [14] or Inception v3 [56] are used.

The heads ("meta-architectures") of the networks differ in how they interpret the feature maps.
Without claiming completeness, the major distinctions are briefly described in the following.

8
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FasterRCNN deploys a region proposal network (RPN) on top of low-level feature maps that
predicts class-agnostic box proposals, i.e. regions of interest. A predefined number of boxes
(50-300) are regressed starting from a grid of anchors at different space, scale and aspect
ratios. In a second stage, another network branch classifies the cropped and pooled content
from the feature maps using fully-connected layers.

R-FCN is similar to FasterRCNN but instead of cropping intermediate feature maps the box
predictions are only based on crops of the last feature layer of the base network. This reduces
the computational load per region proposal while maintaining comparable accuracy. The crop-
ping procedure is also slightly adapted to be more position sensitive. For more information
refer to [24].

SSD consists of a single branch convolutional network, as can be seen in Figure 2.1. It does not
generate explicit region proposals and therefore does not require a region-of-interest pooling
stage. Instead it directly predicts categories and regresses box offsets for a small number of
default bounding boxes with different aspect ratios distributed over a regular grid on several
feature maps. These feature maps come from inside the base-network as well as from scalings
of the final feature layer of the truncated base-network that are obtained by progressively
feeding it through strided convolutional layers. This results in a very high number of possible
detections per class while still being fast. A non-maximum suppression condenses the final
prediction.

Fig. 2.1: SingleShot Multibox Detector architecture; Note. adapted from [36]

2.3.1 Implications for object pose estimation

According to a recent comparative analysis [24], FasterRCNN yields the most accurate single
model results for a sufficient number of box proposals on the COCO detection dataset. Ac-
curacy is measured in mean Average Precision (mAP) which computes the average precision
at different recall levels. A box is considered correct if the class prediction is correct and the
intersection over union exceeds 50%.
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Fig. 2.2: All 30 T-LESS objects in ascending order

Empirically, R-FCN is a trade-off between accuracy and runtime but FasterRCNN can be
just as quick at similar performance when reducing the number of box proposals. SSD is the
fastest approach to predict all boxes in low resolution images (300x300). It achieves comparable
accuracy, especially on bigger objects.

The information what objects exist in which part of the scene projection is already quite
valuable for robotic applications and strongly facilitates the subsequent pose or orientation
estimation step. In the context of 3D orientation estimation of rigid objects I decided to
finetune SSD with VGG16 to use it as the first module of the pipeline. The decision for SSD
is motivated by the following:

• rigid objects are less of a challenge for modern object detectors

• runtime of ∼17ms vs. ∼142ms FasterRCNN, both with VGG16, while achieving a com-
petitive mAP [36]

• SSD’s weakness with very small/distant objects is neglectable in robotic manipulation

• SSD is conceptually simpler and allows a straight forward transfer learning scheme

In the evaluation I will describe the implementation details and results of this method using
different kinds of data, including synthetic RGB renderings.

2.4 Datasets

To evaluate pose estimation algorithms, there exist a small number of datasets offering pose
annotated data from different RGB and RGB-D sensors. Hinterstoisser et al. presented the
LineMOD dataset [20] which has been a popular baseline in the past years. It provides view-
sphere RGB-D data of scenes and single objects as well as 3D meshes for all 15 objects. The
dataset contains challenging clutter and occlusions, but the objects do not exhibit symmetries
meaning that poses are definite. However, in industrial or household environments symmetri-
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cal or almost-symmetrical objects are common and many algorithms suffer from these pose
ambiguities.

To meet this issue, the recently released T-Less dataset [23] presents 30 industrial-relevant
objects of whom several contain different kinds of symmetries. They were recorded using
3 modern sensors: a Microsoft Kinect v2, a Canon IXUS 950 IS camera and a Primesense
Carmine RGB-D sensor. Therefore, the presented approaches are evaluated on T-Less.

The first SIXD Challenge [21] for object pose estimation in October 2017 will make the
results from literature more comparable. The organizers converted six publicly available pose
annotated datasets to a standard format for facilitated access and evaluation. I will measure
my results with the data and error metrics proposed in this challenge.
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3 Estimation of 3D orientation

Starting from 2D object detections in an RGB image, this chapter describes a new approach
to determine 3D object orientations. The result will be a real-time object detection and 3D
orientation estimation pipeline trained on synthetic views of 3D models.

To further motivate the presented method, the issues in supervising 3D orientation estimation
algorithms are first explained.

3.1 The representation of 3D orientations

Orientation estimation is a hard problem since the group of 3D rotations [SO(3)] depicts a
large, non-Euclidean space. In this section, the issues related to different SO(3) representations
are explained. Standard classification and regression techniques that are popular in other
domains suffer from these issues.

Simple approaches build up experience and often lead to unexpected findings. In the case of
learning a 3D orientation from RGB or RGB-D images, one naive learning approach would
be to feed pose annotated object images into a high capacity neural network and regress, for
example, the three Euler angles (α,β,γ). Alternatively, we could create a class for each discrete
object view and train a one-hot orientation classifier. However, in literature there exist only
some classification and very few direct, template-based regression methods [52].

3.1.1 Orientation regression

The first issue of directly regressing Euler angle data stems from the periodicity, i.e. the wrap
up after a full rotation cycle. For a 1D rotation α + 360o = α | α ∈ R . Even if we restrict
to α ∈ [−180o, + 180o) the regression task still suffers from a discontinuity at ±180o. Lets
consider a training sample target that is near the discontinuity α = 179o. It might be that the
estimate only slightly misses the regression target in its physical meaning, e.g. α̂ = −178o,
but it is very strongly punished. In practice, this kind of regression formulation usually learns
an expected angle of E[α] = 0. If we optimize the regression error based on the true angular
difference min(|α− α̂|, |α− α̂− 360o|) we can run into the problem of steering the regressed
value to the limit of the restricted domain α̂→ ±180o.
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A proposed solution is to learn the Wrapped Normal distribution [11] which acknowledges
the circular nature of the problem. The idea is to fit a Gaussian model that explains the
angular data distribution using an Expectation Maximization (EM)-algorithm. However, this
approach only works for independent random variables, i.e. only for 1D rotations. The 3D
Euler angles are interdependent so that they can not be learned separately.

Another problem with Euler angles is the so-called Gimbal Lock. There are orientations where
two of the three Euler rotation axes align. In these settings there is no unique solution, meaning
that infinite angle combinations depict the same orientation. Near a Gimbal Lock a small
change in orientation can correspond to a large change in Euler angle space. Overall, it can
be seen that Euler angles are not suitable for a full 3D orientation regression.

A rotation matrix has a unique representation for every orientation. Since rotation matrices
are orthogonal SO(3) = {R ∈ R3x3 | RTR = RRT = I} and det(R) = 1, they have six
degrees of freedom (6DOF). If two axes are known the third one is uniquely defined. The
main difficulty when regressing rotation matrices is to ensure the orthogonality constraint
between the axes. Direct regression of rotation matrices is therefore uncommon.

Unit quaternions (q ∈ R4, ||q||2 = 1) can also represent 3D orientations. The elements vary
continuously over the R4 unit sphere and thus, Gimbal Locks are not an issue. However,
quaternions still exhibit an ambiguity in their representation of a single orientation. More
precisely, q and -q depict the same rotation. It is therefore necessary to neglect the possible
confusion of the learning algorithm by the other representation. For quaternions only the
normality constraint must be satisfied which is simpler to ensure. Recently, Doumanoglou [7]
managed to train a siamese CNN architecture similar to [62] with additionally introducing a
loss that demands the L2 distance between the features to correspond to the L2 difference
between the quaternions. This can be interpreted as an indirect orientation regression. Kendall
et al. [26] introduced PoseNet where the quaternion orientation of the camera with respect to
the world is regressed. This is a simpler problem because features can be found in the whole
image. Overall, a successful example of direct quaternion regression for 3D object orientation
estimation could not be found in literature. Additionally, simple experiments of a CNN-based
regression on quaternions conducted by ourselves failed.

3.1.2 Object Symmetries

Apart from the discussed representational ambiguities, template-based regression is hardly
possible if dealing with symmetric objects.

Symmetries are a challenge for many object pose estimation algorithms. In particular, a sym-
metric object has from two up to infinite ambiguous orientations. All of these orientations can
be correct but without further treatment there is only a single correct regression target. Only
if the symmetries are known and explicitly defined in advance, a regression algorithm can

14
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Fig. 3.1: Overview of different object symmetries: axis+plane, 3-planes, point

account for this issue. Symmetries can appear in multiple combinations around axes, planes
and points. Some examples are depicted in Figure 3.1.

Even if all object symmetries are automatically detected, there is still the issue of indistinguis-
hable views of objects which are not necessarily symmetric themselves. A popular example
is a cup where at certain poses the handle is not viewable and thus the recordings appear
the same. Figure 3.2a shows such a view-dependent axis-symmetry. Many objects in house-
hold, industry or automotive environments exhibit this kind of symmetry. Likewise, partial
occlusions can cause pose ambiguity.

Finally, an object might contain only minor hints regarding its definite orientation. In some
cases as depicted in Figure 3.2b, only the texture or tiny artifacts distinguish the views. In this
situation, one has to either rely on the regression algorithm or mark a symmetry in advance.
The decision also depends on the considered task. For successful grasping of objects using a
robot, the actual orientation might be irrelevant. However, if autonomous robotic assembly is
the goal, object orientation is often crucial.

