Motivation & Approach
Slag from steel industry as an inventory material for thermal energy storage (TES) of CSP tower plants offers cost reduction potential, due to its classification as waste.

For a successful market introduction of this technology, efficient and up-scalable solutions for the TES are a prerequisite. Investigations to clarify open questions concerning the implementation in large installations in combination with slag-pebbles as inventory are needed. The European project REslag is dedicated to this.

Development activities
- Conception of TES design
- Thermal analysis of the TES
- Pilot scale tests of a set-up of slag pebbles and various insulation options
- Simulation of flow distribution using different distributors
- Thermo-mechanical calculations of the container wall and the slag pebbles

Results
- Max. temperature drop of 60°C of the hot end can be reached
- Steady state conditions can be reached after 8 days
- Highest pressure drop of 87 mbar occurs during solar noon
- Mean pressure drop is 50 mbar
- Several distributors with good uniformity of flow are identified; cylinder distributor of 1m height is most promising
- Increase of contact force with increasing temperature spread
- Higher forces for particle-wall contacts

Summary & Outlook
- Lead concept “Axial flow – vertical” could be identified by using the thermal analysis as well as aptitude and risk analysis
- Distributor concept was identified
- Thermo-mechanical calculations with reduced degree of detail indicate larger forces than expected
- Mechanical and thermal slag analysis is promising
- The full scale lead design was adapted to the pilot scale test rig
 ➔ upcoming experimental trials will be performed
 • Different insulation options
 • Different load behaviours

Acknowledgements:
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 642067.