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Abstract: Thermochemical storage is based on a reversible chemical 

reaction; energy can be stored when an endothermic chemical reaction 

occurs and then, energy is released when it is reversed in an exothermic 

reaction. According to literature and based on the energy storage density 

(esd), MgCl2·6H2O is a promising candidate material for thermochemical 

energy storage. Bischofite is an inorganic salt obtained as a by-product 

material from extraction processes of non-metallic minerals, from Salar 

de Atacama in Chile, containing approximately 95% of MgCl2·6H2O. Thus, 

the purpose of this study was to characterize the dehydration reaction of 

bischofite ore, studied as a low-cost thermochemical storage material. 

Thermogravimetric data for bischofite were obtained using a TGA 

instrument coupled to a DSC, at four different isotherms 70 °C, 80 °C, 90 

°C and 100 °C. The results of conversion reaction (α-t) from the thermal 

dehydration experiments, demonstrated the first phase of dehydration with 

the loss of two water molecules. The study showed a typical sigmoid curve 

with a significant acceleration in the conversion at the beginning of the 

reaction until it reaches a maximum rate, where the curve keeps constant. 

The same behavior was observed for all the temperatures used. The 

kinetics of bischofite dehydration model was determined using the 

isothermal kinetics method. For this, the thermogravimetric data were 

fitted to the most used kinetic models (D, F, R, A) and then their 

respective correlation coefficients R were evaluated. The results 

indicated that the dehydration reaction of bischofite was described by 

the kinetics of chemical reaction of cylindrical particles R2. The rate 

of dehydration reaction and esd of bischofite are lower as compared to 

synthetic MgCl2·6H2O, at temperatures higher than 80 °C. However, the 

cost of materials to store 1 MJ of energy is three times lower for 

bischofite, which is an evident advantage to promote the reuse of this 

material left as waste by the non-metallic industry. 

 

 

 

 



Bischofite main component is MgCl2·6H2O, a typical TCS material for seasonal storage  

Bischofite dehydration and kinetic study are presented in this work 

The rate of dehydration reaction of bischofite is lower compared with synthetic MgCl2·6H2O 

The esd for bischofite are lower compared with synthetic MgCl2·6H2O 

The cost to store 1 MJ of energy is three times lower for bischofite 
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ABSTRACT 

Thermochemical storage is based on a reversible chemical reaction; energy can be stored when an 

endothermic chemical reaction occurs and then, energy is released when it is reversed in an 

exothermic reaction. According to literature and based on the energy storage density (esd), 

MgCl2·6H2O is a promising candidate material for thermochemical energy storage. Bischofite is an 

inorganic salt obtained as a by-product material from extraction processes of non-metallic minerals, 

from Salar de Atacama in Chile, containing approximately 95% of MgCl2·6H2O. Thus, the purpose 

of this study was to characterize the dehydration reaction of bischofite ore, studied as a low-cost 

thermochemical storage material. Thermogravimetric data for bischofite were obtained using a 

TGA instrument coupled to a DSC, at four different isotherms 70 °C, 80 °C, 90 °C and 100 °C. The 

results of conversion reaction (α-t) from the thermal dehydration experiments, demonstrated the 

first phase of dehydration with the loss of two water molecules. The study showed a typical sigmoid 

curve with a significant acceleration in the conversion at the beginning of the reaction until it 

reaches a maximum rate, where the curve keeps constant. The same behavior was observed for all 

the temperatures used. The kinetics of bischofite dehydration model was determined using the 

isothermal kinetics method. For this, the thermogravimetric data were fitted to the most used kinetic 

models (D, F, R, A) and then their respective correlation coefficients R were evaluated. The results 

indicated that the dehydration reaction of bischofite was described by the kinetics of chemical 

reaction of cylindrical particles R2. The rate of dehydration reaction and esd of bischofite are lower 

as compared to synthetic MgCl2·6H2O, at temperatures higher than 80 °C. However, the cost of 

materials to store 1 MJ of energy is three times lower for bischofite, which is an evident advantage 

to promote the reuse of this material left as waste by the non-metallic industry. 

Keywords: thermochemical storage material, bischofite, isothermal kinetics, dehydration reaction, 

salt hydrate. 
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Nomenclature  

esd Energy Storage Density J/cm
3
 

ρ Density kg/ m
3
 

TES Thermal Energy Storage - 

α Fraction Reacted  - 

THS Thermochemical Heat Storage - 

LHS Latent Heat Storage - 

SHS Sensible Heat Storage - 

PCM Phase Change Material - 

TCM Thermochemical Material - 

CHP Chemical heat pump - 

DTA Differential Thermal Analysis - 

DTG Derivative Thermogravimetric - 

IR Infrared Spectroscopy - 

SEM Scanning Electron Microscope - 

STA Simultaneous Thermal Analysis - 

EDX Energy dispersive X-ray  - 

TG Thermogravimetry - 

MS Mass Spectrometer - 

DSC Differential Scanning Calorimetry - 

LM Mean Size μm 

LD Mode Size μm 

XRD X-Ray Diffraction - 

t/t0.5 Time/time α =0.5 - 

Ea Energy activation J/mol 

A Frequency factor  s
-1

 

R Correlation coefficient - 

T Temperature °C 

t time min 

b Slope - 

a Intercept - 

ΔHD Dehydration enthalpy kJ/kg 

k Rate constant - 

% wt  Percentage of weight loss % 
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1. Introduction  

Thermal energy storage (TES) is an available technology, where energy in the form of heat or cold 

is stored in materials (charging process) for a specific time, to be released in the form of heat 

(discharge process), which can be transformed into other forms of energy or simply used as heat, 

depending on energy demand. The incorporation of TES systems increases efficiency in solar 

energy use throughout 24 hours of the day, reduces loss of useful thermal energy and consequently 

favors the reduction of greenhouse gas emissions considerably [1]. 

