Technical Economic Evaluation of Renewable Jet Fuel from Power, Biomass and/or Carbon Dioxide

Friedemann Albrecht, Stefan Estelmann, <u>Ralph-Uwe Dietrich</u> German Aerospace Center (DLR) Institute of Engineering Thermodynamics, Stuttgart

4th European Refining Technology Conference, Athens 15.11.2017

Knowledge for Tomorrow

Agenda

1. Motivation – Explaining the need for renewable jet fuel

- GHG emission reduction need
- Political framework conditions Paris Agreement
- IATA reduction targets

2. Renewable jet fuel options

- By ASTM certified sustainable jet fuels
- Technical development potentials

3. Economic and environmental evaluation of renewable jet fuel

- Introduction to methodology applied by DLR
- Example: Green jet fuel from Biomass, Power and/or CO₂

4. Summary and outlook

1. Climate Change –

400

350 - Ia

300

250

200

150^{LL} 800

CO₂ Concentration (ppm)

2015

USGCRP, 2017: *Climate Science Special Report: Fourth National Climate Assessment, Volume I* [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp.

- Global annually averaged surface air temperature has increased by about 1.0 °C over the last 115 years (1901–2016)
- No convincing alternative explanation available other than human activities, especially emissions
 of greenhouse gases, are the dominant cause of the observed warming
 - Undeniable effects, e.g.
 - melting glaciers
 - diminishing snow cover
 - ➢ shrinking sea ice
 - rising sea levels
 - ocean acidification
 - increasing atmospheric water vapor
 - > climate-related weather extremes (heavy rainfall, heatwaves, forest fires, ...)

1. Political willingness needs scientific support

Global long term targets

- <u>COP21 targets:</u>
- Decarbonization of Society
- Global average temperature increase below 1.5 °C

European mid term goals

- EU-targets until 2030^{1,2}
- ✤ 40 % reduction of GHG (base year 1990)
- ✤ 27 % increase of renewable energies in primary energy consumption
- * 10 % renewable energy in transport and 6.8 % advanced renewable fuels in fuel supply

¹ European Council, "2030 Climate and Energy Policy Framework," Brussels 2014

² European Commission, "Proposal for a directive on the promotion of the use of energy from renewable sources (recast)," Brussels 2016

1. Growth in aviation sector

Fuel for sustainable aviation

(specific passenger kilometers per capita/a)

Source: Thess et al., DGLR-Mitgliedermagazin "Luft- und Raumfahrt" edition 2/2016, p.20

2. Jet fuel options: Certified sustainable jet fuels (ASTM D7566 – 14c^[1])

Feedstock		Synthesis technology	Fuel		
Coal, natural gas, <i>biomass</i> , $CO_2 \& H_2$		Fischer-Tropsch (FT) synthesis	Synthetic paraffinic kerosene		
Li	Lir Future role of 1 st generation jet fuels within the aviation sector questionable due to:				
Sı	 Direct competition with food markets Low area-related energy yields and limited cultivation area within the EU 				
Bi	- Low technical development potential				

Technical Potential of 1st generation sustainable jet fuel in Europe ^[2-6]:

Feedstock	Kerosene yield from total EU crop production [Mt/a]	Share of EU kerosene consumption ₂₀₁₄ [%]	Share of total cultivation area in EU [%]
Wheat	23.0 - 32.9	41.8 – 59.8	30.2
Sugar	3.9	7.1	1.8
Rapeseed	7.3	13.3	13.3
Σ	34.3 – 44.2	62.4 - 80.4	45.2

[2] Eurostat "Crop statistics" 2014

[3] Specialist agency renewable raw materials e. V., "Introduction of fuel ethanol", 2016

[4] NREL, "Review of Biojet Fuel Conversion Technologies", Golden, 2016

[5] UFOP "Rapeseed the Power Plant" 2017

[6] DBFZ, "Abschlussbericht Projekt BurnFAIR", 2014

2. Jet fuel options: Certified sustainable jet fuels (ASTM D7566 – 14c ^[1])

Feedstock	Synthesis technology	Fuel
Coal, natural gas, <i>biomass</i> , CO ₂ & H ₂	Fischer-Tropsch (FT) synthesis	Synthetic paraffinic kerosene
Lipids from Biomass (e.g. algae, soya, jatropha)	Hydroprocessed esters and fatty acids (HEFA)	Synthetic paraffinic kerosene
Sugar from Biomass	Direct Sugars to Hydrocarbons (DSHC)	Synthetic iso-paraffins / Farnesane
Bioethanol (-propanol, -butanol)	dehydration+oligomerization+hydration (Alcohol-to-Jet, AtJ)	AD-SPK

