Everything You Always Wanted to Know About CSP *
*But Were Afraid to Ask

Robert Pitz-Paal
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient Volumetric Receivers

5. Conclusions
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient Volumetric Receivers

5. Conclusions
Thermal Storage vs. Electric Storage

CSP with thermal storage and fossil back provides reliable dispatchable power at no additional cost.
CSP only suitable in areas with high direct normal radiation
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient volumetric receivers

5. Conclusions
Global expansion of CSP in three phases

Global expansion of CSP in three phases

Since 2003, more volumetric receivers in DLR.

Global expansion of CSP in three phases

Global expansion of CSP in three phases

2003 DLR Head of Division and Prof. @RWTH Aachen

Global expansion of CSP in three phases

2006: 1.5 MW volumetric receiver demo plant planned with research & industry

Global expansion of CSP in three phases

2008 QUARZ®: DLR Qualification Lab for Solar Components
Global expansion of CSP in three phases

2011: Founding Director of new DLR Institute of Solar Research
Transfer of Jülich Demo Plant to DLR as research platform

Global expansion of CSP in three phases

Cost reduction over last 5 years at a learning rate of > 25%

Cost for CSP and PV have dropped dramatically

- Installed CSP capacity is more than an order of magnitude smaller than PV capacity.
Solar Electricity cheaper than power from gas!
700 MW @ 5500 h CSP á 7,3 $cents/kWh
+ 800 MW @ 2300 h PV a 3 $Cents/kWh
= 5,95 $cents/kWh
= 5,07 €cents/kWh
for 24/7 electricity

More than 5000 full load hours
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient Volumetric Receivers

5. Conclusions
Chile Scenario Results – Expansion Model

Scenario 1

<table>
<thead>
<tr>
<th>Social acceptance</th>
<th>Energy demand</th>
<th>Technological change in BESS</th>
<th>Externality costs</th>
<th>RE investment costs</th>
<th>Fossil fuel costs</th>
<th>CSP LCOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario B</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

Installed Capacity

- **PV**
- **CSP**

![Graph showing installed capacity for different energy sources over time](image-url)
Chile Scenario Results – Expansion Model
Scenario 1

<table>
<thead>
<tr>
<th>Social acceptance</th>
<th>Energy demand</th>
<th>Technological change in BESS</th>
<th>Externality costs</th>
<th>RE investment costs</th>
<th>Fossil fuel costs</th>
<th>CSP LCOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario B</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USD 50 /MWh by 2025</td>
</tr>
</tbody>
</table>

Social acceptance, Energy demand, Technological change in BESS, Externality costs, RE investment costs, Fossil fuel costs, CSP LCOE.

Generation

2029

PV

CSP

[Graph showing generation from 2016 to 2050, with labels for Battery, Pump, Diesel, PV_Solar, CSP_Solar, Wind, Hydro_ROR, Hydro_NCRE, Geothermal, Other, Biomass, LNG, Hydro_Dam, Coal.]
Chile Szenario results: Short Term Simulation

2035 summer week dispatch by technology
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient Volumetric Receivers

5. Conclusions
Introduction: Shape and Slope Deviations

Deviations of the ideal shape of curved mirrors for CSP applications can have a significant impact on the optical efficiency and thus the performance of the power plant.

Critical measure is slope deviation, not shape deviation:

- slope needs to be measured accurately,
 shape is only secondary
Deflectometry: Measurement Principle
Measurement Set-Up for Individual Mirror Panels

QDec set-up for horizontal and vertical measurement

Projected horizontal and vertical stripe patterns

Reflected horizontal and vertical stripe patterns
Example Result for Parabolic Trough Mirror Panel

- **SDx = 2.5 mrad**
 RMS value of slope deviation in curved direction

- **SDy = 2.2 mrad**
 RMS value of slope deviation in non-curved direction

- **FDx = 9.5 mm**
 RMS value of focus deviation

- **Intercept = 96.8%**
 Expected intercept considering sunshape and additional typical collector errors
TARMES (Trough Absorber Reflection Measurement System): Basic idea and set-up of measurement system
Measurement:
Turning of collector with camera at close distance (~17m)
Evaluation

- Correction of lens distortion
- Image rectification

- Image treatment
- Edge detection

- Input of geometrical set-up
- Calculation of slope errors
QFly – airborne prediction of the optical performance of parabolic trough collector fields

QFly UAV
4. QFly - High Resolution
Raw Data

Individual unprocessed photos in 5 min. time lapse:
4. QFly - High Resolution

Result: Mirror Shape Maps

Raytracing software to determine intercept / optical performance

- Accuracy
 - RMS 0.1 mrad
 - Local ±1 mrad

- RMS deviation ~1.5 mm
Gravity Load on Parabolic Trough Refectors
Photogrammetry to measure shape
Facet mounted in collector

