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Abstract 
This paper presents a Cartesian impedance control for free-flying space robots with elastic joints. In order to archive high 
dynamic behavior of the end-effector like a mass-spring-damper system, the control stiffness and control damping are 
computed online depending on the Cartesian robot mass matrix and thus time-varying. Therefore, in order to ensure 
passivity of the system the control law is extended using the concept of energy tank so that the system can achieve 
maximal performance and simultaneously shows stable behavior both in free motion and in contact with its environment. 
The proposed control method is very efficient and practicable. Furthermore, it is very robust with respect to dynamic 
parameter uncertainties, coupling dynamics, and can simultaneously provide good results in term of the dynamic behavior 
and position accuracy. Simulation results validate practical efficiency of the controller.  
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1. Introduction 
In recent years the use of robots in space has become more 
and more of interest. With increasing capability of 
sophisticated autonomy, the robot can be used in such 
applications as 
 Exploration of distant planets 
 Orbital servicing/repair in low earth orbit or 

geostationary earth orbit 
 De-orbiting of failed satellites 
 Constructions of heavy structures (e.g. Space 

Station, Planetary Bases)… 
In this paper the control issues of a space robotic arm 

for orbital servicing missions are considered. Since 
lightweight and a high load/weight ratio are essential for 
space robotics, the design of the robot can be optimized by 
using Harmonic-Drive gear with high gear ratio to reduce 
robot weight [1], [2]. But, high gear ratio causes high 
motor friction and high joint elasticity, which on the other 
hand are challenging problems for the robot control. So, 
for control design the robot is modeled as a redundant 
free-flying base robot with flexible joints.  

In the designed missions the space robot is expected to 
achieve various tasks, such as capturing a target, 
constructing a large structure and autonomously 
maintaining on-orbit systems. 

          Fig. 1: Target scenario of the space robot. 

 
 
In order to allow safe dynamic interaction between the 
robot and its working environment, a Cartesian impedance 
controller is needed to reach an interactive behavior with a 
mass-spring-damper-like disturbance response via active 
control.  

In fixed-base robotic systems, the dynamic interaction 
between the robot’s operational space motions and forces 
was addressed in the operational Space [3], [4]. The 
control of free- flying robots for space applications was 
introduced in [5], [6]. Furthermore, in order to consider  
 
uncertainties of the robot parameters or varying 
parameters, an adaptive control schemes was introduced in 
[7]. 

In case of the redundant robot Cartesian impedance 
control in task space has to take null-space effects into 
account [4]. The redundant degree of freedom (DOF) can 
be used to execute several independent tasks while 
following a strict hierarchy.  

Furthermore, in [8] a Cartesian mass matrix is used for 
control design instead of desired one.  But the system 
passivity could not be ensured for time-varying control 
gains. In [9] a Cartesian impedance control was introduced 
based on the concept of energy tank [10], [11], which can 
be applied to reproduce time-varying stiffness and 
therefore ensure stable behavior. 

In this paper Cartesian impedance control based on 
energy tank for free-flying base robots with elastic joints 
is addressed for space applications. It should fulfil the 
requirements of space missions and must be robust enough 
for implementation.   

The paper is organized as follows. Section 2 introduces 
the dynamic robot model. In section 3 the control goal for 
Cartesian impedance control is defined. Section 4 presents 
the control design for Cartesian impedance controller 
based on energy tank. The stability of the   controlled 



 VCCA-2017 

2 

Applications

Cartesian 
impedance 
controller

Joint level (4 kHz)

Torque 
controller

Position 
controller

Friction compensation

Cartesian level (1.33 kHz)

Robot 
dynamics

Inverse
kinematics

Robot

Control  parameters Null space criterion

, Desired motor torques

system is analyzed. Finally, the obtained performance is 
verified by simulations reported in section 5.  
 

2. Modeling Robot Dynamics 
Let us consider a redundant space robot with 7 DOF 
(n=7). The design with 7 joints has some advantages:  

 Increased working area 
 Increased obstacle avoidance capabilities 
 Some redundancy in case of a joint failure. 

For control design, the robot is modeled as a flexible 
joint robot with free-flying base. This robot is equipped 
with motor position sensors and link torque sensors, which 
can be used for control. The simplified dynamics of this 
space robot can be described by  

              fu B                                                (1) 

( , ) ( , , , )
T

b b b b
T ext s b s b b

F J x xF M x q C x q x qq qJ
                    

  
  (2) 

          ( )K q                                                   (3) 

Therein, 6
bx R , nq R  and nR   are the base, link 

and motor positions, respectively.  nu R , n
f R   

present the motor torque and the friction torque.  The 
transmission torque between motor and link dynamics 

nR   is modeled as a linear function of the motor and 
the link position with the diagonal and positive definite 
joint stiffness matrix xn nK R and can be measured by 
strain gauge based torque sensors. 6,b extF F R  represent 

the extern force torque acting on the base and the end-
effector (TCP), respectively. 6x6( , )b bJ x q R , 

6x( , ) n
bJ x q R  are the Jacobian matrices related to the 

base, and to the arm. 

