Synthesis of Highly Active Iridium Catalysts for Anodes of Proton Exchange Membrane Electrolyzers

Aldo Gago¹, Philipp Lettenmeier¹, Jan Majchel¹, Li Wang¹, Andreas Friedrich¹,²

¹Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany
²Institute of Energy Storage, University of Stuttgart, Stuttgart, 70550, Germany
Contents

• Hydrogen as energy vector

• Cost and availability of iridium catalyst

• Oxygen evolution reaction (OER) catalyst design

• Synthesis of IrO$_x$-Ir, Ir/SnO$_2$:Sb-aerogel, and Ir$_{0.7}$Ru$_{0.3}$O$_x$ catalysts

• Physical characterization, activity and stability

• Summary
Hydrogen as energy vector

- High percentage of renewable energy in energy supply chain need long-term storage facilities
- Intermittent oversupply of renewable energy (RE) will increase significantly (in 2050 ~25 TWh) will be available for hydrogen production in Germany

1. Intermittent oversupply of RE from wind and sun
2. Feeding in electrical grid
3. Hydrogen production via electrolysis (3000-4000 hours per year)
4. Hydrogen can be distributed via the natural gas grid
5. Hydrogen can be used in industry and for heat production
6. Mobilility for fuel cell-driven vehicles
PEM electrolysis: Working principle and cost breakdown

- Bipolar plates are the most expensive component (51%) of the stack
- Currently the cost of the PMG catalyst (Ir and Pt) comprise only 8%
- The real obstacle for industrial PEM electrolyzers are the lack of business cases and unsuitable H₂ regulations

\[E_{\text{cell}} = 2 \text{ V}, \ p\text{H} = 0, \ 80 \ ^\circ \text{C} \]
Cost and availability of PEM electrolyzer catalysts

• Global iridium production of less than 9 t yr\(^{-1}\). 90% comes from South Africa.

• Current MEA specifications:
 Anode: 2-3 mg\(_{\text{iridium}}\) cm\(^{-2}\)
 Cathode: < 1 mg\(_{\text{platinum}}\) cm\(^{-2}\)

• 7530 tons of Ir are required for PEM electrolyzers operating at \(E_{\text{cell}} = 1.65\) V. It is equivalent to 836 times the annual production

• Chemical, metal and refinery industries require hundreds of TW of \(\text{H}_2\)

PEM electrolysis technology is not scalable to the TW level!
DLR activities in PEM Electrolysis: from Fundamentals to Megawatt Systems

- Catalysts
- Coatings
- Stack components
- MW PEM Electrolyzer
- Laboratory test stations
- Analytics and in-situ diagnostics
Designing a cost effective, active and durable electro-catalyst for oxygen evolution reaction (OER)

- **Ir** as active and stable metal center for OER
- Enhancement of activity of Ir by adding **A**. Reduction of Ir content
- Enhancement of durability of Ir by adding **B** (PMG metal) / hydrogen oxidation reaction (HOR) (less H₂ crossover)
- Increase of electrochemical surface area (ECSA), activity and durability by using an electro-ceramic support MO₂⁻δ. Cost reduction

Challenge: Develop a highly active and stable OER catalyst than can be mass-produced at a reduced cost

Target material: AₓIrᵧB₂/MO₂⁻δ
Synthesis of oxygen evolution reaction (OER) catalysts

\[\text{IrO}_x - \text{Ir}^a, \text{Ir}_{0.7}\text{Ru}_{0.3}\text{O}_x^b \]

\[\text{IrCl}_3 (0.0749 \text{ g}) \rightarrow \text{ANH ethanol (50 ml)} \rightarrow \text{Ultrasound} \]

\[\text{Reducing agent} \]

\[\text{NaBH}_4 (0.114 \text{ g}) \rightarrow \text{ANH ethanol (80 ml)} \rightarrow \text{Ultrasound} \]

\[\text{NaBH}_4 + \text{IrCl}_3 \cdot x\text{H}_2\text{O} \rightarrow \]
\[\text{Ir}^0 + \text{H}_3\text{BO}_3 + \text{NaCl} + \text{HCl} + y\text{IrCl}_3 + \text{H}_2 \]

\[\text{Mixing solution (4 h, 800 rpm, Ar- atmosphere)} \]

\[\text{Ir}/\text{Ti}_4\text{O}_7^c, \text{Ir}/\text{SnO}_2:\text{Sb-Aerogel}^d \]

\[\text{Ti}_4\text{O}_7 \text{ support (Changsha PuRong)} \]

\[\text{ANH ethanol (120 ml)} \rightarrow \text{Ultrasound} \]

\[\text{CTAB (1.17 g)} \]

\[\text{ANH ethanol (120 ml)} \rightarrow \text{Ultrasound} \]

\[\text{Ti}_4\text{O}_7 (0.113 \text{ g}) \]