(a) Ambigous cup views; left: hidden handle produces pose ambiguity,
right: distinct pose

(b) Almost symmetric
T-LESS object

Fig. 3.2: Symmetric and almost symmetric views
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3.1.3 Classification

Another valid pose estimation approach is to divide the orientation space SO(3) into discrete
views by using an equidistant quaternion interpolation or simply discretized Euler angles.
Note that for classification the above mentioned ambiguities are not as severe. However the
number of discrete views rises cubically with the sample frequency. A classification algorithm
that disregards in-plane rotations and only estimates azimuth and elevation can work well, as
will be shown in chapter 4. However, considering all possible rotations at coarse 5o sampling
intervals results in over 50000 classes. CNNs and Multilayer Perceptrons (MLPs) usually
perform classification after a final fully-connected layer that maps the input to an output of
a dimension corresponding to the number of classes. Consequently, the number of trainable
parameters explodes and despite heavy data augmentation there are presumably not enough
training samples per class. This makes naive classification for the full 3D rotation space
unsuitable.

3.1.4 Pose Annotations

One of the most crucial obstacles, that prevents the practical usage of machine learning algo-
rithms in general, is the lack of labeled data. While class and even 2D bounding box labels
are moderately cheap to generate by humans, accurate pose annotations of real sensor data
requires great effort by computer vision experts. Usually, this involves a complex acquisition
setup where a turn-table surrounded by markers is recorded at different tilt and azimuth
angles (e.g. T-LESS [23]). Alternatively, a robot arm can be used to orbit around an object
on a half-sphere executing recordings at predefined positions (e.g. THR dataset []). Both ap-
proaches are difficult and cumbersome. Hence, many practitioners fall back to less robust and
accurate but learning-free methods like CAD-based edge matching [57].

A goal of this thesis is to show that data-assisted pose estimation is possible without doing
manual pose-labeling. As mentioned in the introduction, the latest innovations in 3D recon-
struction allow to build accurate, textured 3D model from sequential RGB-D data of hand-
held devices [43]. In chapter 2, state-of-the-art approaches that extract local features [2] or
whole templates [18] from these reconstructions to match them against real scenes for pose
estimation have already been presented. However, local features are independent from each
other and do not exploit the entire context information. On the other hand, template-based
approaches have been shown to be less robust against occlusions. To overcome the limitations
of templates, we will incorporate the knowledge of possible occlusions into the training data.
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3.2 Autoencoders

Autoencoders are a self-supervised learning technique. This work will describe how they can
be adjusted to disentangle the 3 dimensional rotational space from different kinds of real and
synthetic data. The goal is to quickly obtain object pose hypotheses from a scene that are
robust to occlusion, lighting changes, sensor types and other disturbances. Basically, the idea
is to train a low-dimensional descriptor for every (discretized) 3D orientation. At test time, the
same network generates a test descriptor. The nearest training descriptors have orientations
assigned that are, in the best case, very near to the test object’s ground truth orientation.

We have seen that ambiguities from object symmetries represent challenges for many known
pose estimation and tracking algorithms. Consider for example the previously mentioned work
from Wohlhart et al. [62] which attracted quite some attention. The conceptual goal of our
approach is similar in the sense that we build an abstract descriptor space from templates.
However, their triplet loss assumes that dissimilar poses can be separated in the descriptor
space. For symmetric objects or views, where dissimilar poses basically look the same, this
approach is likely to fail. In contrast, the AE creates the descriptor space solely based on the
appearance of the objects. If there is no difference in appearance it will not attempt to push
the descriptors away from each other. Thus, the AE automatically abstracts from symmetric
ambiguities and is unaffected by representational ambiguities.

3.2.1 Plain Autoencoder

In this section, the theory and applications behind the plain Autoencoder are introduced.

The original Autoencoder, introduced by Hinton et al. [49], is a dimensionality reduction
technique for high dimensional data such as images, audio or depth. It consists of an encoder
and a decoder, both arbitrary learnable functions. In recent years, they commonly have the
form of fully-connected or convolutional layers because of their high capacity towards complex
data structures. In between encoder and decoder there is a low-dimensional bottleneck which
is often called the latent space Z ∈ Rn with typically 1 ≤ n ≤ 200. Autoencoders are a
self-supervised learning technique, i.e. the desired output y is defined as the input:

y(i) = x(i) (3.1)

The objective is to reconstruct the inputs x(i) ∈ RD with dimension D from a latent code
z(i) = Encoder(x(i)):

x̂(i) = Decoder(Encoder(x(i))) (3.2)
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(a) first column: MNIST test images; other co-
lumns: nearest neighbors in latent space

(b) odd colums: noisy test images; even co-
lumns: reconstructions

Fig. 3.3: Autoencoders for clustering and denoising

Therefore, the back-propagated loss simply consists of a sum over the pixel-wise L2 distance

L(i) =
∑
D
‖ x(i) − x̂(i) ‖ (3.3)

The latent codes from all training samples are referred to as the training set embedding.
After training, it is likely that latent codes from samples with similar appearance are close
to each other. Therefore, Autoencoders can be used for unsupervised clustering. For latent
codes of test samples, the nearest training codes let us predict their characteristics or class
affiliation. If semantic labels are available, the classification results are obviously inferior to
supervised learning. Nonetheless, regarding the MNIST dataset [34] results are still satisfying
as can be seen in Figure 3.3a. Note that the Autoencoder does not explicitly learn the class
affiliation of a number but rather everything that composes the appearance like orientation,
stroke diameter and even style. Especially its ability to separate orientations as in row 4 and
5 will prove to be useful in the pose estimation task.

Besides compression and clustering, one application of Autoencoders is denoising. To train a
denoising Autoencoder [58], the input is perturbed with random noise while maintaining the
desired output clean. After training, the model is able to clean noisy test images. Figure 3.3b
depicts a denoising AE trained on noisy MNIST digits.

In fact, the denoising Autoencoder violates the original notion of using the exact same input
and output. However, this particular method shows that you can weakly supervise Autoen-
coders using ’augmented input / clean output’ pairs in order to become invariant against
artificial augmentations. In this context, ’invariant’ means that the encoder should produce
the same latent codes for the same image with different pixel perturbations. This is crucial
for the decoder performance as otherwise any perturbation that was not seen during training
would possibly result in unclear latent codes which prevent a clear reconstruction and attri-
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bution. This behavior is later used to weakly supervise the VAE training to obtain robustness
against a large variety of perturbations that can occur in object pose estimation.

3.2.2 Variational Autoencoder

After this quick introduction of the Autoencoder, the Variational Autoencoder (VAE) is now
introduced. The motivation is to learn a meaningful latent representation that is capable of
depicting 3D orientations.

The Variational Autoencoder (VAE) [28] belongs to the class of Bayesian Neural Networks.
Instead of learning arbitrary numerical values as latent codes, the VAE constrains the encoded
representations to constitute a statistical latent variable model. The objective is to determine
the output probability distribution P (X ; θ) that best explains every sample of the input data
X using an Autoencoder (neural network) parameterized by θ. The decoder can be interpreted
as a joint distribution P (X|z ; θ) that describes the probability of X given a latent variable
z ∼ P (z) and the network weights θ. The encoder is equivalently P (z|X ; θ), i.e. the probability
distribution of a latent variable for some input data. By integrating over all possible z and
marginalizing z out of P (X,z), we find the relation:

P (X) =
∫
P (X,z ; θ) dz marg.=

∫
P (X|z ; θ)P (z) dz (3.4)

How is the model trained to maximize the likelihood of reconstructing the input data?
P (X|z ; θ) is unknown but we could use samples from z to approximate it as

P (X) ≈ 1
n

n∑
i=0

P (X|z(i) ; θ) (3.5)

However, this is computationally very expensive and wasteful since most z(i) will generate
P (X|z(i) ; θ) ≈ 0. The idea is to learn a simple probability function like a (multivariate)
Gaussian Q(z|X) whose samples z(i) are likely to produce P (X|z(i) ; θ) >> 0. Then only few
examples were necessary to relate P (X|z ; θ) to P (X) which enables the optimization. θ is
omitted for brevity in the following.

