

Advances in Lithium and Hydrogen Electrochemical Systems for Energy Conversion and Storage

Synthesis of Highly Active Iridium Catalysts for Anodes of Proton Exchange Membrane Electrolyzers

<u>Aldo Gago¹</u>, Philipp Lettenmeier¹, Jan Majchel¹, Li Wang¹, Andreas Friedrich^{1,2}

¹Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany ²Institute of Energy Storage, University of Stuttgart, Stuttgart, 70550, Germany

Knowledge for Tomorrow

Contents

- Hydrogen as energy vector
- Cost and availability of iridium catalyst
- Oxygen evolution reaction (OER) catalyst design
- Synthesis of IrO_x-Ir, Ir/SnO₂:Sb-aerogel, and Ir_{0.7}Ru_{0.3}O_x catalysts
- Physical characterization, activity and stability
- Summary

Hydrogen as energy vector

- High percentage of renewable energy in energy supply chain need long-term storage facilities
- Intermittend oversupply of renewable energy (RE) will increase significantly (in 2050 ~25 TWh) will be available for hydrogen production in Germany

- Intermittent oversupply of RE from wind and sun
- 2) Feeding in electrical grid
- Hydrogen production via electrolysis(3000-4000 hours per year)
- Hydrogen can be distributed via the natural gas grid
- 5 Hydrogen can be used in industry and for heat production
- 6 Mobilily for fuel cell-driven vehicles

PEM electrolysis: Working principle and cost break down

 $E_{cell} = 2 V, pH = 0, 80 °C$

Stack assembling
Small parts
MEA manufacturing
Catalyst cathode
Catalyst anode
Membranes
Current collectors cathode
Current collectors anode
Bipolar plates
End plates
Pressure plates

Study on development of water electrolysis in the EU. Final Report. E4tech Fuel Cells and Hydrogen Joint Undertaking; 2014

- Bipolar plates are the most expensive component (51%) of the stack
- Currently the cost cost of the PMG catalyst (Ir and Pt) comprise only 8%
- The real obstacle for industrial PEM electrolyzers are the lack of business cases and unsuitable H₂ regulations

Cost and availability of PEM electrolyzer catalysts

- Global iridium production of less than 9 t yr⁻¹. 90% comes from South Africa.
- Current MEA specifications: Anode: 2-3 mg_{iridium} cm⁻² Cathode: $< 1 \text{ mg}_{\text{platinum}} \text{ cm}^{-2}$
- 7530 tons of Ir are required for PEM electrolyzers operating at $E_{cell} = 1.65$ V. It is equivalent to 836 times the annual production
- Chemical, metal and refinery industries require hundreds of TW of H₂

Haxel er al. Mineral, O. U. R. United States Geol. Surv. Fact Sheet 2002, 87, 4.

PEM electrolysis technology is not scalable to the TW level!

Catalysts

DLR activities in PEM Electrolysis: from Fundamentals to Megawatt Systems

MW PEM Electrolyzer

Laboratory test stations

Coatings

Stack components

Analytics and in-situ diagnostics

Designing a cost effective, active and durable electrocatalyst for oxygen evolution reaction (OER)

- Ir as <u>active</u> and stable metal center for OER
- Enhancement of <u>activity</u> of Ir by adding
 A. Reduction of Ir content
- Enhancement of <u>durability</u> of Ir by adding B (PMG metal) / hydrogen oxidation reaction (HOR) (less H₂ crossover)
- Increase of electrochemical <u>surface area</u> (ECSA), <u>activity</u> and <u>durability</u> by using an electro-ceramic support MO_{2-δ}. Cost reduction

Challenge: Develop a highly active and stable OER catalyst than can be mass-produced at a reduced cost

Target material: A_xIr_yB_z/MO_{2-δ}

Synthesis of oxygen evolution reaction (OER) catalysts

Ir/Ti₄O₇^c, Ir/SnO₂:Sb-Aerogel^d

^aLettenmeier *et al.* Angew. Chemie **2016**, *128*, 752–756.
^bWang et al. Nano Energy, **2017**, 34, 385–391.
^cWang *et al.* Phys. Chem. Chem. Phys. **2016**, *18*, 4487–4495.
^dWang *et al.* J. Mater. Chem. A, **2017**, 5, 3172–3178.

• Estimated cost < 100 € g⁻¹

Patent pending DE 102015101249 A1

Electrochemically oxidized IrO_x-Ir nanoparticles

- Metallic Ir nanoparticles (agglomerated) with large numer of defects
- Almost identical structure, morphology and surface properties than Ir-black
- 5-fold higher OER activity than Ir-black
- Negligible E_{cell} increase after more than 100 h in PEM electrolyzer at 2 A cm⁻², 80°C

Lettenmeier et al. Angew. Chemie 2016, 128, 752–756.

Ir/SnO₂:Sb-Aerogel: Morphology and surface properties

- Metallic Ir deposited on three-dimensional (3D) aerogel SnO₂:Sb (ARMINES)
- NH₄VO₃ added to IrCl₃ solution: Ir/SnO₂:Sb-mod-V
- CI impurities are 5 times higher in the case of Ir/SnO₂:Sb
- VO₂ or V₂O₅ allows retaining the aerogel structure under atmospheric drying

Wang et al, J. Mater. Chem, A, 2017, 5, 3172-3178.