The amount of thermal energy that can be stored and discharged depends on the characteristics of 

the storage material and the associated temperature effects between the storage medium and the 

energy source. Thermal energy can be stored by virtue of the internal energy change of a material 

caused by sensible heat, latent heat, and chemical reactions [1]. Sensible heat TES systems store 

energy through temperature change in the storage materials, where thermal energy is stored by 

raising the temperature of a material [2]. Latent heat is heat absorbed or released by a material, 

while changing its phase at constant temperature [3]. Latent heat is released when the phase change 

material (PCM) is cooled again and solidifies. However, the main disadvantages of these two, 

sensible and latent, heat storage forms are low energy density and considerable heat loss during 

storage. These disadvantages are overcome by the heat storage type occurring by means of a 

chemical reaction, also called thermochemical storage, since it keeps high energy density, which 

becomes 5 and 10 times greater, compared to latent heat and sensible heat storage systems, 

respectively. This thermochemical storage type is mainly based on obtaining heat by means of a 

reversible chemical reaction (See Figure 1 [4]). In this reaction, a thermochemical energy storage 

material (C) absorbs external heat (e.g. solar energy) through an endothermic reaction, 

decomposing into A and B. Products (A and B) are separated by physical means and stored in 

separate containers. When materials A and B are combined again, exothermic reverse reaction, 

generation of C and release of stored thermal energy occur [5]. 

Storage and transport times are theoretically unlimited because there is no heat loss during storage 

of materials A, B and C; thus, products can be stored at room temperature. Therefore, these are 

promising systems for long-term heat storage (as seasonal storage) [6,7].  Recent studies also show 

advances in applications of thermochemical storage systems at high temperature in CSP plants [8]. 

However, there is still little experience in the development of materials and systems for 

thermochemical storage. [9]. 
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Figure 1: Thermochemical storage process cycle: charge, storage and discharge [4]. 

Reversible chemical reactions occurring between reactive components or pairs of reagents are 

largely responsible for thermal energy charge and discharge. The different reactions that have been 

studied for thermochemical storage are classified in the systems illustrated in Figure 2. Of these, 

salt hydrate pairs are potential candidates for thermal energy storage as, during the energy storage 

phase, when heated, they are converted into partially or completely anhydrous salts, through water 

release. These hydrophilic anhydrous salts can readily react with water to release stored heat during 

the discharge step. On the other hand, it is feasible to achieve long-term thermal energy storage by 

separating the anhydrous salt and water at room temperature (eq.1). 

                                     (1) 
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Figure 2: Materials and systems for thermochemical storage (based on [5, 9-11). 

The Chilean Salar de Atacama brines, which are in a territory with very high solar radiation, are 

rich in salt hydrates. Due to their high availability and low cost, these salts can be studied and used 

to store thermal energy. In fact, since they are obtained as waste or by-products during brine 

concentration or during chemical conversion for production of lithium carbonate, among other 

compounds [12], it proves attractive to carry out studies for reusing these large quantities of salts as 

TES materials. One of the natural minerals precipitating at the evaporation ponds, during the brine 

concentration process at Salar de Atacama, is bischofite, composed mainly of MgCl2·6H2O (>95 

wt.%) with some impurities, such as KCl, NaCl, Li2SO4·H2O and others [13].  

Previous studies [14-21] of synthetic MgCl2·6H2O salt indicate that it has a hydration/dehydration 

reaction suitable for thermochemical energy storage. In researches [15-21], the decomposition of 

pure magnesium chloride hexahydrate has been extensively studied. The studies determined four 

stages of MgCl2·6H2O dehydration (eq. 2-5) under different dehydration conditions (Table 1). 

Equation 5 shows that a hydrolysis reaction occurs at the same time as the dehydration reaction of 

equation 4. 
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MgCl2·6H2O(s) ↔ MgCl2·4H2O (s) + 2H2O (g)     (2) 

MgCl2·4H2O(s) ↔ MgCl2·2H2O (s) + 2H2O (g)     (3) 

MgCl2·2H2O(s) ↔ MgCl2·H2O (s) + H2O (g)     (4) 

MgCl2·2H2O(s) ↔ MgOHCl (s) + H2O (g) +HCl (g)    (5) 

Table 1: Previously studied MgCl2·6H2O dehydration conditions. 

Dehydration reactions T(°C)  Heating rate 

(K/min) 

Ref. 

MgCl2·6H2O  MgCl2·4H2O + 2H2O  

27- 108 2 [15] 

69- 106 5 [16] 

116.7 n.a. [17] 

96 5 [18] 

118- 150 10 [19] 

50- 90 1 [20] 

82 1 [21] 

    

MgCl2·4H2O  MgCl2·2H2O + 2H2O 

108- 144 2 [15] 

129- 150 5 [16] 

182.5 n.a. [17] 

107 5 [18] 

150- 176 n.a. [19] 

90- 120 1 [20] 

116 1 [21] 

    

Dehydration Thermal hydrolysis    

MgCl2·2H2O  aMgCl2·nH2O + bMgOHCl + bHCl + (2 – na – b) 

H2O  

(1 ≤ n ≤ 2, a + b = 1) 

144- 178 2 [15] 

167- 181 5 [16] 

240 n.a. [17] 

193 5 [18] 

185- 234 10 [19] 

120- 210 1 [20] 

    

MgCl2·H2O (s)  MgOHCl∙H2O (s) + HCl (g) 150- 210 1 [20] 

MgCl2·2 H2O (s)  MgOHCl∙H2O (s) + HCl (g) 145 1 [21] 

n.a.: not available    

 

More recent studies propose the application of synthetic MgCl2·6H2O salt as phase change material 

(PCM) for latent heat storage. Thus, several works focused on properties characterization, such as 

heat capacity and melting temperature [22-29], obtaining promising results to utilize this material 

for latent heat storage. On these grounds, studies by Ushak et al. [13] have been conducted with 

bischofite, natural mineral from Salar de Atacama, which characterized the physical and thermal 
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properties of this material for use as PCM. Results indicated that bischofite exhibits thermal 

properties similar to synthetic salt hydrate. 