To approximate Q(z|X), the so-called Kullback-Leibler (KL) divergence is used. The KL-
divergence describes the difference between two probability distributions. In this case, we
force the encoder P (z|X) to produce a multivariate Gaussian Q(z|X) ∼ N (µ,Σ) with mean
µ and diagonal covariance matrix Σ. In practice, this means that the encoder outputs a mean
and a variance vector for every input. Formally, the KL-divergence is minimized:

DKL[Q(z|X)‖P (z|X)] = Ez∼Q[log(Q(z|X))− log(P (z|X))] (3.6)
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Minimizing the log probabilities is equivalent to minimizing the original probabilities due to
the monotonicity of the logarithm operator. The Bayes Rule states:

P (z|X) = P (X|z)P (z)
P (X) (3.7)

⇔ log(P (z|X)) = log(P (X|z)) + log(P (z))− log(P (X)) (3.8)

Inserting eq. 3.8 into eq. 3.6 yields

DKL[Q(z|X)‖P (z|X)] = Ez∼Q[log(Q(z|X))− log(P (X|z))− log(P (z))] + log(P (X)) (3.9)

log(P (X)) does not depend on z and was thus taken out from the expectation. Substituting
Ez∼Q[log(Q(z|X))− log(P (z))] with the definition of the KL-Divergence and rearranging the
terms finally yields

log(P (X))−DKL[Q(z|X)‖P (z|X)] = Ez∼Q[log(P (X|z))]−DKL[Q(z|X)‖P (z)] (3.10)

Recall that we want to maximize P (X) or equivalently log(P (X)) with respect to θ. The KL-
divergence is always greater than zero. Thus, maximizing the right side of eq. 3.10 corresponds
to maximizing a lower bound for log(P (X)). But how does this term translate into a loss
function? If we constrain P (z) to be unit Gaussian, we can compute a closed form solution of
DKL[Q(z|X)‖P (z)]. Without further derivation the KL-divergence loss states

LKL = DKL[N (µ(X),Σ(X))‖N (0,I)] = 1
2
∑

n

(Σ(X) + µ2(X)− 1− log(Σ(X))) (3.11)

where n is the dimension of the latent space. This term could be interpreted as a regularization
that makes the latent space behave like a unit Gaussian distribution. Other choices are possible
but this one increases the pressure on the encoder Q(z|X) to relate the latent codes in a
dense latent space. Furthermore, it introduces a measure of uncertainty that is depicted by
the variance of each latent variable.

Maximizing the first term Ez∼Q[log(P (X|z))] has the opposing goal to create samples from
Q(z|X) that produce distinguishable latent codes which the decoder P (X|z) can map back to
the input. In consequence, to evaluate the first term we can simply use a pixel-wise L2 loss or
cross-entropy loss on the reconstructions P (X|z). P (X|z) can be interpreted as a Bernoulli
distribution that describes the probability of each pixel being one vs. being zero. Hence the
reconstruction loss per sample is the cross entropy loss summed over all elements (pixels):

Lrec = −
∑
D
x log(x̂) + (1− x) log(1− x̂) (3.12)
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Fig. 3.4: Variational Autoencoder architecture and re-parametrization trick

The total encoder and decoder losses over a mini-batch with size K are then described by:

Lenc = 1
K

∑
K

Lrec + LKL and Ldec = 1
K

∑
K

Lrec (3.13)

A remaining problem is that the gradients can not pass through a non-deterministic sampling
from a probability distribution during back-propagation. Fortunately, using the so-called ’re-
parametrization trick’ we can model the sampling step as an added noise channel ε ∼ N (0,I)
so that the gradients can pass through the whole network. See Figure 3.4.

Recently, Higgins et al. presented the β-VAE [16] which simply introduces a factor in front
of the KL-Divergence term as a hyperparameter. Intuitively, it makes sense to control the
ratio between the reconstruction loss and the KL-Divergence loss: The magnitude of the
reconstruction loss is dependent on the input size D and the KL-loss is dependent on the
dimension of the latent space n. In extreme cases, one of the loss terms is dominant and the
other one is ignored. The vanilla VAE does not deal with this issue.
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3.3 Modeling and training the Variational Autoencoder

After the Autoencoder and its variants were theoretically derived, this section will focus on
the network architecture and on novel ways to train and test the framework using different
data sources.

An overall goal is to reduce the amount of memory and computation needed to execute
a template matching in the full 3D orientation space. As previously mentioned, methods
like hierarchical orientation estimation [57] at different resolutions, neglecting similar looking
templates or applying domain knowledge can mitigate the issue of an exploding search space.
However, in order to make the exhaustive search computationally practical, performing a
strong dimensionality reduction for each sample view is essential. The objective of using the
VAE is to create low-dimensional descriptors for each view in a densely sampled 3D rotational
space.

3.3.1 Model

The implicit objective for the encoder is to find features in the input image with whom it can
construct orientation dependent latent variables. The state-of-the-art feature extractors for
image data are CNNs.

Therefore, the encoder depicted in Figure 3.5 consists of several convolutional layers with
(4× 4) filters and a stride (filter step-size) of two. The stride is responsible for downsizing the
input by half after each convolutional layer so that features can be extracted at different scales
and the input is subsequently reduced in spatial dimension. The resulting activations are sent
through ReLU functions. Max-pooling is not used here, because accurate pose estimation
relies on the exact positional information of the features and max-pooling lets the highest
activation pass without regard to its position [55].

Contrary to the spatial dimension of the feature maps, the number of convolutional filters
and thus the number of output feature maps are increasing with the depth of the encoder
network, following common architectures as VGG16 [53]. Intuitively, the first convolutional
layers need less filter variety since they only learn low-level features as color blobs, edges and
corners.

After the convolutions, the last block of feature maps is flattened and fully connected to
match the dimension of the mean and variance vectors. In case of the mean, no activation
function is used so that it can take negative values. The variance activation function is a
softplus f(x) = log(1 + ex) which smoothly maps the domain of definition x to a positive
codomain f(x) > 0. During training latent codes from the multivariate Gaussian z ∼ µ+Σ∗ ε
are sampled as described in Fig. 3.4. At test time, z = µ.
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Fig. 3.5: Variational Autoencoder CNN architecture with input/output at test time; (simpli-
fied sampling, see Fig. 3.4!)

Since the bottleneck of the VAE, i.e. the latent space, is very low-dimensional, e.g. dim(z) =
16, it is not possible to embed the whole appearance of the object view into the code. Without
a larger memory, the reconstruction of complex image data is impossible. Therefore, the
decoder has to memorize the appearance of the object, its features, their spatial relations and
orientations. These information can very well be encoded into the weights of a CNN. After
training, the latent code itself will activate the right combination of CNN filters to reconstruct
a certain object view of the input image.

In (variational) Autoencoders the decoder is usually, but not necessarily, a mirrored version of
the encoder. The notion behind this choice is that the same architecture should in principle be
able to learn to decode the same type of features which it previously encoded. Therefore, the
latent code z is transformed and reshaped back to a stack of feature maps using another fully
connected layer. In order to transpose the convolutions we first perform a nearest neighbor
upsampling of factor two on each feature map. Next, a convolutional layer of identical filter
size (4× 4) but stride 1 is applied. The last feature maps have the same extent as the input
image, here 128× 128× 3, and go through a sigmoid activation f(x) = 1

1+e−x > 0, such that
a pixel-wise L2 or cross-entropy loss can be implemented.

In chapter 4, several other architecture decisions are discussed and evaluated. It turns out that
the performance remains quite robust with respect to reasonable design choices (filter size,
filter depth, number of layers, image size, etc.). Deeper CNNs like a full pretrained VGG16
encoder and transposed VGG16 decoder produce very detailed reconstructions, but the stored
information moves from the latent space to the network weights. In theory, with enough
encoder/decoder capacity, a single floating point could trigger the correct reconstruction.
This loss of latent information can be observed by looking at the KL-divergence term: If the
KL-divergence loss is near zero, it means that the reconstruction quality of training data
presumably relies less on the relation between latent variables but more on the decoder’s
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Fig. 3.6: T-LESS object 5 recording; left: Primesense original, middle: 3D recon-
struction from Primesense, right: Canon camera scene crop

memory. Since only the latent space is used for orientation estimation, more capacity is not
necessarily beneficial.

3.3.2 Training Overview

During training, the input and desired output of the proposed Variational Autoencoder are
fixed-size, square RGB images of an object, recorded from different viewpoints. Without loss
of generality, RGB-D or only depth data can also be used. Their suitability will be discussed
in the evaluation.

In the T-LESS [23] dataset 1296 centered object images covering the full view-sphere at
constant radius are provided. In order to produce samples at all possible 3D orientations, each
of these images has to be additionally rotated in-plane. This data is sufficient to successfully
train the VAE framework. But unfortunately, this data is also never available in many robotic
applications. Therefore, it is necessary to give up the dependency on pose annotated real
sensor data.

One of the most relevant results of this thesis is the fact that a VAE can also be trained on
purely synthetic data. In this context, synthetic data means to utilize virtual recordings from
a textured 3D reconstruction. The 3D reconstruction can be generated by a hand-held RGB-
D sensor which is swiped around the object. Through correspondences between the frames,
an accurate 3D model can be synthesized (e.g. [43]). In T-LESS the textured 3D model is
produced using AprilTags [44] to determine the camera pose. See Figure 3.6 for a comparison
of the types of data. The 3D reconstruction loses some details and the edges are not straight
compared to the original Primesense recordings, but from the viewpoint of a human, the pose
is clearly recognizable.

3D reconstruction models obviate the need for pose annotations, serve as an unlimited data
source of synthetic views and even allow the generation of arbitrary, realistic lighting condi-
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Fig. 3.7: Latent space of synthetic and real views after successful training

tions. The latter is advantageous because it reduces the risk of over-fitting to fixed lighting
conditions which are present in many datasets.

For all these (virtual/real) views, labels in the form of rotation matrices are available. They
describe the 3D rotational transformation from a camera to a 3D model coordinate frame.
Instead of utilizing the labels directly in a regression or classification setting and suffering
from all the issues discussed in section 3.1 related to representation and symmetries, the VAE
learns descriptors unsupervised and solely based on the appearance of the object from different
views.