Fischer-Tropsch synthesis

- Large scale, commercial technology
- Based on synthesis gas (Produced from almost any carbon and hydrogen source possible)
- Fully synthetic kerosene achievable^[2]

Potential for Europe? – e.g. jet fuel from wind power

- Current jet fuel consumption: ≈ 56 Mt/a^[3]
- Power demand for exclusively power based kerosene in Europe: ≈ 1,410 TWh
- Euro ≈ 8.
 - European wind power potential^[4]: 12,200 30,400 TWh
 ≈ 8.6 22 times of power based kerosene demand!

[1] ASTM International, "ASTM D7566 - 14C: Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons", 2015 [2] UK Ministry of Defense, "DEF STAN 91-91: Turbine Fuel, Kerosene Type, Jet A-1", UK Defense Standardization, 2011

[3] Eurostat database, 2015

[4] European Environment Agency, "Europe's onshore and offshore wind energy potential," 2009.

2. Production routes of alternative FT-Kerosene

- **Louviasgebie Ogvioontanteinia**l potential

The supply of large quantities of alternative kerosene within low GHG emissions is possible by coupling the sectors renewable electricity generation and fuels *(without biomass imports).*

3. Techno-Economic and ecological assessment (TEA) of renewable jet fuel

3. Investigated Fischer-Tropsch concepts

Three concepts to compare

<u>Source:</u> F. G. Albrecht, D. H. König, N. Baucks und R. U. Dietrich, "A standardized methodology for the technoeconomic evaluation of 1 alternative fuels," *Fuel*, Bd. 194, pp. 511-526, 2017.

3. Technical results: Yield, Efficiency

Energetic efficiency

Case study equipment selection and assumptions:

- PEM, η_{LHV} = 67 % ^[1]
- Entrained flow gasifier, T = 1,200 °C, p = 30 bar, pure $O_2^{[2]}$
- Fischer-Tropsch synthesis, T = 225 °C, p = 25 bar, α = 0.85, X_{CO} = 40 % ^[3]

Technical evaluation results:

[1] T. Smolinka, M. Günther and J. Garche, "Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien," NOW GmbH, 2011, in German

[2] K. Qin, "Entrianed Flow Gasification of Biomass, Ph. D. thesis," Technical University of Denmark (DTU), Kgs. Lyngby, 2012.

[3] P. Kaiser, F. Pöhlmann and A. Jess, "Intrinsic and effective kinetics of cobalt-catalyzed Fischer-Tropsch synthesis in view of a Power-to-Liquid process based on renewable energy," *Chemical Engineering Technology*, vol. 37, pp. 964-972, 2014.

3. Techno-Economic and ecological assessment (TEA) of renewable jet fuel

3. Methodology applied for TEA

According to AACE class 3-4 – Cost estimation accuracy +/- 30 %

Investment costs:

3. TEA: Base Case definition

Plant capacities:

BtL:

100 MW_{LHV} biomass ** Fuel production: 24.2 kt/a

PBtL:

✤ 100 MW_{LHV} biomass

165 MW power **

Fuel production: 91.3 kt/a

PtL:

✤ 267 MW power

Fuel production: 91.3 kt/a

PEM-Electrolyzer:	723 €/kW [^{1]} (installe	(installed capacity)			
Fischer-Tropsch reactor:	95,650 €/(m³) [[]	^{2]} (Scale-	factor 1)			
Raw material & by-product	Raw material & by-products market prices:					
Electricity:	<i>Electricity:</i> 83.7 €/MWh ^[3]					
CO ₂ : 12.1 €/t ^[4]						
Oxygen (export):	23.7 €/t ^[5]	1				
Steam (export):	14.7 €/t ^[6]					
Other economic assumptions:						
Base year:	2016	Plant lifetime:	30 years			
Operating hours:	8,260 h/a	Interest rate:	5 %			
 G. Saur, Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study P. Kerdoncuff, Modellierung und Bewertung von Prozessketten zur H Eurostat, Preise Elektrizität für Industrieabnehmer in Deutschland, 2r S. D. Phillips, "Gasoline from wood via integrated gasification, synthe NREL, "Appendix B: Carbon Dioxide Capture Technology Sheets - O Own calculations based on natural gas price from Eurostat database 	Herstellung von Biokraftstoffen der zweiten Gel 016 esis, and methanol-to-gasoline technologies," I xygen Production," US Department of Energy,	NREL, 2011	2008			
MULL CONTRACTOR	and the second second second					