Recent studies have focused on the use of synthetic MgCl2·6H2O as a thermochemical material 

(TCM) because the thermal decomposition of this salt occurs by means of a chemical dehydration 

reaction and stores a high energy density. MgCl2·6H2O dehydration/hydration reactions were 

described by some authors [14, 21, 30- 32], and it was possible to determine the different charging 

and discharging operating temperatures of the material and the energy storage density eds (see 

Table 2). 

Table 2: Charging and discharging operating for MgCl2 ·6H2O hydration and dehydration. 

Reaction 
Charging 

temperature (°C) 

Discharging 

temperature (°C) 

∆rH 

(kJ/mol) 

Eds 

(J/cm3) 

Pressure 

(kPa) 
Reference 

MgCl2·6H2O  MgCl2·2H2O + 4 H2O 150 25-50 ____ ____ ____ [14] 

MgCl2·2H2O + 4 H2O  MgCl2·6H2O 115-130 35 ____ ____ 2.0  [ 31] 

MgCl2·6H2O  MgCl2·2H2O + 4 H2O 118 30-50 220 1890 1.3  [30] 

MgCl2·6H2O  MgCl2·2H2O + 4 H2O 116 30 273 2110 --- [21] 

MgCl2·2H2O + 4 H2O  MgCl2·6H2O 116 30 315 2435 1.9  [21] 

MgCl2 · 4.7H2O + 1.3H2O  MgCl2·6H2O 105 25 72 551 2.0 -2.1  [32] 

 

From table 2, Essen et al. [14] characterized MgCl2·6H2O salt hydrate dehydration for seasonal 

thermochemical storage applications under practical conditions, using TG-DSC equipment and a 

fixed bed reactor. Another experimental study was carried out by Zondag et al. [20,30], who 

performed TG tests by measuring MgCl2·6H2O mass as a function of temperature increase, in which 

researchers obtained a dehydration start at 50 °C and the formation of MgCl2·H2O at around 120°C.  

Kokouvi et al. [32] studied MgCl2·6H2O, intended for thermochemical energy storage applications 

at temperatures below 105 °C in a micro-CHP (chemical heat pump), due to the low melting point 

of the material, obtaining a low hydration reaction temperature of 35 °C, applicable only for heating 

supply for living spaces. 

Further experimental studies on kinetics were carried out by Rammelberg et al. [21], using the 

simultaneous thermal analysis (STA) method, where dehydration reaction (MgCl2·6H2O(s) to 

MgCl2·2H2O(s)), obtained a reaction enthalpy (ΔH) of 1344 J/g. 

The more recent and advanced work has achieved the development of suitable technology to apply 

MgCl2 · 6H2O as a thermochemical storage material. Zondag et al. [33], constructed a sorption heat 

storage system, a compact bed sorption system containing 17 dm
3
, capable of generating 150 W of 

thermal power, from an airflow of 510 l/min with a vapor pressure of 12 mbar. The bed can produce 
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heat over 40 h, indicating an effective energy density of approximately 0.5 GJ/m
3
 under the present 

conditions. However, due to heat losses, this system is still to be improved.  

The first studies on MgCl2·6H2O thermal decomposition mechanisms were carried out by Kirsh et 

al [19], followed by Kashani-Nejad et al. [17, 34, 35], Kunihisa Sugimoto et al. [18] and Huang et 

al., [15], who, using DTA, TG, derivative thermogravimetry (DTG), infrared (IR) spectroscopy, X-

ray diffraction (XRD), (SEM) and chemical analysis of magnesium and chloride techniques, 

identified different intermediate phases of Mg(OH)Cl · n H2O (0 ≤ n ≤ 1) at high temperatures. 

The kinetic study was performed by Kirsh et al. [19], and Huang et al. [15], using 

thermogravimetric techniques, under different working conditions. The authors determined salt 

dehydration in 3 steps and established the activation energy and frequency factor kinetic 

parameters. 

One of the areas of greatest interest in research on thermochemical storage systems, is the 

development and characterization of materials and chemical reactions, since performance of each 

system depends to a large extent on the properties of materials and on reaction kinetics. In order to 

obtain a detailed and adequate characterization of reaction kinetics involving salt hydrates, it is 

necessary to consider changes in crystallographic structure, water stability within the crystalline 

structure, particle size and the presence of impurities, since kinetic measures may change depending 

on the characteristics of the solid material [36]. On the other side, for the successful implementation 

of thermochemical storage systems, the development of low cost materials is necessary. 

Consequently, many scientists carry out their investigation using recycled materials and 

revalorizing industrial waste and by-products [37-40]. 

Aligned with this statement, the aim of this work was studying bischofite, an inorganic mineral 

waste, precipitated in solar evaporation ponds during the concentrations lithium brines as candidate 

for using in thermochemical storage systems. The cost of this material is of about 40 US$/ton [13] 

being almost four times less than the cost of synthetic magnesium chloride hydrate.  