Furthermore, the motor inertia matrix 
xn nB R  is diagonal 

and positive definite. x( , ) n n
s bM x q R , 

x( , , , ) n n
s b bC x q x q R   are the mass and the 

centrifugal/Coriolis matrix, respectively, and sM  can be 

rewritten as 

     ( , ) b c
Ts b
c

M M
M x q

M M
    

 with 

6x6

6x

x

b

n
c

n n

M R

M R

M R

 



 

 .      (4) 	

      Finally, in order to facilitate the controller design and 
the stability analysis, the following four properties are 
used 
P.1: The mass matrix ( , )s bM x q  is symmetric and positive 

definite (p.d.) and 
                     ( , ) ( , ) 0T

s b s bM x q M x q   

 P.2: The Cartesian mass matrix ( , )bx q  is p.d. and 

symmetric 
                     min max( , )bI x q I       

       with min max,   being maximal and minimal 

eigenvalue of ( , )bx q .  

P.3: For space robots the maximal joint velocity is 
limited) and it yields 

                      max maxI I      with max 0  . 

P.4: In the following it is assumed that total linear and 
angular momentum is zero  

                     b b cH M x M q    

Which describes the resulting disturbance motion of 
the base when there is joint motion q  in the manipulator 

arm, can be neglected. It is noted that this motion can be 
actively compensated by satellite. 

 
                   Fig. 2: Robot control structure. 
 
 

3. Control Goal 
In the following it is assumed that the position and 
orientation of the manipulator’s end-effector is defined by 

6( , )bx f q x R  , where ( , )bf q x  represents the forward 

kinematics of the manipulator and is known. Then, let us 
define the Cartesian position errors as  

                   x de x x                         (5) 

The goal of the impedance Cartesian control is to 
achieve the dynamic behavior of the end-effector like a 
mass-spring-damper system in present of the external 
force and torque Fext 

( , ) ( , ) ( , )b x c b x c b x extx q e D x q e K x q e F               (6)  

with 6x6( , ), ( , ), ( , )b c b c bx q D x q K x q R   being the 

Cartesian mass matrix of the robot, the control 
damping matrix and the control stiffness matrix, 
respectively. 

In order to achieve good dynamic behavior the control 
damping matrix Dc and the control stiffness matrix Kc in 
(6) are computed online depending on the Cartesian mass 
matrix ( , )bx q . 



 VCCA-2017 

3 

So, for a given positive definite, symmetric 
matrix ( , )bx q , matrices 6x6( , ), ( , )b bP x q Q x q R  can be 

found so that PQ  . By choosing matrices  

2

( , ) 2 ( , ) ( , )

( , ) ( , ) ( , )

c b b b

c b b b

D x q P x q D K Q x q

K x q P x q K Q x q

 







          (7)  

with positive definite and diagonal constant matrices 
D  ( ( )iD diag   with 0 1i  ) and K , the 

matrices ( , )c bD x q  and ( , )c bK x q  are positive definite 

as well. If 1i   the closed-loop system has six real 

poles, otherwise six complex poles.  Obviously, (P.2) 
leads to 

    min max

min max

( , )

( , )

c c b c

c c b c

D D x q D

K K x q K

 
  

.                  (8) 

Now, the system can be decoupled by choosing a 
new coordinate xq xe Qe . It leads to six decoupled 

mass-spring-damper subsystems with the desired 
damping and stiffness behavior  

xqxqxq eKeKDe 22    .                      (9) 

It is noticed that in this control law the control 
gain ( , )c bK x q  and ( , )c bD x q  vary with time.   

 

4. Proposed Cartesian Impedance Control 
In order to eliminate the friction effects and reduce the 
motor inertia, the Cartesian impedance control is designed 
by using a cascaded structure [7] consisting of a torque 
controller as inner control loop and a Cartesian impedance 
controller as outer control loop in Fig. 2. In this control 
structure the Cartesian impedance controller computes the 
desired link torque for the torque controller. 

