Cost Effective and Highly Active Catalysts for Anodes of Proton Exchange Membrane Electrolysis

Aldo Gago1, Li Wang1, Philipp Lettenmeier1, Andreas Friedrich1,2

1Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany
2Institute of Energy Storage, University of Stuttgart, Stuttgart, 70550, Germany
Contents

• Hydrogen as energy vector

• Cost and availability of iridium catalyst

• DLR activities in PEM Electrolysis

• Synthesis of IrO_x-Ir, Ir/SnO$_2$:Sb-aerogel, Ir$_{0.7}$Ru$_{0.3}$O$_2$ catalysts

• OER activity and stability

• Summary
Hydrogen as energy vector

• High percentage of renewable energy in energy supply chain need long-term storage facilities

• Intermittent oversupply of RE will increase significantly (in 2050 ~25 TWh will be available for hydrogen production in Germany)

1. Intermittent oversupply of RE from wind and sun
2. Feeding in electrical grid
3. Hydrogen production via electrolysis (3000-4000 hours per year)
4. Hydrogen can be distributed via the natural gas grid
5. Hydrogen can be used in industry and for heat production
6. Mobility for fuel cell-driven vehicles
PEM electrolysis: Working principle and cost breakdown

- Bipolar plates are the most expensive component (51%) of the stack
- Currently the cost of the PMG catalyst (Ir and Pt) comprise only 8%
- The real obstacle for industrial PEM electrolyzers are the lack of business cases and unsuitable H₂ regulations

\[E_{\text{cell}} = 2 \text{ V}, \text{pH} = 0, 80 \degree \text{C} \]
Cost and availability of PEM electrolyzer catalysts

- Global iridium production of less than 9 t yr\(^{-1}\). 90% comes from South Africa.

- Current MEA specifications:
 - Anode: 2-3 mg\(_{\text{iridium}}\) cm\(^{-2}\)
 - Cathode: < 1 mg\(_{\text{platinum}}\) cm\(^{-2}\)

- 7530 tons of Ir are required for PEM electrolyzers operating at \(E_{\text{cell}} = 1.65\) V. It is equivalent to 836 times the annual production.

- Chemical, metal and refinery industries require hundreds of TW of H\(_2\).

PEM electrolysis technology is not scalable to the TW level!

DLR activities in PEM Electrolysis: from Fundamentals to Megawatt Systems

MW PEM Electrolyzer

Laboratory test stations

Catalysts

Stack components

Coatings

Analytics and in-situ diagnostics
Evaluation of catalysts and coatings

Rotating ring disc electrode (RRDE)

Sample holder for corrosion measurements (1 cm² exposed area)

6 Cell - 120 cm² – stack (E92 model)

4 Cell - 25 cm² - stack

0.75 - 2.5 Nm³ H₂ h⁻¹ “Hylyzer” PEM electrolyzer unit, 8 bar

6 Cell - 120 cm² – stack (E92 model)
Designing a cost effective, active and durable electro-catalyst for OER

- **Ir** as active and stable metal center for OER

- Enhancement of activity of Ir by adding A. Reduction of Ir content

- Enhancement of durability of Ir by adding B (PMG metal) / HOR (less H₂ crossover)

- Increase of electrochemical surface area (ECSA), activity and durability by using an electro-ceramic support MO₂-δ. Cost reduction

Challenge: Develop a highly active and stable OER catalyst than can be mass-produced at a reduced cost

Target material: \(\text{A}_x\text{Ir}_y\text{B}_z/\text{MO}_2-\delta \)
Synthesis of oxygen evolution reaction (OER) catalysts

IrOₓ-Ir^a, **Ir_{0.7}Ru_{0.3}O₂**^b

Ir precursor

IrCl₃ (0.0749 g) → ANH ethanol (50 ml) → Ultrasonic

Reducing agent

NaBH₄ (0.114 g) → ANH ethanol (80 ml) → Ultrasonic

Mixing solution

(4 h, 800 rpm, Ar- atmosphere)