- Environmentally friendly synthesis
- Scalable for large production: 1 g d\(^{-1}\)
- Estimated cost < 100 € g\(^{-1}\)

\[^a \text{Lettenmeier et al. Angew. Chemie 2016, 128, 752–756.} \]

\[^b \text{Wang et al. Nano Energy, 2017, 34, 385–391.} \]

\[^c \text{Wang et al. Phys. Chem. Chem. Phys. 2016, 18, 4487–4495.} \]

Patent pending DE 102015101249 A1
Electrochemically oxidized IrO_x-Ir nanoparticles

- Metallic Ir nanoparticles (agglomerated) with large number of defects
- Almost identical structure, morphology and surface properties than Ir-black
- 5-fold higher OER activity than Ir-black
- Negligible E_{cell} increase after more than 100 h in PEM electrolyzer at 2 A cm$^{-2}$, 80°C

Ir/SnO$_2$:Sb-Aerogel: Morphology and surface properties

- Metallic Ir deposited on three-dimensional (3D) aerogel SnO$_2$:Sb (ARMINES)

- NH$_4$VO$_3$ added to IrCl$_3$ solution: Ir/SnO$_2$:Sb-mod-V

- Cl impurities are 5 times higher in the case of Ir/SnO$_2$:Sb

- VO$_2$ or V$_2$O$_5$ allows retaining the aerogel structure under atmospheric drying

Ir/SnO$_2$:Sb-Aerogel: Electrochemical activity

- OER activities: Ir/SnO$_2$:Sb (94.6 A g$^{-1}$) and Ir/SnO$_2$:Sb-mod-V (121.5 A g$^{-1}$)

- The slight difference in Tafel slopes attributed to the influence from MMOSI:

- Ir/SnO$_2$:Sb-mod-V allows decreasing of more than 70 wt.% for precious metal

- Cu-UPD enables the calculation of ECSA

- Does V addition play an active role in electrocatalysis?
Ir/SnO₂:Sb-Aerogel: Electrochemical stability

- RDE stability tests based on a protocol developed by P. Strasser and co-workers:

- After test V wt% decreases one order of magnitude

- Sb and Ir practically remained unchanged
 - Ir dissolution?
 - Decrease of electronic conductivity of SnO₂:Sb?

The resulting material shows 13-fold higher activity compared to the state-of-the-art Ir$_{0.7}$Ru$_{0.3}$O$_2$.

MEA test in PEM electrolyzer confirmed the high performance and stability (>400 h) of the Ru-leached Ir anode.

Surface O$^-$ formation and surface hydroxyls formation are plausible explanations for a superior activity.

\[\text{Electrochemical leaching of Ru from metallic Ir}_{0.7}\text{Ru}_{0.3}\]

\[\text{STEM}\quad \text{XPS}\]

\[\text{RDE}\quad \text{PEM electrolyzer}\]

Stabilization mechanism of Ru in $\text{Ir}_{0.7}\text{Ru}_{0.3}\text{O}_2$

- Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) allows monitoring of the surface state of MEAs with RuO$_2$ and $\text{Ir}_{0.7}\text{Ru}_{0.3}\text{O}_2$ (rutile) during OER
- Ir protects Ru from the formation unstable hydrous RuIV oxide
- OER occurs through a surface RuVIII intermediate

Summary

• Cost-effective and environmentally friendly synthesis of anode catalysts for PEM electrolyzers

• 5-fold higher activity of IrO_x-Ir vs. Ir-black. The enhancement is attributed to the ligand effect and low coordinate sites

• The use of SnO_2:Sb-Aerogel allows decreasing more than 70 wt.% of Ir in the catalyst layer and improves stability

• Electrochemical leaching of Ru from metallic $\text{Ir}_{0.7}\text{Ru}_{0.3}$ leads to 13-fold higher activity compared to the state-of-the-art $\text{Ir}_{0.7}\text{Ru}_{0.3}\text{O}_2$

• New mechanisms of stability and OER for $\text{Ir}_{0.7}\text{Ru}_{0.3}\text{O}_2$ uncovered by near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)

• In operado advanced spectroscopy techniques are necessary to understand the reaction and degradation mechanism of PEM electrolyzer catalysts
Acknowledgements

Pawel Gazdzicki
Ina Plock
Oliver Freitag
Schwan Hosseiny

Christian Beauger
Guillaume Ozouf

Ute Golla-Schindler

Tobias Morawietz
Michael Handl
Renate Hiesgen

Hochschule Esslingen
University of Applied Sciences

Rainey Wang
Ramy Abouatallah

Project No. 0325440A.

Viktoriia Saveleva
Elena Savinova
Spyridon Zafeiratos

Grant No. 621237
Thank you for your attention