Only after training, the rotation matrices from thousands of equidistantly sampled training
views are assigned to their latent descriptors. The underlying idea is that, at test time, the
encoder should be capable of projecting a scene crop containing the object to a meaningful
descriptor, according to the object’s appearance which is closely connected to its orientation.
Determining the nearest neighbors and their assigned orientations within the embedding of
training views should therefore yield good estimates of the actual 3D orientation. This implies
that the encoder does still recognize the view-specific appearance of the considered object in
the test data.

Figure 3.7 shows an example of the three principle components of a training latent space
from synthetic images and a test latent space from RGB scene crops. Although the spaces do
not seem to be completely aligned, they are actually highly correlated. That means that the
latent vectors of corresponding train and test orientations have very similar directions. This
will motivate the use of cosine similarity as a kNN metric.

The decoder is no longer needed for the generation of pose hypotheses at test time but the
crispness, segmentation and orientation of the reconstructions can give hints on how well the
VAE manages to interpret the test image.
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3.3.3 Augmented Training Procedure

So far, we naturally assumed that the VAE will produce embeddings according to the ori-
entation of the object in training and test images. However, in unsupervised learning this
assumption is actually quite naive, because there is usually much more possible variation in
the images than only the orientation of the object. Even when training and testing with the
same sensor, lighting conditions and background will change and foreground occlusions might
appear.

For this reason, the next part describes a novel approach to steer the VAE embedding to
become invariant against irrelevant variations through data augmentations at the input side.
Simultaneously, the risk of over-fitting to sensitive features or noise that only exists in the
training data is reduced due to larger variety in the training data. The final goal is, to make
the encoder interpret the difference between real and synthetic data as just another irrelevant
variation.

The idea generalizes the method of the denoising Autoencoder [58] (Figure 3.3b) which propo-
sed to apply artificial noise on input images while computing the reconstruction loss on clean
images. This way, the Autoencoder learns how to denoise images. But what does it mean in
terms of encoding and decoding? It implicitly tells the encoder not to distinguish the input
images by the type or strength of noise but rather to create very similar codes for an input
image perturbed with any kind of noise. If the encoder becomes invariant to noise the decoder
has an easier job to reconstruct the clean input, thus reducing the reconstruction loss.

In order to perform a successful template-based 3D orientation estimation, the object in the
input image is randomly translated and scaled while the desired output stays unscaled and
centered. As with the noise invariance, this should prevent the encoder to embed any 3D
translational information into the latent variables so that the focus automatically shifts to
encode the appearance with respect to orientation. Furthermore, these augmentations are
important to account for uncertainties stemming from inaccurate object detections.

Figure 3.8 shows exemplary the impact of scale augmentation on the VAE robustnes. A VAE
is trained on binary object masks where only the azimuth is varied along one revolution.
Elevation and cyclo angles stay fixed and the dimension of the latent space is z ∈ R2. Now,
the VAE is trained with object masks at the original scale = 1.0 as input and desired output.
From the trained model a test embeddings is created by inferring 36 masks at scale = 1.0
and at scale = 0.7. In the top left Figure 3.8, the resulting latent dimensions are depicted. It
can be clearly seen that the embeddings are not invariant to scale which is expected since the
VAE has only seen masks at scale = 1.0 during training.

Another VAE was then trained with inputs at uniformly distributed scales ∼ U(0.7,1.0) while
the desired output was still fixed at scale = 1.0. In the bottom left Figure 3.8, the invariance
against different scales for the same testing procedure can now be observed. Furthermore,
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Fig. 3.8: Impact of scale augmentation on embedding; right: 36 binary masks at
scale = 0.7; top left: VAE z ∈ R2 trained at scale = 1.0; bottom left: VAE
z ∈ R2 trained at scale ∼ U(0.7,1.0)

the test embedding at scale = 1.0 becomes much smoother and, remarkably, the two latent
dimensions start to occur like sine and cosine functions on two full circular revolutions (4π)!
Two revolutions, because the considered object has a symmetry plane which was inherently
regarded. These observations justify the interpretation that the one-sided scale augmentation
teaches the encoder to ignore scale differences and thus restricts the encoding to the rotational
variations in the object mask appearances.

Using a good object instance segmentation algorithm, e.g. Mask-RCNN [15], it would be
se feasible to pipe a segmentation output into the trained VAE to generate a latent code.
The nearest-neighbors within the training mask embeddings could then give hints about the
orientation. The training masks could for example be generated from a CAD model. However,
this method would omit a lot of useful information in the texture and internal shape of the
object while not being end-to-end. To apply the VAE directly on RGB scene crops, much
more augmentation is necessary.

The encoder has to become invariant against any kind of background clutter. If the training
happens only on object views with black background, as shown in Figure 3.9 (left), the encoder
will fail to distinguish the object from background at test time. Therefore, a random image
background from some dataset as, for example, VOC2012 [9] is introduced at the input. Since
the desired output background remains black, the VAE learns to internally segment the object
and ignore the background.
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Fig. 3.9: Left: Clean virtual view of textured 3D model of object 5 (desired output); middle:
augmented input; right: decoder reconstruction after 35000 iterations

Sensitivity to occlusions is often a point of criticism against template-based approaches. To
make the encoder robust against occlusions, randomly translated object masks are used to
realistically cut out pieces from the input object view. In practice, this process is performed
repeatedly until a certain amount (e.g. 0 − 25%) is occluded. Consequently, the VAE must
learn how to reconstruct missing parts of the input and the path of least resistance is to make
the encoding invariant to occlusions. This augmentation is supposed to avoid over-fitting to
few features that might be occluded during testing. On the other hand, too much artificial
occlusion complicates the disentanglement during training.

Next, another advantage of training with synthetic views from 3D reconstructions is exploited.
To avoid influences of specific lighting conditions on the latent space, we generate light sources
at random positions using the Phong lighting model [46] to illuminate the 3D reconstruction.
The desired output views are only illuminated using ambient light. This way, invariance against
various kinds of lighting conditions is achieved. 1

Finally, several other image augmentations are used by chance:

• Gaussian blur

• Additive Gaussian Noise

• Add

• Multiply

• Contrast normalization

These augmentations occur at random strength and sometimes act on single color channels
(except blurring).

1Note, during the 3D reconstruction the lighting conditions should be close to ambient to prevent an initial
brightness bias coded into the vertex colors. Otherwise, this issue can be resolved by clamping the vertex
color values in the HSV color space or extracting an albedo map
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Figure 3.9 depicts an example of clean desired output, final augmented input and decoder
reconstruction from a mini-batch. It can be observed how the VAE manages to revert all of
the described augmentations on the synthetic training views.

A property of Autoencoders is that they produce slightly blurry outputs. The blurriness ori-
ginates from the pixel-wise evaluated loss function which assumes conditional independence
between the pixels and does not permit translational variance at pixel level. Other approaches
like ’Autencoding beyond pixels’ [33] or ’Adversarial Autoencoders’ [40] propose to combine
the VAE with Generative Adversarial Networks (GANs) [13] where the VAE acts as the gene-
rator. A discriminator tries to tell the inputs of the VAE apart from the VAE reconstructions.
In an adversarial training scheme, the VAE improves its capability to produce sharp, reali-
stic outputs. Therefore, using GANs is beneficial in many generative settings, although being
harder to train. However, reconstruction crispness is not necessarily linked to the information
embedded into the latent space. It can also simply mean that the decoder is more capaciti-
ve. Furthermore, the pixel-level accuracy requirement can be crucial for accurate orientation
estimation. Nevertheless, future experiments should be conducted in this direction.

The 3D model reconstruction sometimes lacks details of the real object so that an over-
fitting on its features should be avoided. However, strong augmentations minimize the risk
of over-fitting so that early stopping of the training is usually unnecessary. A drawback of
unsupervised, appearance-based methods compared to pose-supervised methods is that minor
details, like the small notch of object 5 (Figure 3.6), which break the symmetry have only
little influence on the total loss and are thus sometimes ignored.

3.3.4 Training embedding generation and testing procedure

The training conditions and parameters are further described in chapter 4. This section ex-
plains the utilization of the trained VAE for 3D orientation estimation. Figure 3.10 illustrates
the whole procedure. After the training phase, object orientations should produce meaningful
latent variables, i.e. close orientations with similar appearance should produce similar latent
codes. Now, to utilize this property for 3D orientation estimation, first, a training embedding
is produced:

1. Densely sample clean (synthetic) templates from a view-sphere based on a refined ico-
sahedron [17]

2. Rotate each template in-plane at fixed intervals and assign the final {Rcam2obj} rotation
matrices, examples can be seen in Figure 3.9 (left)

3. Generate and assign latent codes by feeding the templates batch-wise into the trained
encoder
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3 Estimation of 3D orientation

Fig. 3.10: VAE orientation estimation; top: offline sampling and generation of training embed-
ding; bottom: online inference of scene crops; right: nearest neighbor calculation

The test procedure is summarized in pseudo-code 1. First, the Single Shot Multibox Detector
(SSD) produces one or more object crops from a scene which are resized and fed into the
encoder. Each resulting test latent code y is compared with the training embedding codes x
through cosine similarity:

cos(xxx,yyy) = xxx·yyy

||xxx||· ||yyy|| (3.14)

The highest similarities are determined in a kNN search and the corresponding rotation ma-
trices are returned:

Algorithm 1 Joint 2D object and 3D orientation detection
Data: scene_im, latent_space, R_all, topk
Result: objid, objbox, RkNN

objid, objbox ← SSD(scene_im)
obj_crop ← squaredResizedObjCrop(scene_im, objbox)
ztest ← encoder(obj_crop)
n← len(latent_space)
for i = 0 to n− 1 do

zi ← latent_space(i)
cosine_sim(i)← zi ztest

‖zi‖‖ztest‖
end
sorted_sim_idcs ← argsort(cosine_sim)
for k = 0 to topk − 1 do

RkNN (k)← R_all(sorted_sim_idcs(end− k))
end
return objid, objbox, RkNN
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3 Estimation of 3D orientation

3.4 Multiple Objects

Until now, we have considered to train a VAE only on one object. Simply training the VAE
with multiple objects can result in ambiguous latent variables where the objects might not
be clearly separable at certain views or occlusions. This would unnecessarily disturb the
orientation estimation since the object class is already predicted from the object detection.