In addition, this research accomplishes a double objective: on one side, the implementation of an 

economically viable storage system based on new low-cost materials and on the other side, the 

revalorization of industrial waste material, which will contribute to economic, environmental and 

societal gains such as reducing landfill waste amounts, creation of value-added materials and others. 

Thus, the mechanism and kinetics of the dehydration reaction of bischofite were established, and its 

chemical, physical and thermal properties were characterized by its application as a THS material. 

The same characterization procedure was carried out for synthetic MgCl2·6H2O and obtained results 

for both materials were compared as well as esd and the cost of TES systems. 
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2. MATERIALS AND METHODS 

2.1 Materials 

Bischofite, provided by Salmag Company from Antofagasta Region, Chile, obtained from the 

brines concentration process, was used for research. The 10 kg bischofite sample was homogenized 

by manual mixing, subjected to a drying heat treatment at 40 °C for 12 hours to remove 

environmental humidity, and finally, divided into 1 kg samples and packed to be used in different 

characterization studies. Merck-branded synthetic MgCl2·6H2O (˃ 99% purity) was used as 

comparison material which, like bischofite, was dried for 12 hours at 40 °C. Finally, samples were 

kept in a desiccator. 

2.2 Chemical characterization method 

For chemical analysis, a mass of approximately 100 g of bischofite was used. Methods used for 

elements determination were: Atomic absorption spectrophotometry with direct aspiration (Varian 

Spectraa 220fs atomic absorption spectrometer) for sodium, potassium, calcium, lithium and 

magnesium identification; volumetric titration with AgNO3 for chloride identification and 

volumetric titration with BaCl2 for sulfate identification. 

2.3 Particle size characterization 

Sample particle size was determined using different mesh size sieves (see Table 3) coupled to 

Rotap, Retsch AS 200. 

Table 3: Retsch mesh sizes. 

Mesh No. Mesh size (mm) Mesh size (µm) 

12 1.70 1700 

14 1.40 1400 

16 1.18 1180 

18 1.00 1000 

20 0.850 850 

30 0.600 600 

40 0.425 425 

50 0.300 300 

Base 0 0 

For this measurement, sieves were cleaned and weighed. Then, bischofite and magnesium chloride 

hexahydrate (38 and 50 grams’ mass, respectively) samples were added to the sieves and these were 

subjected to 1.20 mm/g vibration for 10 minutes, for salt distribution between the different mesh 
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sizes. Upon completion, each sieve was weighed and mass retained in each one was recorded. Tests, 

for both bischofite and MgCl2·6H2O, were performed in triplicate and the average result was 

reported in this work. 

2.4 Thermal stability 

Thermal stability was measured with a METTLER TOLEDO TGA-DSC STARe thermogravimetric 

analyzer (TGA), using a dynamic method from room temperature up to 900 °C at a heating rate of 1 

K/min. Nitrogen flow rate was 25.0 mL/min. For this analysis, a sample amount of approximately 

17 mg and a 70 μL platinum crucible with an unsealed lid were used. 

2.5 Study of the dehydration mechanism and kinetic parameters 

Kinetic data were determined with the isothermal method at 70 °C, 80 °C, 90 °C and 100 °C, using 

a heating rate of 20 K/min from room temperature up to respective temperature. The duration of the 

isothermal kinetic study was four hours, the METTLER TOLEDO TGA-DSC STARe device with a 

nitrogen flow rate of 25.0 mL/min. 10 to 20 mg samples in a 70 μL platinum crucible with an 

unsealed lid were used for each isotherm. Finally, data obtained were fitted to isothermal kinetic 

models of solid-gaseous type reactions which are more widely used (see Table 4 [41]). Each kinetic 

model and the corresponding curves are shown in Figure 3 to facilitate compression of the reaction 

compartment as a function of time. The fitting method used was described by Sharp et al. [42], as 

well as the calculation of the correlation coefficient R. 

Table 4: Solid state reaction equation models, commonly used for kinetic study [41]. 

Reaction Model Code Kinetic Equation ƒ(α) 

Uni-dimensional diffusion D1 α 
2  

= kt 

Bi-dimensional diffusion D2 (1- α) ln (1- α)+ α= kt 

Tri-dimensional diffusion D3 [1-(1- α)
1/3

]
2 
= kt 

Ginstling-Brounshtein D4 1- (2/3) α – (1- α)
 2/3

= kt 

First order  F1 - ln (1- α) = kt 

Cylindrical contraction R2 1- (1- α) 
1/2 

= kt 

Spherical contraction R3 1-(1- α) 
1/3

 = kt 

Zero Order 0 α = kt 

Avrami-Erofeyev A2 [-ln (1- α)]
1/2 

= kt 

Avrami-Erofeyev A3 [-ln (1- α)]
1/3 

= kt 
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Figure 3: Values of α vs t/t0.5 for the solid-state reaction equations of Table 4. 

Activation energy and frequency factor kinetic parameters were determined with the Arrhenius 

linearized equation (eq. 6), which was plotted according to the kinetic constants, obtained from the 

kinetic equation model best fitted to experimental data, with the inverse of time (1/T) in Kelvin. 

    
   

 
 
 

 
         (6) 

3.6 Analysis of energy storage density (esd) and storage cost  

Reaction enthalpy (ΔHD) was measured as the area under the curve DSC for the isothermal 

temperatures of 70°C, 80°C, 90°C and 100°C, dates given by the METTLER TOLEDO TGA-DSC 

STARe device. The dehydration reaction lets an exothermic peak, therefore ΔHD corresponds to the 

heat reaction.  