4.1. Torque Controller 

Let us define the desired link torque as d . Then, for a 

given desired torque vector d , a torque controller [10], 

[11]  
( )T d S d fu K K                        (10) 

with p. d. and diagonal control matrices ,T SK K  can 

stabilize the torque dynamics around the equilibrium point 

d   The friction effects f  are preferably compensated 

by using observer-based friction compensation [14].  
The singular perturbation theory leads to the following 

link dynamics, with the assumption of no external 
forces\toques on the base ( 0bF  ) 

0 ( , ) ( , , , )
T
b b b
T ext gs b s b b

d

J x xF M x q C x q x qq qJ
                    

  
  (11)  

with  

1( , )
( ( ) )

b c
Tgs b
c T

M M
M x q

M M I K B
     

.        (12) 

In case of the redundant manipulator, it is well known 
that some motions of the joints are embedded in the null 
space of the manipulator’s Jacobian matrix J(q), which do 
not affect the end-effector position and orientation. 
Therefore, the desired torque is proposed as 

T
d c nJ F N                              (13) 

with n
cF R being the desired Cartesian impedance force. 
n

n R  is an arbitrary generalized joint torque of the 

manipulator, which is projected to the null space of JT 
through the projection matrix x( , ) n n

bN x q R . 

In this paper we assume that the null space behavior is 
characterized in joint space by a desired positive definite     
stiffness Kn and a desired positive definite damping Dn as 
well as an equilibrium position qn. So, the desired 
nullspace torque can be computed by a joint level PD 
controller and chosen as 

( )n n n n nK q q D q     .                  (14)    

In the following the desired Cartesian impedance 
torque cF  can be computed to realize the closed-loop 

dynamics (6).    

4.2. Cartesian Impedance Control Design 

Let us define  

  
00( , ) , ( , )0 ( , ) ( , )s b s b

b b

IJ x q N x qJ x q N x q

         
.   (15) 

Hereby, I and 0 denote the appropriate identity matrix 
and zero matrix. 

By inserting (13), (15) into (11) the robot dynamics 
(11) can be rewritten as 

T
T b bb ext
s s n gs s

c ext

x xJ FJ N M Cq qF F
                 

 
         (16) 

From the definition of the generalized Jacobian sJ  in 

(15), the general velocity vector in Cartesian 

coordinates  Ts bJ x x can be written as 

                 b b
s

x xJx q
         
 
                                     (17) 

which yields the relevant mapping between general joint 
and general Cartesian acceleration of the complete 
system’s dynamics 

b b b
s s

x x xJ Jx q q
                
  
                          (18) 

By pre-multiplying (16) with 1( )s gsJ M   and using (18) 

one can obtain the relationship between the general 
Cartesian acceleration and the Cartesian commanded force 

cF  

1
T

bb ext
s gs s n s s

c ext

xJ F J M N xF F
             


       (19)     

with 

1 1

11

2

( , ) ( )

.

( , , , ) ( )

T b c
Ts b s gs s
c

sb
s b b s gs s s

s

x q J M J

x
x q x q J M C J

q






 



         
             


 



     (20) 

By using definitions (12) and (15) it follows 
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n
cb

nsgss
NJM

NMMM
NMJ 



















1

11
1               (21) 

with 
1 1( ( ) ) T

T c b cM M I K B M M M
     .          (22) 

For the dynamic consistency of the null space, the 
projection matrix N should be chosen so that 1 0JM N

  . 

In [4] this was proposed by 
      1( , ) ( )T

bN x q I J JM 
                    (23) 

with   being an equivalent Cartesian mass matrix of the 

manipulator and defined by 
1 1( )TJM J 
   .                    (24) 

It is noticed that outside of the singular configuration 
of the manipulator the matrix  and the respective matrix 

s are full rank and invertible. 

For the chosen ( , )bN x q  in (23), the general Cartesian 

dynamics (19) is reduced into 





















































2

1

11

0

s

sb
T
c

cb

ncb

extc

ext
T
b

x

x

NMMM

FF

FJ









   (25) 

By canceling out the base acceleration bx in (25) one 

becomes the equation of robot motion in Cartesian space 
1 1 1

1
1 2

T
c ext c b b c n

T
c b s s

F F x M M M N  

 

  



     

  


          (26) 

with 

                       
1

1

( , )
.

( , )

T
b c b c

T T
b c b b

x q

x q I J






     

   

      

 
Now, a Cartesian control law is proposed as 

1 1 1

1
1 2 ( , ) ( , )

T
c d c b b c n

T
c b s s c b x c b x

F x M M M N

D x q e K x q e

  

 

  



   

    




.    (27) 

Substituting (27) into (26) yields 
( , ) ( , ) ( , )b x c b x c b x extx q e D x q e K x q e F      .     (28) 

The expression in (28) establishes a relationship 
through a generalized mechanical impedance between the 
vector of resulting forces extF  and the vector of 

displacements xe . In order to avoid the coupled motion 

attributed by  it is necessary to measure the 
forces\torques extF or to simplify the dynamic equation of 

the system.  