A simple solution is to individually train several VAEs on different objects and load the
weights of all encoders into the GPU memory. Obviously this approach is limited by the
total memory size, but in practice the above stated encoder architecture consists only of 1.89
million weights which corresponds to a memory size of around 7.2MB. Additionally, depending
on the sampling intervals and latent space dimension, the precomputed training embedding
needs 5 to 50MB memory space. Since modern GPUs have a memory size of ∼ 12GB, we
could theoretically load the weights and training embeddings of numerous (>200) objects.
Despite some practical overhead and memory demands of the detector, this allows concurrent
2D object detection and orientation estimation of many objects in parallel. Since the object
detection yields the object class, we can then pick the corresponding encoder for inference.

Training several VAEs from scratch is time-consuming. If there was a way to infer the object
class from the detector, we could jointly train one VAE on several objects without inter-class
confusion. Luckily, this can be done in a very simple manner introduced by Sohn et al. [54].
The Conditional Variational Autoencoder (CVAE) simply concatenates a one-hot encoding
of the input class (object) with the latent code produced by the encoder. This additional
data informs the decoder of the object class that should be reconstructed, thus facilitating
the training. The model is only slightly changed at the fully-connected layer of the decoder,
which now maps a latent code of size z ∈ Rn+c, with n dimensions of the original latent space
and c number of considered objects, to the first stack of feature layers. The testing procedure
is quite similar:

1. Use CVAE encoder to create multi-view training embedding from each synthetic object
model

2. Use CVAE encoder to create a latent code from one or more scene crops

3. Maximize cosine similarity only against the multi-view embedding of the corresponding
object

Through the exploitation of the induced object labels during training and testing, a single
CVAE model has the ability to estimate the orientations of several objects. As shown in the
next chapter, drawbacks include an increased training time and a slightly reduced accuracy.
Hypothetically, the decoder might lack the capacity to jointly learn the multi-view reconstruc-
tion of multiple objects. On the other hand, more capacity would again shift the information
from the latent space into the decoder as described before.
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3 Estimation of 3D orientation

In conclusion, both approaches present a practical solution for multi-object, multi-view orien-
tation estimation. While training several single-object VAEs gradually increases the memory
demands, it is definitely feasible on modern GPUs. In both cases, a separate training embed-
ding for each object is produced from which the nearest neighbors are determined.

3.5 Inference Time

In robotic applications short inference time is desirable, especially in dynamic environments.
Short run-times enable repeated predictions and thus increase the confidence and accuracy
compared to single pose estimates. Furthermore, tracking algorithms can be used if a frequent
stream of predictions is available.

The computational demands at test time are defined by the 2D detection, encoder inference,
computation of the cosine similarity and the nearest neighbor search.

The cosine similarity operation basically consists of a high-dimensional matrix-vector multi-
plication and normalizations. Computing the cosine similarity from the test code to all codes
in the training embedding therefore has complexity O(nm) with n dimensions of the latent
space and m latent codes in the training embedding. As this can be parallelized well, a GPU
computation is favorable.

The nearest neighbor is simply the maximum entry in the resulting vector with complexity
O(m). In our experiments, this memory lookup works faster on modern CPUs using Numpy
than on modern GPUs using Tensorflow.

At a common configuration with n = 64 and m = 92232, an averaged benchmark of the
individual parts of the pipeline is depicted in Table 3.1.

Table 3.1: Inference time of pipeline blocks

8 CPUs GPU

SSD - ∼17ms
Encoder - ∼6ms

Cosine Similarity 2.5ms 1.3ms
Nearest Neighbor 0.3ms 3.2ms

∼24ms

We conclude that the whole system is real-time capable at ≈ 42Hz. This enables many robotic
applications and leaves room for tracking algorithms.
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4 Experiments and Discussion

In the following, different variants of the Autoencoder (AE) and the Single Shot Multibox
Detector (SSD) are evaluated. The focus lies on the main contributions of this thesis, i.e. an
ablation study of the augmentations related to the performance of the VAE.

As indicated, the experiments are mainly performed on the challenging T-LESS dataset which
is characterized by the obstacles described in the previous chapter 3. Other popular datasets,
as the LineMOD dataset [20] exhibit less symmetries and more distinctive shapes and textures,
thus are easier to solve. The reason for the popularity of the LineMOD dataset might also
stem from a facilitated pose evaluation of unambiguous objects.

4.1 Evaluation Metrics

Before presenting the results, the evaluation metrics for 3D orientation estimation and 2D
detection are defined.

4.1.1 Axis-angle Rotation Error

If ambiguities are non-existent or resolved, a single-valued absolute rotation error can be
computed between the estimated rotation matrix Rest_cam2obj and the ground truth rotation
matrix Rgt_cam2obj . The rotation error in matrix notation is defined as

Rerr = RT
est_cam2obj Rgt_cam2obj (4.1)

Rerr can be converted into an axis-angle representation such that the absolute rotation error
eR ∈ [0o,180o] can be described as the magnitude of the angle:

eR = arccos
(

Tr(Rerr − I) / 2
)

(4.2)

Using this metric an intuitive estimation of the object orientation error is established. It is
convenient in scenarios where the exact orientation matters and is uniquely defined. However,
for the evaluation of ambiguous objects, it is necessary to tediously predefine the symmetries
to correct the acquired rotation errors.
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4.1.2 Visible Surface Discrepancy

It is possible to abstain from this necessity by utilizing an ambiguity-invariant pose error
function: The Visible Surface Discrepancy (VSD) [22] measures the deviation between the
visible 3D surface of a rendered object model at ground truth pose V and at the estimated
pose V̂ . For each object depth pixel p a matching cost c is computed which linearly increases
with the depth distance d until reaching a threshold τ . For d ≥ τ the pixel matching cost is
clipped.

c(p, d, τ) =

d/τ if p ∈ V̂ ∩ V ∧ d < τ

1 otherwise for p ∈ V̂ ∪ V
(4.3)

The total matching error evsd is simply the average over the pixel-wise costs.

evsd = 1
N

∑
p∈V̂ ∪V

c(p, d, τ) (4.4)

where N is the number of pixels in V̂ ∪ V . The visible surface discrepancy measures the
difference in appearance of the estimated and ground truth object views rather than mea-
suring a pose error from some SO(3) representation. Thus, the issue of interpreting pose
estimations resulting from symmetric views and/or objects is circumvented. The VSD metric
is actually quite similar to the reconstruction objective of the VAE which also depends on
pixel-wise distances. A variant of the VSD metric, where the per-pixel cost c is zero up to
the distance threshold τ , will be the official metric for the SIXD challenge [21] and, for the
sake of comparability, also used here. Furthermore, only views with visible object pixels

all object pixels > 10%
are considered.

Both metrics can be a suitable quality measure in different settings, therefore, both are eva-
luated in this thesis. To individually evaluate the VAE, only the 3D orientation estimation is
regarded, i.e. translation is not estimated. Later the whole pipeline is evaluated.

4.1.3 Mean Average Precision

Object detectors are commonly evaluated in terms of mean Average Precision (mAP) [10].
Precision is defined for each class as the fraction of correct class predictions for predicted boxes
with an intersection over union (iou) ≥ 0.5 with the ground truth box. Average Precision refers
to the precision at a set of 11 different recall levels r ∈ {0,0.1,...,1}, where recall is defined as
the number of correctly predicted bounding boxes from the total number of existent ground
truth bounding boxes of that class. To obtain the recall levels we vary a softmax prediction
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threshold and interpolate the generated {precision (p), recall (r)} pairs. The Average Precision
(AP) is computed as

AP = 1
11

∑
r∈{0,0.1,...,1}

pinterp(r) (4.5)

Finally, mAP simply relates to the mean AP over all classes.

4.2 Single Shot Multibox Detector

SSD [36] is an essential part in the presented pose estimation pipeline as it quickly and reliably
detects all objects in an RGB image. Yet, it is not the focus of this thesis to thoroughly evaluate
the object detector since a tremendous amount of research is already devoted to it. For more
details, I refer to [24].

I trained SSD on all 30 objects that appear in the canon scene recordings of the T-LESS
dataset using their bounding box annotations. To evaluate the performance, the 20 scenes -
each containing 504 views - are split into 19 training scenes and 1 test scene. The following
evaluation only considers objects 2,3,7,9 in test scene 12.