Addition of reducing agent to mixing solution

(4 h, 800 rpm, Ar- atmosphere)

Cleaning of Ir/Ti₄O₇ catalyst

(several times with DI H₂O and ethanol)

Ir/Ti₄O₇^c, **Ir/SnO₂:Sb-Aerogel**^d

Ti₄O₇ support (Changsha PuRong)

CTAB (1.17 g) → ANH ethanol (120 ml) → Ultrasonic

Ti₄O₇ (0.113 g) → ANH ethanol (80 ml) → Ultrasonic

- Enviromentally friendly synthesis
- Scalable for large production: 1 g d⁻¹
- Estimated cost < 100 € g⁻¹

Patent DE 102015101249 A1
Electrochemically oxidized IrO$_x$-Ir nanoparticles

- Metallic Ir nanoparticles (agglomerated) with large number of defects
- Almost identical structure, morphology and surface properties than Ir-black
- 5-fold higher OER activity than Ir-black
- Negligible E_{cell} increase after more than 100 h in PEM electrolyzer at 2 A cm$^{-2}$, 80°C

Ir/SnO$_2$:Sb-Aerogel: Morphology and surface properties

- Metallic Ir deposited on three-dimensional (3D) aerogel SnO$_2$:Sb (ARMINES)

- NH$_4$VO$_3$ added to IrCl$_3$ solution: Ir/SnO$_2$:Sb-mod-V

- Cl impurities are 5 times higher in the case of Ir/SnO$_2$:Sb

- VO$_2$ or V$_2$O$_5$ allows retaining the aerogel structure under atmospheric drying

Ir/SnO$_2$:Sb-Aerogel: Electrochemical activity

- **OER activities:** Ir/SnO$_2$:Sb (94.6 A g^{-1}) and Ir/SnO$_2$:Sb-mod-V (121.5 A g^{-1})

- The slight difference in Tafel slopes attributed to the influence from MMOSI:

- Ir/SnO$_2$:Sb-mod-V allows decreasing of more than 70 wt.% for precious metal

- Cu-UPD enables the calculation of ECSA

Does V addition play an active role in electrocatalysis?

Ir/SnO₂:Sb-Aerogel: Electrochemical stability

- RDE stability tests based on a protocol developed by P. Strasser and co-workers:

- After test V wt% decreases one order of magnitude

- Sb and Ir practically remained unchanged
 - Ir dissolution?
 - Decrease of electronic conductivity of SnO₂:Sb?

Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) allows monitoring of the surface state of MEAs with RuO$_2$ and Ir$_{0.7}$Ru$_{0.3}$O$_2$ during OER.

- Ir protects Ru from the formation of unstable hydrous RuIV oxide.
- OER occurs through a surface RuVIII intermediate.

Summary

• Cost-effective and environmentally friendly synthesis of anode catalysts for PEM electrolyzers

• 5-fold higher activity of IrO$_x$-Ir vs. Ir-black. The enhancement is attributed to the ligand effect and low coordinate sites

• The use of SnO$_2$:Sb-Aerogel allows decreasing more than 70 wt.% of Ir in the catalyst layer and improves stability

• New mechanisms of stability and OER for Ir$_{0.7}$Ru$_{0.3}$O$_2$ uncovered by near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)

• In operando advanced spectroscopy techniques are necessary to understand the reaction and degradation mechanism of PEM electrolyzer catalysts
Acknowledgements

Pawel Gazdzicki
Ina Plock
Oliver Freitag
Schwan Hosseiny

Christian Beauger
Guillaume Ozouf

Ute Golla-Schindler

Tobias Morawietz
Michael Handl
Renate Hiesgen

Hochschule Esslingen
University of Applied Sciences

Rainey Wang
Ramy Abouatallah

Project No. 0325440A.

Viktoriia Saveleva
Elena Savinova
Spyridon Zafeiratos

Grant No. 621237
Thank you for your attention