Efficient simulation of multiple impacts on double-curved composite structures

presented by
Marc Garbade (German Aerospace Center)

Paris, 7th of September 2017
Composite aircraft structures are vulnerable to impacts by foreign objects, e.g.

- in-flight & ground hail
- ice-shedding
- tool-drop (production & maintenance)

... leading to barely visible impact damage (BVID), potentially

- remaining undetected in the structure
- accumulating up to the next maintenance date

adapted from [1]
Project objectives

- Assessment of multiple impact damage in composite aircraft components
- Simulation methodology to evaluate the impact response and the residual properties of the structure
Low-fidelity simulation methodology...

Structural modeling
- Contact modeling by using contact laws
- Discretization with a single layer of shell elements

Material modeling
- Three-dimensional stress state recovery
- Use of modern three-dimensional failure criteria (Puck, Cuntze, LaRC04)
- Material degradation with a lookup table

... in a nutshell

Experimental vs. virtual testing

Application in a multiple impact simulation
II. Eye candy

- Application in a multiple impact simulation

Example:
- 5 unique impactors with isotropic material behavior (stainless steel & aluminium alloy)
- Kinetic energies 25 J – 60 J
I. Introduction
  The Big Picture
  Project objectives
  Low-fidelity simulation methodology in a nutshell

II. Eye candy

III. Numerical experiments
  Modeling strategy
  Verification by means of literature results
  Validation by means of single-drop tests

IV. Conclusion

V. Acknowledgements

VI. Contact

VII. References

VIII. Appendix
  Verification of the material degradation lookup table
  Verification of the extended 2D method
III. Numerical experiments

- **Modeling strategy**

 Three-dimensional stress state recovery:
 - Transverse shear stresses
 - Transverse normal stress \(\rightarrow \) Rolfes & Rohwer [4]

 Damage initiation:
 - Fiber breakage = Maximum Stress criterion
 - Matrix cracking = Cuntze [5]
 - Delamination = Choi & Chang [6]

 Damage evolution:

<table>
<thead>
<tr>
<th>Elastic constants in Pa</th>
<th>(e_{FR} \geq 1)</th>
<th>(e_{MC} \geq 1)</th>
<th>(e_{DEL} \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33}) (v_{12}) (v_{13}) (v_{23}) (G_{12}) (G_{13}) (G_{23})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1) (E_{11}) (E_{22}) (E_{33})</td>
<td>(v_{12}) (v_{13})</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
III. Numerical experiments

- **Modeling strategy**

 Contact modeling:
 - Loading phase = Hertz
 - Unloading phase = Crook
 - Reloading phase = Tan & Sun [7]

 Element type:
 - S8R (quadrilateral shell with eight nodes)

 Boundary conditions \((u_i, v_i = 0)\):
 - \(u_x, u_y, u_z, v_x, v_y, v_z\) at edges T & R (*clamped*) or
 - \(u_x, u_y, u_z\) at edges T & R (*simple supported*)
 - \(u_x, v_y, v_z\) at edge L (*symmetry in x-direction*)
 - \(u_y, v_x, v_z\) at edge B (*symmetry in y-direction*)
III. Numerical experiments

- **Modeling strategy**

 Contact modeling:
 - Loading phase = Hertz
 - Unloading phase = Crook
 - Reloading phase = Tan & Sun [7]

 Element type:
 - S8R (quadrilateral shell with eight nodes)

 Boundary conditions \(u_i, v_i = 0 \):
 - \(u_x, u_y, u_z, v_x, v_y, v_z \) at edges T & B (clamped)
 - \(u_x, u_y, u_z \) at edges L & R (simple supported)
 - \(u_y \) in the red-shaded area
III. Numerical experiments

- Verification by means of literature values

Impactor:
- stainless steel
- 32.67 g
- \(v = 1 \, \text{m/s} \)
- \(\phi 20 \, \text{mm} \)

Target:
- 8 mm thickness
- stainless steel
- clamped
III. Numerical experiments

- Verification by means of literature values

Impactor:
- stainless steel
- $8.84\, g$
- $v = 3\, m/s$
- $\phi 12.7\, mm$

Target:
- $2.69\, mm$ thickness
- $[(0,90)_{2}, 0]_{s}$
- simple supported
III. Numerical experiments

- Validation by means of single-drop tests

Impactor:
- stainless steel
- 3.95 kg
- Ø 16 mm

Target:
- 4 mm thickness
- [(±45)_5, 45]_s

[Graphs showing contact force over time for different energies (10 J, 15 J, 25 J, 35 J)]
III. Numerical experiments

- Validation by means of single-drop tests

- Projected delamination areas:
 - LHS → C-scan result
 - RHS → Simulation
III. Numerical experiments

- Validation by means of single-drop tests

Impactor:
- stainless steel
- 3.95 kg
- ø 16 mm

Target:
- 4 mm thickness
- [(±45, 0,90)₂, ±45,0]ₜ
III. Numerical experiments

- Validation by means of single-drop tests

Projected delamination areas:
- LHS → C-scan result
- RHS → Simulation

10 J

15 J

25 J

30 J
IV. Conclusion

Verification by means of literature results:
- All results are in line with literature results

Validation by means of single-drop tests:
- Very satisfying results w.r.t. the projected delamination areas
- Good agreement between the measured & simulated contact force history

Points to optimize:
- Simulated contact stiffness is slightly too soft in all cases → explains the right-shift
- The effect of material degradation on the contact force history is slightly too small → results in overestimated contact force maxima

Next challenges:
- Validation of simulation methodology for multiple impact problems
- Implementation of an expression for brittle impact behavior (hail, ice-shedding)
- Implementation of subsequent analysis steps to assess the residual strength or fatigue behavior of the damaged structure
V. Acknowledgements

This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under H2020-CS2-CPW01-2014-01
Thank you for your attention!

Marc Garbade, M.Sc.
Email: Marc.Garbade@dlr.de
Phone: +49(0)5312953666

German Aerospace Center e.V. (DLR)
Composite Structures and Adaptive Systems | Lilienthalplatz 7 | 38108
Brunswick, Germany
VII. References

VIII. Appendix

- Verification of the material degradation lookup table

Damage evolution:
- Degradation model causes stress redistribution in cases of damage
VIII. Appendix

- Verification of the extended 2D method

Double-cosine load:
- Amplitude of +1

Rectangular plate:
- 1 mm thickness
- 0.128 mm layer thickness
- $[(0,90)_2]_s$