The work is based on the Tensorflow implementation of [45]. The starting point is a VGG16
base network pretrained on ImageNet and a randomly (Xavier[12]) initialized head network
which was modified to match the 30 classes + 1 background class. The hyper-parameters and
training conditions are summarized in table 4.1

Table 4.1: SSD characteristics

Dataset: T-LESS Optimizer: Adam
Input shape: 300 x 300 Learning rate: 1.0E-04
Batch size: 22 Training Time (DD:HH:MM): 02:03:36
Inference Time / Freq: 17 ms / 59 Hz Iterations / Epochs: 267 595 / 614

Even though some of the T-LESS objects are hard to distinguish, the object detection task on
30 different rigid instances is fairly simple compared to the detection of articulated, deformable
instances from broader classes. Furthermore, training and test data can be assumed to origin
from very similar distributions (light conditions, background, etc.). Unsurprisingly, the results
are very accurate with anmAP = 0.9284 on the test set, see Figure 4.1. Note, that only slightly
worse results can be achieved after a fraction of the total training time of 2 days on a Geforce
1080 GTX.
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(a) Object detections in Primesense test scene 12 (b) Average-precision for objects {2,3,7,9} in scene 12

Fig. 4.1: Single Shot Multibox Detector; a) example scene; b) precision-recall statistics

The training images are whitened and augmented through random cropping, resolution chan-
ges, horizontal flips, shape and color distortions. The bounding boxes are adjusted accordingly.
The authors of [36] report strong improvements through these augmentations. They increase
the variety of training data and avoid over-fitting. In combination with pre-trained weights,
a small experiment verified that a subset of only 1000 annotated scene images is sufficient to
train the SSD. The labeling of bounding boxes is much less cumbersome than creating pose
annotations, therefore supervised learning for detection is much more feasible in real world
scenarios.

However, a future goal is to train the object detection on synthetic views of textured 3D
models, too. First attempts of training with randomly rendered models on the background of
the VOC dataset [9] did not yield satisfactory results on particularly smaller objects. Table
4.2 reports the Average Precision (AP) values per object on real and synthetic data. Also refer
to Figure A.1 in the appendix.

Table 4.2: Average Precision SSD

AP scene 12 object 2 object 3 object 7 object 9 mAP

real Canon scenes 0.926 0.903 0.939 0.946 0.928
synthetic with VOC bg 0.166 0.154 0.298 0.584 0.301
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4.3 VAE Training Conditions

Before presenting the results of the VAE, the training conditions and variations are shortly
outlined. The model architecture, loss functions and the types of augmentation have already
been discussed. Not every design decisions can be scientifically grounded due to the sheer
mass of possible modifications. However, to train the VAE on orientation estimation is com-
paratively robust with respect to different choices of these parameters, unlike for example
Generative Adversarial Networks (GANs).

The training is performed on 128 × 128 × 3 RGB images as it seems enough to cover the
details of texture-less objects. Larger inputs increase the training time but do not stimulate
the performance. The batch-size is 64, chosen to fill the GPU memory. For the gradient-
based optimization I chose Adam [27] which includes lower-order moments and has good
convergence properties. It does not require intensive parameter tuning, thus the learning rate
can be fixed at 1e-4. The implementation is done in the graph-based library Tensorflow and
the computations are executed on a GeForce Titan X GPU.

4.4 VAE Evaluation Results on T-LESS

For better comparison between the VAE variants, the input crops are generated using ground
truth bounding boxes. Later, the whole pipeline including object detection and refinement is
examined. Due to computational limitations, all possible variants are first validated on the
fifth object from the T-LESS dataset. Finally, the generality of the results is proven on other
objects. Generality is also proven with respect to different kinds of sensors. The VSD error is
analyzed on the Kinect and Primesense recordings of different scenes and the total axis-angle
rotation error is evaluated on Kinect, Primesense and Canon RGB scene images.

Chronologically, the first successful experiments were achieved on binary object masks from
CAD models. This motivated the training on real RGB images and finally the training on
synthetic views of a 3D model reconstruction. As a baseline for the synthetic data, the training
on 1296 Canon recordings × 36 artificial in-plane rotations is first considered.

4.4.1 Training on Canon images

For training and testing, object crops from Canon images are utilized here. The T-LESS
dataset offers images of isolated object on black background which is replaced by random
VOC images during training. Additionally, all augmentations described in Section 3.3.3 are
applied except for the dynamic light sources for obvious reasons.

For better intuition, the axis-angle error of the 3D rotation is first depicted in a histogram
which describes the distribution of errors within the 504 views from a half-sphere around scene

37



4 Experiments and Discussion

(a) Top 1 nearest neighbor (b) Best of top 5 nearest neighbors

Fig. 4.2: Axis-angle error histogram: object 5, Canon scene 2, 4o intervals

(a) Original axis-angle error (b) Rectified axis-angle error

Fig. 4.3: Interpolated cumulative error-recall curves for Top k ∈ {1,3,5,10,50} NNs

2, Figure 4.2a. It can be observed how the orientation of the majority of views is either quite
accurately estimated or with an absolute rotation error close to 180o. This comes from the fact
that object 5 is actually an almost symmetric object (Figure 3.6) where only the (sometimes
hidden) small notch distinguishes a 0o error view from a 180o error view. Taking into account
this ambiguity, we can assure ourselves that the 3D orientation is reliably predicted among
the top 5 nearest neighbors, see Figure 4.2b.

How can the average performance of the VAE be condensed into a single scalar? The average
or median angle error is rather meaningless due to the ambiguity. For this particular object 5
one could rectify the average error by taking the distance to either 0o or 180o. This method
yields a nearest neighbor average error of 6.48o. In order to represent the whole distribution
in a single number we can describe the performance as the area under the eR / recall curve
(AUCre). The recall curves for object 5 are depicted in Figure 4.3a with the original axis-
angle errors and in Figure 4.3b with the rectified axis-angle errors which neglects the notch and
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treats object 5 as being symmetric. The corresponding area under the top 1 error distribution
is computed as

AUCre = 1
90

∫ 90

0
recall(eR) deR AUCre,rect = 1

90

∫ 90

0
recall(eR,rect) deR,rect (4.6)

The evsd error can only be computed for the RGB-D sensors. The area under the evsd / recall
curve reads:

AUCvsd =
∫ 1

0
recall(evsd) devsd (4.7)

Table 4.3 shows how the Canon-based training generalizes to Kinect and Primesense RGB
recordings without a strong loss in accuracy.

Table 4.3: AUCs for VAE training with Canon images

Test RGB AUCre AUCre,rect AUCvsd

Canon 0.571 0.916 -
Primesense 0.483 0.886 0.890
Kinect 0.517 0.890 0.917

The 3D orientations of fully visible or moderately occluded object views are reliably and
accurately predicted if neglecting the ambiguity. Mainly views with very strong occlusions are
wrongly assigned. The influence of occlusion will be explored in the succeeding sections.

4.4.2 Training on synthetic views

The generalization from Canon to Kinect and Primesense sensors supports the assumption
that training on synthetic data is also possible. Nevertheless, the differences between real and
synthetic images must not be underestimated. Only a preprocessing pipeline of various strong
augmentations that can be inverted by the VAE leads to similar accuracies as training with
real data. In the following, an empirical ablation study of the different augmentations and its
implications for the latent codes is presented.

Unless otherwise stated, the following networks are trained for 25000 iterations which, de-
pending on the number of augmentations, takes about 4-6 hours on a single GPU. During
training the networks are constantly evaluated on their AUCvsd.

Table 4.6 describes the impact of individual color augmentations on accuracy described in
AUCvsd. In order to account for the randomness of the predictions, the performance of the
last three checkpoints between iteration 20000 and 25000 are averaged and the standard
deviation is given in brackets. To produce the training embedding, we take 2562 synthetic
recordings of the object from an equidistantly sampled sphere at constant radius (650mm).
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Each view is then rotated in-plane at 36 different angles to produce a total of 92232 latent
codes with latent size 16 that represent the whole SO(3).

For comparison, color (Table 4.4) and shape (Table 4.5) augmentation strengths are within
a fixed range during these experiments. To prevent any over-fitting on the augmentations,
they are applied uniformly at random. Scale and translation strengths are given w.r.t. image
size. The random background substitutions are not mentioned, although they are absolutely
crucial as otherwise the encoder does not learn to distinguish the object from the background.
Therefore, this modification is part of every experiment. The background undergoes the same
color augmentations as the foreground object.

Table 4.4: Input color augmentation strengths of experiments in 4.6

dyn. light add contrast multiply invert

30% chance amb:[0.8,1.0] [-10,10] [0.5,2.0] [0.7,1.3] per channel
(10% per channel) diff: [0.6,0.8]

Table 4.5: Input shape augmentation strengths of experiments in 4.6

occlusion scale translation (x, y)

100% chance [0,0.25] [0.9,1.15] [-0.1,0.1]

Table 4.6: Ablation study on color augmentations

Test RGB dyn. light add contrast multiply invert AUCvsd

Primesense 3 0.472 (± 0.013)
3 3 0.611 (± 0.030)
3 3 3 0.825 (± 0.015)
3 3 3 3 0.876 (± 0.019)
3 3 3 3 3 0.877 (± 0.005)

3 3 3 0.861 (± 0.014)

Kinect 3 0.461 (± 0.022)
3 3 0.580 (± 0.014)
3 3 3 0.701 (± 0.046)
3 3 3 3 0.855 (± 0.016)
3 3 3 3 3 0.897 (± 0.008)

3 3 3 0.903 (± 0.016)

Strictly speaking, all combinations need to be examined in order to estimate mutual depen-
dencies. Since it is practically infeasible to train such a high number of networks, several
combinations are presented to convey an intuition of the effects.
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Fig. 4.4: VAE trained with and without occlusion augmentation

The experiments in Table 4.6 show the importance of various color augmentations for trans-
ferring the pose information from synthetic training data to real test data. In fact, the simple
conclusion that more color augmentations produce better performance pretty much holds.
Even inverting the color channels improves the AUCvsd. This implies that, without color dis-
tortions, the network over-fits on color information which is present in the synthetic data
but not in the real data. On the other hand, low-level information about edges and uniform
intensity regions is preserved. These kind of features seem to be recognizable in both, real and
synthetic data such that the reconstruction of the clean image remains feasible.