Thermochemical esd in bischofite was calculated as the product of the reaction enthalpy and 

bischofite density and compared to the values obtained for pure MgCl2·6H2O sample.  
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3 RESULTS AND DISCUSSION 

3.1 Chemical characterization 

According to the chemical analysis of the bischofite sample, chemical elements found are listed in 

Table 5 with their respective concentrations. 

Table 5: Bischofite chemical analysis. 

Elements 
Composition used in this study 

(% w/w ± 0.0005) 

Lithium, Li 0.4227 

Sodium, Na 0.2594 

Potassium, K 0.2040 

Magnesium, Mg 10.8092 

Calcium, Ca 0.0139 

Chloride, Cl 33.3595 

Sulfate, SO4 0.2260 

Moisture 1.8521 

The results of the chemical analysis were used for the mineralization of the main phases present in 

the bischofite sample (see Figure 4). It is observed that MgCl2·6H2O salt hydrate is present in 

97.4%, mixed with other salts in small quantities: carnallite KCl∙MgCl2∙6H2O (1.6%), sodium 

chloride (0.7%), lithium sulfate monohydrate Li2SO4∙H2O (0.3%) and potassium chloride KCl 

(0.03%). 

 

Figure 4: Bischofite mineralization  

 

Mineralization of the bischofite sample is supported by XRD and SEM-EDX analysis previously 

published by Ushak et al. [13]. In that work, XRD analysis confirmed that the sample contained 
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bischofite and SEM-EDX analysis confirmed the presence of a primary phase of bischofite, 

MgCl2·6H2O, and impurities, based on K-Cl, Na-Cl, S-O (attributed to Li2SO4∙H2O) and K-Mg-Cl-

O (attributed to KCl∙MgCl2·6H2O). In addition, this analysis informed on the ill-defined cylindrical 

shape morphology observed in MgCl2·6H2O crystals, due to the high hygroscopicity of the material. 

Sulfate and sodium chloride impurities morphologies were identified with rectangular and cubic 

crystal shapes, respectively. 

3.2 Particle size 

Particle size distributions in bischofite and MgCl2·6H2O samples are shown in Tables 6 and 7, 

respectively. 

Table 6: Bischofite particle size distribution 

Average mesh size (μm) Retained mass (g) % Retained mass % Cumulative mass 

1700 0 0 100 

1550 20.68 53.82 100 

1290 10.63 27.68 46.178 

1090 5.59 14.55 18.503 

925 1.35 3.520 3.9553 

725 0.17 0.430 0.4305 

512.5 0 0 0 

362.5 0 0 0 

150 0 0 0 

Table 7: MgCl2·6H2O particle size distribution 

Average mesh size (μm) Retained mass (g) % Retained mass   % Cumulative mass 

1700 0.92 1.85 100 

1550 1.04 2.09 98.145 

1290 1.73 3. 47 96.058 

1090 3.62 7.27 92.585 

925 6.23 12.52 85.316 

725 15.68 31.51 72.792 

512.5 11.14 22.38 41.285 

362.5 7.10 14.27 18.902 

150 2.31 4.64 4.6356 

Figures 5 and 6 present the quantification of the mean size (LM) and mode size (LD). 
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Figure 5: Bischofite size distribution. LD (mode size), LM (mean size). 

 

 
Figure 6: MgCl2·6H2O size distribution. LD (mode size), LM (mean size). 

Results showed that LM for bischofite particles was 1560.7 μm, i.e. 50% of the particles had sizes 

larger than this value, while the most repeated particle size (LD) was 1550 μm. Figure 6 shows size 
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distribution for MgCl2·6H2O, where LD was 725 μm and LM 780.51 μm. Differences in results 

between bischofite and MgCl2 ∙ 6H2O 2O were 825 μm in LM and 780.19 μm in LD, with a greater 

size (double) in the bischofite sample than in the MgCl2·6H2O sample. 

Particle size is an important property to take into account when carrying out kinetic studies, 

especially when maintaining isothermal and isobaric conditions. This is because particle size 

inversely affects reaction kinetics, i.e., reaction kinetics decreases as particle size increases [36]. 

However, the effect of particle size may be negligible in view of the effect that temperatures and 

pressures may have. This was the case of the work published by Lin et al., [43], where CaO, with 

190 μm particle size, showed a faster hydration reaction kinetics compared to 900 μm particle size. 

Nevertheless, this difference turned out to be slight and did not have a significant effect, compared 

to the effect caused by temperature and pressure. Therefore, size differences between bischofite and 

MgCl2·6H2O are expected to have a minor influence on the studied dehydration reaction kinetics, 

being more favorable for synthetic MgCl2·6H2O material. 

3.3 Thermal decomposition 

When heating bischofite at a rate of 1 K/min it was observed that dehydration occurs in four stages, 

between 80 °C and 240 °C (see Figure 7). In the first stage, starting at a temperature of 70 °C until 

completion at 95 °C, one water molecule is lost. At the next dehydration stage, starting at a 

temperature of 95 °C and ending at 142 °C, three water molecules are lost. The third dehydration 

stage starts at 142 °C up to 175 °C, with the loss of the fifth water molecule; finally, the last 

molecule is lost from 175 °C to 240 °C (Table 8). 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Figure 7: TGA bischofite and MgCl2·6H2O measurement. (Heating rate of 1 K/min) 

 

Table 8: Bischofite and MgCl2·6H2O mass loss in dehydration at a heating rate of 1K/min. 