Simulation

Measurement

Slope Deviation (in x) [mrad]
FEM + Meas
SDx 3.6377

Slope Deviation (in x) [mrad]
FEM + Meas
SDx 3.5283

Slope Deviation (in x) [mrad]
Measured 2 Panel RP3Inner
SDx 3.4831

Slope Deviation (in x) [mrad]
Measured 2 Panel RP3Inner
SDx 3.562
Final quality inspection ...
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 - Shape Accuracy of Solar Concentrators
 - Controlling the Solar Flux Distribution
 - Stable and efficient Volumetric Receivers

5. Conclusions
Controlling the Solar Flux Distribution

optical efficiency ↔ safe operation

problem is complicated by
• high degree of freedom
• different size and shape of focal images
• size and shape varying with time
• tracking uncertainty
2. State of the Art

Measured vs. simulated flux density distribution of a single heliostat:

- **Simulated**: simulated with a statistical mirror error
- **Measured**: measured

Low conformity between reality and simulation
Measurement of Heliostat Slope using Deflectometry

Automated deflectometry measurement system

- automatic selection of single heliostats/groups
- automatic measurement and data processing
- performance: ~60sec./hel.
Validation by Comparison of Ray Tracing Calculations to Flux Measurement Data

Flux Measurement

Simulation
Optimization of Heliostat-Aim Point Assignment

continuous optimization: \(\dim(S) = 2 \cdot n_H \)

discrete optimization: \(|S| = n_Z^{n_H} \)

→ Ant Colony Optimization Meta-Heuristic (ACO)*

Natural Role Model:
- Ants excrete pheromone on their trails
- Pheromone on the trails evaporates over the time
- Ants chose their way randomly mixed with a kind of short visibility (myopic)
- Ants are strongly attracted by pheromone

Aim Point Optimization @ Solar Tower Jülich

Reference Case: Operator’s experience
→ Power Output = 100%

Intercept – Optimization
→ Power Output 111.31%
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient volumetric receivers

5. Conclusions
Energy from the sun: Open volumetric solar receiver

HiTRec-II
SiSiC honeycomb

Source: dlr.de
What is the perfect absorber?

Honeycomb

Wire mesh

Foam
Different Characteristics affecting Flow Stability

- viscosity increases with increasing temperature
- hot zones are badly cooled

- local hot spots
- → instable flow at
 - high temperatures
 - linear pressure drop characteristics
 - low thermal conductivity
How can instable flow be visualized?

by thermograph monitoring of the cooling of a heated porous monolith
cordierite honeycomb

SiC foam

geometry/pressure loss characteristics influences flow stability

heat conductivity influences flow stability

\(v = \text{const.} \) in hot channels

\(v = 0 \)
Optimizing the Absorber Design

State-of-the-art

Increase cellularity and porosity

Decrease inlet radiative losses

Unit element

Por.: 0.51 - 80 CPSI

Por.: 0.64 - 200 CPSI

Por.: var. - 200 CPSI
Optimizing the Absorber Design
Numerical Simulation

- **Innovative geometry**
 - $T_{\text{air-out}}$: 1149 K
 - $\eta = 90\%$

- **HiTRec-II**
 - $T_{\text{air-out}}$: 1012 K
 - $\eta = 72\%$

Graph showing temperature profiles for solid and fluid phases at different sample depths.
Prototype sample production by 3D printing

Cylindrical prototype test-sample: Ti6Al4V 3:1 scaled up geometry
Experimental Validation of Prototype

Thermal efficiency evaluation → 20 kW solar simulator
Outline

1. Characteristics of CSP

2. Market und Cost Development

3. Benefits for a mix of PV und CSP

4. Scientific Challenges in CSP Development
 • Shape Accuracy of Solar Concentrators
 • Controlling the Solar Flux Distribution
 • Stable and efficient volumetric receivers

5. Conclusions
Conclusion

• CSP troughs and towers with large thermal energy storage systems are commercial products today

• In combination with PV, CSP is competitive to 24/7 power from natural gas under favorable conditions

• Today we better understand how to measure, model and optimize
 • large solar fields of parabolic troughs and heliostats,
 • solar receivers and storage systems with different heat transfer fluid,
 • the impact of environmental effects like sunshape and aerosols to maximize the performance and lifetime of a CSP plant.

• With 5 GW installed the technology is very young and significant further improvement is feasible

• Major future challenges are related to integrate new power cycles that operate at elevated temperatures and require new heat transfer and storage fluids