The simulated diffuse lighting conditions from random directions do not seem to produce clear
improvements of the AUCvsd. However, this is likely due to over-fitting to the similar vertical
incidence of light which is present in both, the 3D model texture and test scene 2. Considering
scene 3, where the lighting conditions are very different, this augmentation is crucial because
here the lateral faces are instead brighter. If no artificial lighting is applied the VAE assumes
bright faces are oriented upwards as in the model texture. The accuracy improvement from
artificial dynamic light in scene 3 is thus significant. It shows that artificial lighting reduces
the effect of light bias in the 3D reconstruction, making the estimator more robust to different
lighting conditions. Stronger 2D color augmentations, as described below (Table 4.7), can also
reduce the effect of light bias. After all, the importance of simulated light depends on the
quality of the 3D reconstructed texture.

Next, the effect of random occlusions during training is examined. Figure 4.4 shows the amount
of VSD errors below a threshold of 0.15 at different levels of object occlusions, divided into 10
bins. The threshold is a subjectively chosen bound for perceptual correctness of the prediction.
It does illustrate that a VAE trained with occlusions in the range of 0−25% is far more robust
against strong occlusions at test time than a VAE trained without occlusions.
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1 2 3 4

Fig. 4.5: Reconstruction of Kinect RGB crop of scene 11 and synthetic Nearest Neighbor views

Figure 4.5 depicts how the trained model generalizes to RGB test data from the Kinect that it
has never seen before. The decoder reconstruction on the top right is the result of interpreting
the low dimensional code from z. It clearly segments the object from the background and
reconstructs the parts occluded by objects in the foreground.

The four nearest neighbors of the latent test code belong to two synthetic views with very
similar orientation to the test object and two synthetic views that are rotated by ∼ 180o.
It characterizes the learned representation in which the similarity of latent codes is directly
connected to similarity in appearance.

The question naturally arises, whether even stronger augmentations will lead to better per-
formance or failure. Table 4.7 and 4.8 show that stronger color distortions actually continue
to improve the performance. Naturally, escalating augmentations even further is at risk to
disguise important artifacts which results in lower performance.

Table 4.7: Stronger augmentation

dyn. light add contrast multiply invert
50% chance amb:[0.8,1.0] [-20,20] [0.4,2.3] [0.6,1.4] per channel

(30% per channel) diff: [0.6,0.8]
scale translation occlusion

[0.85,1.25] [-0.15,0.15] [0,0.25]

Table 4.8: AUCs for VAE training with synthetic images

Test RGB AUCre AUCre,rect AUCvsd

Canon 0.519 0.911 -
Primesense 0.481 0.899 0.897
Kinect 0.513 0.919 0.911
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Fig. 4.6: Dependency of performance on latent space size (Kinect)
standard deviation in red

Through the heavy input augmentation, the performance of training with synthetic data
(Table 4.8) is now actually on par with the training using real Canon data (Table 4.3). Cons-
training the unsupervised representation learning makes training with synthetic data feasible.
This main result of this work allows fast and accurate single RGB frame pose estimation
without the need for real data pose labels.

4.4.3 Latent Space Size

Until now, the latent space size has been fixed to z ∈ R16. Theoretically, more dimensions
should allow to store more information while taking more computation time and memory.
Figure 4.6 shows how the AUCvsd evolves over different latent space sizes. All augmentations
from Table 4.4 are utilized, besides inversion. The performance first quickly rises with the
latent space size and begins to saturate at n = 64.

Since the VAE is very fast and memory efficient compared to other orientation estimation
approaches, it is reasonable to choose a higher latent space size in most applications. The
performance of a n = 128 dimensional latent space combined with the strong augmentations
from 4.7 lead to the best final accuracies, Table 4.9.

Table 4.9: Best VAE model with z ∈ R128

Test RGB AUCvsd

Primesense 0.914 (±0.003)
Kinect 0.931 (±0.001)
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Fig. 4.7: 3 Principle Components of test latent space of scene 2, object 5

4.5 Analyzing the Latent Space

This section investigates the characteristics of the latent space which finally motivates the use
of cosine similarity as a Nearest Neighbor (NN) metric.

Until now we have treated the latent space as a black-box. To gain a better understanding of
the learned representations, the space is first visualized. Therefore, we run a Principal Com-
ponent Analysis (PCA) with 3 components on the test latent codes to extract the directions
with highest variance. The test latent codes are created from real sensor data of a test scene.
The recordings are taken at 7 different elevation levels (10o intervals) and 72 different azimuth
angles (5o intervals).

In Figure 4.7a each color depicts the latent codes from one elevation level. As in the toy
example 3.8 with segmentation masks, we can observe that the nearly symmetric object 5
creates a path of two revolutions in the latent space. Figure 4.7b depicts the latent code
motion when changing the elevation at fixed azimuth angles. The visualizations show how the
VAE manages to arrange object orientations in the latent space.

During the experiments, it has been noticeable that the magnitude of the latent vectors is
usually greater in the training set embedding than in the test set embedding. To analyze
the effect of magnitude, we produce decoder reconstructions at several scales of a test latent
vector, see Figure 4.8. Surprisingly, the 3D orientation of the object is hardly affected by the
magnitude. It can be observed, how the reconstructions become crisper and richer with the
length of the latent vector. An all-zero latent code produces only a blurry circle which might
depict the mean reconstruction of all object orientations. At scale s = 3.0 the reconstruction
seems unnaturally shiny and patchy.
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Fig. 4.8: Decoder reconstruction of a test latent vector scaled by factor s ∈ [0,2.5]

Since the orientation embedded in the latent code is unaffected by its length, the use of the
cosine similarity as a metric for Nearest Neighbor search is chosen. The cosine similarity com-
putes the dot product between two normalized vectors. The result only depends on the angle
between both vectors. Using the more common Euclidean distance produces worse results in
all experiments.

The difference in magnitude decreases with the strength of augmentations being applied at
training time. Augmentations have also been shown to improve the performance of the VAE.
This raises the question whether the magnitude of the test latent vector is a qualitative
characteristic for the orientation prediction. In fact, the magnitude ratio between a test latent
vector and its nearest training latent vector correlates with the accuracy of the predicted
orientation. Unfortunately, the correlation is not strong enough for a secure statement on the
uncertainty of the prediction. However, the visualizations of the training and test embeddings
still enable a good insight into the training performance.

4.6 Variational Autoencoder vs. plain Autoencoder

In the following, the reasons for and against Variational Inference with Autoencoders related
to 3D orientation estimation are discussed. The assumptions are based on experiments and
hypotheses about the data.

Variational Autoencoders have several theoretical advantages compared to plain Autoencoders
as discussed in Section 3.2.2. Most importantly, they offer a probabilistic interpretation of the
latent space. The encoder learns to produce p(z|X) as a multivariate Gaussian with mean
and variance parametrization. This distribution is regularized by the KL-divergence loss to
approach zero mean and unit variance. Practically, the regularization ensures that the latent
codes are densely distributed. The sampling procedure during training ensures that the latent
space around the mean values represents similar data points, i.e. similar looking object views.
A pure maximum likelihood method like the plain Autoencoder would theoretically allow to
store similar orientations at very different latent codes.
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When training with synthetic data, we randomly sample from an infinite number of views.
In VAEs, the latent representations are imposed with Gaussian noise. However, the infinite
sampling and the random augmentations can also be interpreted as perturbations of the latent
representation. The variable data source seems to produce a continuously meaningful latent
space by itself.

The plain Autoencoder does not regularize the expansion of latent codes. However, in the case
of orientation learning the property of a dense latent space seems to be inherent through the
closed circular nature of the rotational space, as shown in Figure 4.7.

Experiments have shown that the variance produced by the encoder of the VAE is very small
(ΣΣΣ << 111) for any inputs. It behaves like a plain Autoencoder. Increasing the KL-divergence
term through a factor, as proposed in the beta VAE [16], increases the variance but hurts
the performance. Decreasing the factor does not change results. These findings motivate the
use of the plain AE as it is simpler to implement. Under the same training conditions the
results of VAE and AE are very similar (Table 4.10), even though the loss functions are quite
different. L2 loss for the AE and Bernoulli + KL loss for the VAE.

Table 4.10: AE vs. VAE, synthetic data

Primesense Kinect

VAE 0.914 (±0.003) 0.931 (±0.001)
AE 0.910 (±0.004) 0.930 (±0.001)

This shows that the plain Autoencoder, in our case, is sufficient for training with synthetic
data. Nonetheless, there are scenarios where the VAE has superior performance. Considering
the training with few examples of synthetic or real data, the VAE outperforms the plain AE.
Therefore, if a small amount of pose annotated real sensor data is available, the training
should be preferably executed on a VAE.