3. Results of TEA

3. Sensitivity analysis – Economy of scale and Power Price

3. Techno-Economic and ecological assessment (TEA) of renewable jet fuel

3. CO₂-Abatement Cost – Footprint of Feedstocks

^a Based on own calculations taking into account biomass type (forest residues, straw etc.) and transport distances. CO₂-emissions during cultivation and harvesting are accounted for.

^b Low boundary value for pure wind electricity taken from[1]. High value corresponds to the actual CO₂-footprint of the German electricity sector [2].
 ^c Based on own calculations. The carbon footprint represents emissions arising from sequestration of CO₂ from flue gas. Flue gas from cement industry and coal fired power plants were investigated. The probably fossil nature of the flue gas was not taken into account. Low/high value: energy demand of CO2-sequestration is covered with wind energy/German electricity mix.

^d Taken from ProBas databank [1]. Low/high value due to different electricity sources.

[1] Umweltbundesamt, "Prozessorientierte Basisdaten f
ür Umweltmanagementsysteme," http://www.probas.umweltbundesamt.de/php/index.php.
 [2] Umweltbundesamt, "Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 – 2016," Dessau-Roßlau, 2017.

3. CO₂-Abatement Cost – Results

PtL-concepts only viable using CO₂-neutral power!

Cost comparison:

Case1 – Status Quo:

Price of fossil kerosene:	ca. 0.5 €/I
Power price:	105 €/MWh
Biomass price:	100 €/t

Case2 – Pressure on Fossil Energy:

	0,
Price of fossil kerosene:	ca. 1.0 €/l
Power price:	30 €/MWh
Biomass price:	60 €/t

CO₂-Abatement costs € / t_{CO_2}					
Case	BtL-Low	BtL-Av.	BtL-High	PBtL-Low	PtL-Low
1	662	985	2,756	631	827
2	406	605	1,183	134	155

Current CO₂ Price of EU-ETS: **5-7 €/t**_{CO2.eq}

Conclusions

- Large quantities of renewable jet fuel are required to reduce GHG emissions in the growing aviation sector
- Technical potential of 1st generation jet fuel from energy crops is very limited
- Fischer-Tropsch based jet fuel can replace fossil fuel as drop-in fuel
- Large refinery capacities are required in order to convert FT-syncrude into valuable jet fuel (ASTM-quality)
- A standardized and transparent methodology for the evaluation of alterative jet fuels with respect to technical, economic and ecological key performance parameters is available

Outlook

- 2021 will start the Global GHG compensation policy CORSIA in 66 countries, becoming fully obligatory 2027-2035
- United Nations Framework Convention on Climate Change (UNFCCC) certifies GHG emission reduction projects
- European refinery industry shall volunteer for large scale renewable jetfuel production helping to fulfill aviation long term goals

Outlook: Power&Biomass-to-Liquid Proof of concept

THANK YOU FOR YOUR ATTENTION!

German Aerospace Center (DLR) Institute of Engineering Thermodynamics Research Area Alternative Fuels

ralph-uwe.dietrich@dlr.de http://www.dlr.de/tt/en

Knowledge for Tomorrow

Electrolyser Scale Up

10MW | 30MW | 100MW ELECTROLYSER SYSTEMS

Deployment of worlds largest PEM electrolyser with Shell at Wesseling Refinery

- · Utilises proven and modular PEM electrolysis system
- The Wesseling refinery currently uses 180,000t/yr of H₂
- This equates to 1,000MW of electrolysis, worth €1 billion
- · Fully integrated & autonomous
- · Expandable & industrial scale
- · Replication maintains standardisation
- 10MW building 20 x 14m

ELECTROLYSER SCALE-UP HYDROGEN ENERGY SYSTEMS