4.3. Cartesian Impedance Controller base on 
Energy Tank 

From assumption P.4, the velocity bx in local coordinates 

of the base robot can be neglected and the constraint for 
the dynamics is given by  

                
( )

( ) ( ) 0.
b

b b

x t const

x t x t


    

                                    (29) 

Hence, from (25) the dynamic equation of the 
manipulator is given by 

2( , ) ( , ,0, )c ext b s bF F x q x x q q     .        (30) 

Now, the Cartesian impedance control law can be 
developed by using the dynamic equation (30). Because 
the proposed control gains Kc, Dc in Sec. 3 vary with time, 
a Cartesian impedance control law as [8] cannot ensure 
passivity of the pair  ,x exte F using the storage function  

       
1 1

( , ) ( , )
2 2

T T
x b x x c b xV e x q e e K x q e     .              (31) 

Therefore, a new control law is proposed based 
on energy tank which is used to store the energy 
dissipated by the controlled system. By introducing a 
state variable tx R  ( ( 0) 0tx t   to avoid singularity) 

with the store function of the tank 
21

2 tT x ,                                       (32) 

the closed-loop dynamics (6) is expanded and given 
by 

  












x
T

xb
T
x

t
t

exttxconstxbxb

eweqqxDe
x

x

FwxeKeqqxDeqx





)),0,,((

),0,,(),(

var

var



         (33) 

with 

),(
2

1
),(),0,,(var qxqxDqqxD bbCb   .           (34) 

In the following it is resumed the desired damping 
matrix ( , )c bD x q  is chosen big enough and together 

with the assumption P.3 it yields var ( , ,0, ) 0bD x q q  . 

Furthermore, x

const

n n
cK R  is the constant control 

stiffness and from (8) it is chosen to
minconstc cK K . 

 (with 0 1  ) is a constant to scale the dissipated 
energy in the tank and simultaneously to ensure this being 
not larger than the dissipated energy of the main control. 
Finally,  nw R  presents a new control input to control 
the energy exchange between the main control law and the 
tank, and is chosen to 

( )
if ( )

0 ( )

constc c x
t

t

t

K K e
T x

w x

T x






  
 

.         (35) 

For the desired dynamics (33) the control input Fc in 
(30) is proposed by 

2( , ) ( , ) ( , ,0, )
constc b d c b x c x t s bF x q x D x q e K e wx x q q       

 (36)  



 VCCA-2017 

5 

  

If ( )tT x  the desired closed-loop dynamics (6) is 

present, otherwise a new closed-loop dynamics 
   ( , ) ( , )

constb x c b x c x extx q e D x q e K e F            (37) 

is created. Now, we consider the store function  

    2
1

1 1 1
( , )

2 2 2const

T T
x b x x c x tV e x q e e K e x     .          (38) 

Then the derivative of the function 1V , by using 

equations (33), (35), and (37), leads to 

1 var(1 )T T T
x ext x x x extV e F e D e e F        .            (39) 

Obviously, the controlled system ensures passivity of 

the pair T
x exte F . 

 

 
      Fig. 3: Step response of the controller. 
 

5. Simulation 
The complete control structure of the robot is proposed in 
Fig. 2 consisting of a joint torque controller, a tracking 
joint position controller (state feedback controller with 
position integrator terms) and a Cartesian impedance 
controller which allows the robot work in two control 
modes, either with high position accuracy or with safe  
interaction.  

Because of the slow system dynamics and the high 
required computing time, the robot dynamics and inverse 
kinematics as well as the control gains of the Cartesian 
impedance controller are computed online at 1.33 kHz 
sampling rate, whereas the position controller, the torque 
controller, the Cartesian impedance controller, as well as 
the friction compensation are implemented at 4 kHz 
sampling rate. 
 

      Fig. 4: Desired point-to-point trajectory. 
 

       Fig. 5: Cartesian translation position errors 
 

At first, the control performance in terms of the 
dynamic behavior of controller is validated by using step 
response results. It can be seen in Fig. 3 that the proposed 
controller can damp oscillations of the Cartesian position 
quite well. 

In the next experiment, a point to point trajectory in 
Fig. 4 is chosen in order to show the position tracking 
accuracy of the robot. Fig. 5 shows the reached translation 
position accuracy. It can be seen that the controller can 
achieve position errors in the order of magnitude of 1cm. 
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