Materials Phase Temperature 

(°C) 

% weight loss H2O mol 

Bischofite 

1 70- 95 8.850 1.00 

2 95-142 32.13 3.63 

3 142-175 44.17 5.00 

4 175-240 55.75 6.30 

MgCl2·6H2O 

1 65-110 20.10 2.27 

2 110-137 37.94 4.29 

3 137-171 47.44 5.36 

4 171-236 58.72 6.64 

Results for dehydration of the pure MgCl2·6H2O sample, which occurs in four stages as well as for 

bischofite, are also shown in Figure 7 and Table 8, but losses of the water molecules were found to 

occur at lower temperatures and times than for bischofite, with a difference of up to 25 °C and 25 

minutes. 

Another difference in dehydration of these materials is that the last pure salt dehydration stage is 

completed with a greater mass loss (58.72%) compared to bischofite (55.75%) and to the theoretical 

53.1 amount. The mass difference is associated with the release of HCl gas, due to the hydrolysis of 

MgCl2·2H2O since, according to studies [17-21] carried out on MgCl2·6H2O thermal decomposition 
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mechanism, MgCl2·2H2O dehydration is accompanied by a hydrolysis reaction with the formation 

of solid MgOHCl and HCl gas. The formation of HCl gas is detrimental to MgCl2·6H2O 

dehydration, because the gas is very corrosive and toxic for use in open energy accumulation 

reactors. Taking this information into account, the difference in final mass loss, shown between 

bischofite and MgCl2·6H2O, would mean an advantage for bischofite with respect to MgCl2·6H2O, 

because the release of toxic HCl gas is lower when completely dehydrating the bischofite sample. 

One disadvantage in the thermal behavior of bischofite compared to MgCl2·6H2O is the lower 

(100 °C instead 115°C) melting temperature [13], which is undesirable, because melting can lead to 

destruction of the salt hydrates structure and the formation of an agglomerate, thus reducing the 

specific area that prevents water absorption during hydration [30]. In addition, phase change hinders 

the kinetic study of solid-gas states, providing unreliable data [44, 45]. 

3.4 Dehydration reaction mechanism and kinetics 

The kinetic study was performed with isothermal regime at four different temperatures, 70 °C, 

80 °C, 90 °C and 100 °C. The 100 °C were set as the maximum limit due to the disadvantage 

described in the previous section, and the possibility of HCl gas release during bischofite 

dehydration. The measurement time for each isotherm was 4 hours, for bischofite and MgCl2·6H2O, 

and the mass loss results as a function of time are shown in Figures 8 and 9, respectively. 
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Figure 8: Mass loss versus time for bischofite isothermal dehydration at temperatures of 70 °C, 

80°C, 90 °C and 100 °C. 

 

Figure 9: Mass loss versus time for MgCl2·6H2O isothermal dehydration at temperatures of 70 °C, 

80 °C, 90 °C and 100 °C 

Bischofite and MgCl2·6H2O isothermal dehydration (see figures 8 and 9) showed that, at 70 °C, to 

complete the same 17.7% mass loss (equivalent to 2 water molecules), in both bischofite and 

MgCl2·6H2O, reactions are slow and are not complete during the four hours of experimental 

duration. At higher temperatures (80 °C and 90 °C), MgCl2 · 6H2O dehydrates 1.9 and 3.8 times 

faster than bischofite, respectively. At 100 °C, the bischofite dehydration reaction is not complete. 

For the bischofite sample (see Figure 8), mass loss occurs more rapidly at a temperature of 80 °C 

than at temperatures of 90 °C and 100 °C. In contrast, for the MgCl2·6H2O sample (see Figure 9) it 

is observed that the mass loss of two water molecules is faster and larger as temperature increases. 

The reactions at each temperature are listed in Table 9. 

Table 9: Bischofite and MgCl2·6H2O isothermal dehydration 

Materials T 

(°C) 

% wt  H2O  

(mol) 

Reactions 

Bischofite 

70 14.8 1.67 MgCl2·6H2O (s) → MgCl2·4.33H2O (s) + 1.67 H2O (g) 

80 17.9 2.02 MgCl2·6H2O (s) → MgCl2·3.98H2O (s) + 2.02 H2O (g) 

90 18.7 2.11 MgCl2·6H2O (s) → MgCl2·3.89H2O (s) + 2.11 H2O (g) 

100 10.5 1.19 MgCl2·6H2O (s) → MgCl2·4.81H2O (s) + 1.19 H2O (g) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

MgCl2·6H2O 

70 16.5 1.86 MgCl2·6H2O (s) → MgCl2·4.14H2O (s) + 1.86 H2O (g) 

80 20.7 2.34 MgCl2·6H2O (s) → MgCl2·3.66H2O (s) + 2.34 H2O (g) 

90 19.2 2.17 MgCl2·6H2O (s) → MgCl2·3.83H2O (s) + 2.17 H2O (g) 

100 20.7 2.34 MgCl2·6H2O (s) → MgCl2·3.66H2O (s) + 2.34 H2O (g) 

Taking the reference of the loss of two water molecules as indicated in equation 7, data processing 

was performed by analyzing the reacted sample fraction (α = 1.0 ≡ 2 H2O mol ≡ 17.7% w/w). This 

analysis was performed for the four above mentioned temperatures (70 °C, 80 °C, 90 °C and 100 

°C) and for both bischofite and MgCl2· 6H2O samples. Figures 10 and 11 show the respective 

results obtained. 

MgCl2·6H2O ↔ MgCl2·4H2O + 2H2O    (7) 

According to the kinetic curves for bischofite at different temperatures (see Figure 10), a 

“decelerating” curve shape can be observed, where rate decreases with the progress of the reaction. 

This shape conforms well to chemical reaction kinetic mechanisms (R2 and R3) for temperatures of 

80 °C and 90 °C and reaction order (F1, F2 and F3) for temperatures of 70 °C and 100 °C. 