4.7 Joint object detection and 3D orientation evaluation

The augmented Autoencoders have proven to reliably predict 3D orientations of rigid objects
from ground truth RGB crops. Now, it is examined how they perform in combination with
scene crops from the SSD object detector. The absolute depth of the object is assumed to be
given at this point. An Iterative Closest Point (ICP) algorithm and/or additional depth data
could be used to estimate the depth to determine the full 6D pose transformation.

If tz is known, tx and ty components can be simply obtained from the 2D detection and the
camera calibration parameters using the pinhole camera model. Therefore, the pixel offset
from the principal point p to the predicted bounding box center bbcent is determined. Using

46



4 Experiments and Discussion

(a) VSD ground truth vs. SSD (b) Axis angle error ground truth vs. SSD

Fig. 4.9: Influence of 2D detection on pose error metrics (Kinect)

the focal length f of the camera allows to determine the full translation vector from camera
to object.(

tx

ty

)
= tz
f

(
bbcent,x − px

bbcent,y − py

)
(4.8)

During training the Autoencoders have to revert random translations of the object from
the image center. This augmentation is supposed to make the orientation predictions robust
against uncertainties in the 2D detection.

Figure 4.9 and Table 4.11 describe the joint performance again on all 504 views of object 5 in
scene 2.

Table 4.11: AUC values of VAE with and w/o 2D detection

Kinect Primesense
AUCre AUCre,rect AUCvsd AUCre AUCre,rect AUCvsd

ground truth crops 0.575 0.916 0.931 0.574 0.907 0.914
SSD crops 0.560 0.919 0.802 0.525 0.875 0.747

It can be observed that the VSD error rises significantly due to imperfect detections while
the rotation errors are hardly affected. Therefore, it can be assumed that the lower AUCvsd

almost exclusively stems from the translational errors of the detector. Eventually, it proves
the stability of the orientation estimation with respect to translational offsets.
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For a qualitative insight, Figure 4.10 depicts 18 views of scene 11 where object 5 is detected
and the 3D orientation is estimated. The results are quite stable under moderate occlusions,
despite the texture-less object surface. In the last row, two of the orientation predictions are
incorrect presumably due to occlusions. In the appendix, more objects and scene sequences
can be found (Figure A.3, A.4, A.5).

Unfortunately, a quantitative comparison to other pose estimation approaches is non-trivial.
The large number of evaluation metrics are mostly designed for full 6D pose estimation which
is not considered here. In principle, any template-based depth estimation method could be
plugged in, e.g. Iterative Closest Point (ICP) or CAD-based edge matching [57], reducing
the problem to a line search. However, it is not the focus of this thesis and a naive depth
estimation would not yield competitive results. T-LESS is also a new dataset with very few
published results [23, 47]. Therefore, a throughout comparison is left to future work.

4.8 Variants

4.8.1 Conditional Variational Autoencoder

The Conditional Variational Autoencoder (CVAE) is an attempt to train only one model to
learn the orientation of multiple objects. Table 4.12 depicts the performance of the CVAE
trained in parallel on four T-LESS objects (5,8,9,10). The tests are executed on scene 11 by
creating four training embeddings, one for each object. Below the performance of single VAEs
is depicted.

Table 4.12: AUCvsd on scene 11, objects

object 5 object 8 object 9 object 10

CVAE 0.862 0.823 0.878 0.799
VAE 0.886 0.861 0.891 0.802

It can be seen that the AUCvsd values slightly decline. The training time rises with the
number of objects. Here, the accuracies saturate at iteration ∼ 45000. Since this diminishes
the benefit of shorter training time, multiple single object models might be preferable for
highest accuracy. On the other hand, it shows the ability of the approach to learn multiple
representations in parallel.
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Fig. 4.10: 2D detection (black) and 3D orientation estimation (green) of object 5; tested on
every 20th view of T-LESS scene 11
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(a) Top: 3D reconstruction; bottom:
CAD model

(b) Performance during training on scene 2

Fig. 4.11: Training on CAD model vs. textured 3D reconstruction

4.8.2 Training on CAD models

The AE can also be trained on synthetic views of raw CAD models, see bottom of Figure 4.11a.
Although, the training takes longer to converge, it almost reaches the same performance as the
training with the textured 3D model reconstruction. The development of the AUCvsd during
training is depicted in Figure 4.11b. The model, training and augmentation configurations
(Table 4.7) are equivalent.

This result is remarkable since important color information is neglected in the CAD model.
The presented augmentations still manage to avoid over-fitting on specific color information
and shape features can still be recognized in the real sensor data. For texture-less objects like
in T-LESS, the generalization works surprisingly well.

Naturally, training on CAD models is expected to work less well for highly textured objects.
Depending on the type of object, a simple colorization of parts could suffice to train smooth
color regions.
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5 Future work

The potential of the Autoencoder (AE) in orientation estimation has been shown. Certainly,
a future goal is to extend the approach to full 6D pose estimation.

First experiments to train the AE with synthetic RGB-D data have not improved the results
over plain RGB. In future, augmentations towards the generalization of synthetic depth data
to real sensor depth data should be systematically investigated.

Furthermore, the object views could be generated at different radii. Then, the encoder can
be trained to either incorporate the object depth into the embedding or to directly regress
the object depth using an additional encoder output and loss. The goals of orientation and
depth estimation should work well together and the performance could potentially benefit
from multi-task learning.

The capabilities of the approach as a general feature extractor for object orientation estimation
should be further examined. Preliminary experiments showed that the training and testing
embeddings can be produced by other objects than the one used for training the weights of
the AE. This might be an interesting approach towards zero-shot learning [63].

Interpolating the orientations of the kNN in the training embedding potentially improves
the performance. However, it is not guaranteed to work in the case of certain symmetries in
the object. Therefore, a clustering of orientations (rotation matrices) has to be performed in
advance to ensure that only close orientations are interpolated.

Adversarial Autoencoders [40] or similar approaches could increase the clarity of the recon-
structions such that smaller details in the latent codes are included.

The object detector SSD has not performed very well on synthetic data, yet. This is presu-
mably because of over-fitting to synthetic features. Even though there is not a direct way to
teach SSD invariances as in the AE, stronger training augmentations could still increase the
generalization.

Finally, in the long-term a single feature extractor CNN should be trained to extract features
for the full 6D object pose estimation. As in SSD, different head networks (e.g. decoders)
could interpret these features to determine different pose dimensions.
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6 Conclusion

In this thesis, a novel pipeline for joint 2D object detection and 3D orientation estimation on
RGB data has been presented.

For detection, the Single Shot Multibox Detector [45] has been fine-tuned and evaluated on
the T-LESS dataset.

Traditional approaches for object orientation estimation are often restricted to certain object
characteristics or environment conditions. Learning-based approaches can extract more com-
plex and robust features, but usually rely on pose annotated sensor data which is difficult to
obtain in robotic applications.

Based on the challenges identified in this thesis, an Autoencoder (AE) CNN architecture for
object orientation estimation has been proposed. Utilizing a new training procedure, the AE
learns low-dimensional representations for all possible object orientations in RGB images.

The approach has several advantages:

• The representations can be explicitly trained to become invariant against irrelevant illu-
mination, background clutter, translations and occlusions. This is achieved by applying
artificial augmentations on the AE input during training while the goal is to reconstruct
clean output views.

• The augmentation technique also allows to train the AE using synthetic views of textured
3D models or even raw CAD models. Thus, no manual 3D orientation annotations of
sensor data are required.

• In contrast to state-of-the-art approaches, the proposed pipeline runs in only 24ms on
a modern GPU. It is therefore well suited for real-time applications.

The effectiveness of the individual augmentations has been evaluated on the T-LESS dataset
using different error metrics. It has been shown that the training on synthetic views genera-
lizes well on RGB recordings of three different sensors. Furthermore, the accuracy of the 3D
orientation estimations hardly decreases with inaccurate object detections.

Potential applications are in dynamic environments where objects frequently appear and leave
the field of view. For example, an object tracking algorithms could be reinitialized by our
method when loosing track. Incorporating the depth estimation would also allow fast robotic
manipulation and assembly.
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6 Conclusion

To conclude, the main contribution of this thesis is a new, simple and efficient approach for
3D orientation estimation trained purely on synthetic data.
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Appendix

Fig. A.1: SSD average-precision for objects {2,3,7,9} in scene 12 trained on synthetic data

Fig. A.2: Rotation error histogram of a CNN classifier trained on the 1296 Canon views (as
classes) of object 5, scene 11, without considering in-plane rotations. Since the
object lies upright on the table, the classifier only needs to predict azimuth and
elevation angles. In this setting it works decently (avg(eR) = 12.31o) and even
detects the symmetry-breaking notch. However, it is not scalable to a fine-grained
full 3D rotational space.
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Fig. A.3: Incomplete IKEA mug 3D orientation estimation from webcam stream (left),
nearest training neighbors (right)

Fig. A.4: 2D detection (black) and 3D orientation estimation (green) of object 30; tested on
scene 1
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Fig. A.5: 2D detection (black) and 3D orientation estimation (green) of object 2; tested on
scene 12; note that there are two instances
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Fig. A.6: 2D detection (black) and 3D orientation estimation (green) of object 9; tested on
scene 5 with ground truth bounding boxes
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