TEM

lr/SnO₂:Sb-mod

Ir/SnO₂:Sb-Aerogel: Electrochemical activity

- OER activities: Ir/SnO₂:Sb (94.6 A g⁻¹) and Ir/SnO₂:Sb-mod-V (121.5 A g⁻¹)
- The slight difference in Tafel slopes attributed to the influence from MMOSI:

H. S. Oh *et al.* P. Strasser, *J. Am. Chem. Soc.*, **2016**, 138, 12552-12563.

- Ir/SnO₂:Sb-mod-V allows decreasing of more than 70 wt.% for precious metal
- Cu-UPD enables the calculation of ECSA

Wang et al. J. Mater. Chem. A, 2017, 5, 3172-3178.

Does V addition play an active role in electrocatalysis?

Ir/SnO₂:Sb-Aerogel: Electrochemical stability

- RDE stability tests based on a protocol developed by P.
 Strasser and co-workers: Nong, H. N. et al. Angew. Chemie 2015, 54 (10), 2975.
- After test V wt% decreases one order of magnitude
- Sb and Ir pratically remained unchanged
 - Ir dissolution?
 - Decrease of electronic conductivity of SnO₂:Sb?

Wang et al. J. Mater. Chem. A, 2017, 5, 3172–3178.

	Ir/SnO ₂ :Sb-mod-V: fresh electrode											
Analyzed Areas	C / wt.%	O / wt.%	F/ wt.%	Na / wt.%	Cl / wt.%	V / wt.%	Sn / wt.%	Sb / wt.%	Ir/ wt.%	Au / wt.%		
A1	6.83	9.8	7.16	1.19	0.39	3.15	29.68	3.81	17.74	20.26		
A2	6.84	9.95	6.1	0.96	0.34	2.74	27.8	3.66	17.34	24.27		
A3	7.3	10.14	6.08	1.14	0.39	2.71	28.13	3.51	17.4	23.21		
Ir/SnO ₂ :Sb-mod-V: operated electrode												

Analyzed Areas	C / wt.%	O / wt.%	F / wt.%	Na / wt.%		V / wt.%	Sn / wt.%	Sb / wt.%	<u>Ir</u> / wt.%	Au / wt.%
A1	7.07	13.32	5.95	N/A	0.39	0.33	29.82	3.2	18.79	21.12
A2	7.36	13.68	6.93	N/A	0.28	0.23	28.43	2.95	17.14	23
A3	7.52	13.51	6.18	N/A	0.4	0.32	27.73	3.3	18.57	22.47

Electrochemical leaching of Ru from metallic Ir_{0.7}Ru_{0.3}

- The resulting material shows 13-fold higher activity compared to the state-ofthe-art Ir_{0.7}Ru_{0.3}O₂.
- MEA test in PEM electrolyzer confirmed the high performance and stability (>400 h) of the Ru-leached Ir anode.
- Surface O^{I-} formation and surface hydroxyls formation are plausible explanations for a superior activity

DLR.de • Chart 14

NAP-XPS set-up at BESSY II

Stabilization mechanism of Ru in Ir_{0.7}Ru_{0.3}O₂

 $Ir_{0.7}Ru_{0.3}O_2$

- Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) allows monitoring of the surface state of MEAs swith RuO₂ and Ir_{0.7}Ru_{0.3}O₂ (rutile) during OER
- Ir protects Ru from the formation unstable hydrous Ru^{IV} oxide
- OER occurs through a surface Ru^{VIII} intermediate

100

80

60

40

RUOZ

RUIOHI

0/0

 $Ir_{0.7}Ru_{0.3}O_2$

286 284

Binding energy / eV

288

CPS

292 290

Saveleva et al. J. Phys. Chem. Lett., 2016, 7, 3240-3245

Summary

- Cost-effective and environmentally friendly synthesis of anode catalysts for PEM electrolyzers
- 5-fold higher activity of IrO_x-Ir vs. Ir-black. The enhancement is attributed to the ligand effect and low coordinate sites
- The use of **SnO₂:Sb-Aerogel** allows decreasing more than 70 wt.% of Ir in the catalyst layer and improves stability
- Electrochemical leaching of Ru from metallic Ir_{0.7}Ru_{0.3} leads to 13-fold higher activity compared to the state-of-the-art Ir_{0.7}Ru_{0.3}O₂
- New mechanisms of stability and OER for Ir_{0.7}Ru_{0.3}O₂ uncovered by near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)
- In operado advanced spectroscopy techniques are necessary to understand the reaction and degradation mechnism of PEM electrolyzer catalysts

Acknowledgements

Pawel Gazdzicki Ina Plock Oliver Freitag Schwan Hosseiny

Christian Beauger Guillaume Ozouf

ARMINES

Ute Golla-Schindler

Tobias Morawietz Michael Handl Renate Hiesgen

Hochschule Esslingen University of Applied Sciences Rainey Wang Ramy Abouatallah

Project No. 0325440A.

Bundesministerium für Wirtschaft und Energie

Viktoriia Saveleva Elena Savinova Spyridon Zafeiratos

Grant No. 621237

Thank you for your attention