 

Figure 10: Reacted fraction versus time for bischofite isothermal dehydration at temperatures of 70, 

80, 90 and 100°C. 

Kinetic curves of the MgCl2·6H2O sample (see Figure 11) have two distinguishable shapes, i.e., 

“decelerating”, for temperatures of 70°C and 80°C, and “sigmoid” (S shape) for temperatures of 
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90°C and 100°C temperatures. Regarding sigmoid curves, these are expected in any decomposition 

process that occurs by a production control mechanism and growth of nuclei (A2, A3 and A4) [44, 

45]. However, kinetic models are more accurately determined by fitting mathematical equations that 

best represent them. Results are shown in the next section. 

 
Figure 11: Reacted fraction versus time for the isothermal dehydration of MgCl2·6H2O at 

temperatures of 70°C, 80°C, 90°C and 100 ° C. 

3.4.1. Bischofite and MgCl2·6H2O isothermal dehydration mechanism 

The fitting of thermogravimetric data to more widely used kinetic models [41] was performed by 

the method of Sharp et al [42], in which plotted data of the reacted fraction α versus the reduced 

time t/t0.5 for bischofite and MgCl2·6H2O dehydration (Figures 12 and 13) were compared to 

theoretical fitting data (Figure 3 [46]). 
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Figure 12: α and t/t0.5 values for bischofite isothermal dehydration at 70 °C, 80 °C and 90 °C. 

 

Figure 13: Values of α and t/t0.5 for MgCl2·6H2O isothermal dehydration at 70 °C, 80 °C, 90 °C and 

100 °C. 
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From bischofite fitting results, it was found that t/t0.5 values fit well to R2 equation over the entire 

temperature range of 70 °C and 80 °C. For the temperature of 90 °C, data fit well to R2 equation for 

α ≤ 0.5, and to first order F1 kinetics for α ≥ 0.5. 

Data fitting performed for MgCl2·6H2O shows results different to those of bischofite, where it is 

observed that, at 70 °C, experimental results fit well to R2 kinetic model, while at 80 °C they fit well 

to R2 and A2 and at temperatures of 90 °C and 100 °C to A2 and A3 models, respectively. 

A more accurate comparison of experimental values with theoretical values was made with the 

linear relation of (t/t0.5)experimental with (t/t0.5)theoretical, calculating slope (b), intercept (a) and regression 

coefficient (R), for bischofite and MgCl2 · 6H2O. Results are shown in Table 10 and Table 11, 

respectively. 

Table 10: Comparison of bischofite experimental (t/t0.5) values vs theoretical (t/t0.5) values, 

according to correlation coefficient, slope and intercept of curves. 

T  70 °C   80 °C   90 °C  

f(α) R b a R b a R b a 

D1(α ) 0.9905 0.6269 0.3272 0.9940 0.6078 0.3472 0.9931 0.8305 0.1931 

D2(α) 0.9761 0.5139 0.3911 0.9816 0.4556 0.4426 0.9969 0.6276 0.3159 

D3(α) 0.9445 0.3923 0.4632 0.9343 0.2944 0.5606 0.9675 0.4095 0.471 

D4(α) 0.967 0.4708 0.4161 0.9693 0.3965 0.4834 0.9912 0.5481 0.3691 

F1(α) 0.9956 0.7629 0.1936 0.9888 0.6562 0.2838 0.9984 0.9013 0.1005 

R2(α) 0.9973 0.9584 0.0623 0.9971 0.9459 0.0783 0.9827 1.2836 -0.1646 

R3(α) 0.9993 0.8931 0.1062 0.9999 0.8483 0.1458 0.9935 1.1559 -0.0784 

A2(α) 0.9878 1.4752 -0.4207 0.9910 1.4700 -0.4095 0.9693 1.9874 -0.8189 

A3(α) 0.9696 2.1068 -1.0210 0.9718 2.1863 -1.0788 0.939 2.9377 -1.7055 
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Table 11: Comparison of MgCl2·6H2O (t/t0.5) experimental values vs theoretical (t/t0.5) values, 

according to correlation coefficient, slope and intercept of curves. 

T 70 °C 80 °C 

f(α) 
R b a R b a 

D1(α) 0.9846 0.5252 0.3949 0.9811 0.4881 0,4309 

D2(α) 0.9549 0.3901 0.4826 0.9455 0.3614 0.5141 

D3(α) 0.8877 0.2491 0.5893 0.8711 0.2298 0.6149 

D4(α) 0.9352 0.3381 0.5198 0.9232 0.3128 0.5493 

F1(α) 0.9648 0.5627 0.3456 0.9545 0.5211 0.3874 

R2(α) 0.9989 0.822 0.1575 0.9969 0.7645 0.2096 

R3(α) 0.9932 0.734 0.2197 0.9885 0.6817 0.2685 

A2(α) 0.9987 1.2812 -0.2704 0.9970 1.1918 -0.1885 

A3(α) 0.9909 1.9167 -0.8649 0.9922 1.7855 -0.7442 

T 90 °C 100 °C 

f(α) R b a R b a 

D1(α) 0.9818 0.3713 0.5671 0.9813 0.3123 0.6370 

D2(α) 0.9484 0.2753 0.6299 0.9484 0.2316 0.6897 

D3(α) 0.8771 0.1753 0.706 0.8777 0.1476 0.7537 

D4(α) 0.9273 0.2384 0.6565 0.9274 0.2006 0.7121 

F1(α) 0.9584 0.3971 0.5332 0.9589 0.3341 0.6083 

R2(α) 0.9978 0.5817 0.3987 0.9977 0.4893 0.4953 

R3(α) 0.9903 0.5190 0.4432 0.9904 0.4366 0.5327 

A2(α) 0.9983 0.9070 0.0955 0.9987 0.7631 0.2401 

A3(α) 0.9927 1.3583 -0.3268 0.9932 1.1430 -0.1154 

In order to determine the model that best fits experimental data, the values of slope b and regression 

coefficient R are compared. Data with b and R values closest to one, and values of a closer to zero 

are those that best fit the kinetic model. According to these fitting results, bischofite dehydration 

kinetics (see Table 10) at 70 °C and 80 °C is best described by the chemical reaction mechanism 

using R2 kinetic model by means of the cylindrical particle R2 contraction kinetic model. At 

temperatures of 90 °C, equation models F1, R2 and R3 also fitted well experimental data. 

For MgCl2·6H2O (see Table 11), experimental data are fitted to the same, previously predicted 

kinetic models according to Figure 13, R2 for temperatures of 70 °C and 80 °C, and A2 and A3 at 

temperatures of 90 °C and 100 °C, respectively. 

In order to better define the fitting kinetic model in bischofite and in MgCl2·6H2O, linear 

correlation R of equations F1, R2 and R3 was calculated over time for bischofite data, and of 
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equations R2, R3, A2 and A3 over time for MgCl2·6H2O data. Results are shown in Table 12 and 13 

for different amounts of α-value points used. 

Table 12: Correlation coefficients of experimental data obtained by the least squares method fitted 

to reaction equations F1, R2 and R3. 

Correlation Coefficients R 

α F1(α)  R2(α) R3(α) 

T =70 °C 

240 points 0.9956 0.9953 0.9982 

200 points 0.9932 0.9995 0.9993 

163 points 0.9933 0.9997 0.9989 

T =80 °C 

180 points 0.9087 0.9860 0.9984 

152 points 0.9827 0.9903 0.9992 

132 points 0.9874 0.9945 0.9996 

T = 90 °C 

210 points 0.8660 0.9897 0.9867 

171 points 0.9959 0.9854 0.9954 

141 points 0.9994 0.9860 0.9942 

Table 13: Correlation coefficients of experimental data obtained by the least squares method a fitted 

to reaction equations R2 y R3, A2 and A3. 

Correlation coefficients R 

α R2(α) R3(α) A2(α) A3(α) 

T =70 °C         

240 points 0.9984 0.9919 0.9972 0.982 

192 points 0.9980 0.9937 0.9949 0.9753 

142 points 0.9977 0.9952 0.9916 0.9704 

         

T =80 °C         

96 points 0.9878 0.9582 0.9579 0.9777 

82 points 0.9969 0.9892 0.9972 0.9893 

62 points 0.9986 0.9959 0.9957 0.9825 

T = 90 °C         

51 points 0.9930 0.9679 0.9687 0.982 

42 points 0.9961 0.9882 0.9976 0.9836 

31 points 0.996 0.9921 0.9952 0.9768 

T = 100 °C         

39 points 0.9954 0.9730 0.9698 0.9846 

26 points 0.9961 0.9889 0.9983 0.9856 

20 points 0.9954 0.9913 0.9968 0.9812 
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Finally, based on both fitting methods (the method of Sharp et al, [42], and fitting by the R), it is 

established that the models that best fit bischofite dehydration experimental data are: R2 (eq. 8) at 

temperatures of 70 and 80 °C and F1 (eq. 9) at 90 °C. 

R2: (1- α) 
1/2 

= kt.       (8) 

F1: - ln (1- α) = kt     (9) 

On the other hand, and according to this analysis, it is possible to determine that the best fits to 

experimental data of the dehydration of MgCl2·6H2O until MgCl2·4H2O are for R2 models (eq. 8) at 

temperatures of 70 °C and 80 °C and for the nucleation and growth model of nuclei A2 (eq.10) at 

temperatures of 90 °C and 100 °C. 

A2: [-ln (1- α)]
1/2 

= kt     (10) 

According to previous studies, R2 model found is based on the contraction mechanism of the 

cylindrical particles area, hence it is assumed that product formation occurs rapidly on the surface 

of the cylindrical shape particle, and the decomposition rate is controlled by the progress of the 

chemical reaction in the interface towards the center of the particle [45]. 

In contrast, F1 model is based on the mechanism controlled by first order chemical reaction (limit 

phase reaction with random nucleation), which is a simpler model, where the reaction rate is 

proportional to concentration, quantity or remaining fraction of solid reagent used in the 

dehydration reaction [41]. 

Kinetics of many solid-state reactions has been described by nucleation models, specifically the 

Avrami-Erofeyev models (A2, A3 and A4). These models indicate the formation of a new phase of 

solid product at the reactive points of the reactant particles (nucleation sites) and growth. 

Kinetic studies under non-isothermal conditions, previously performed by Huang et al. [15] for 

MgCl2·6H2O samples, determined that the predominant models for the studied dehydration reaction 

were found to be R3 and R2 by chemical reaction, respectively, in each study. These results differ 

from the isothermal results obtained in this research, because the kinetic mechanisms vary under 

different experimental conditions [36]. 

The slower bischofite kinetics compared to MgCl2·6H2O dehydration is a disadvantage for 

applications of the material in processes requiring rapid energy use. However, there are 

applications, studied by Zondag et al. [20, 30, 33] and Essen et al. [14], using MgCl2·6H2O as a 

seasonal heat storage material. In this type of applications slow kinetics is not an impediment to its 
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use, since heat used to charge the material can be stored during the warm seasons (spring and 

summer), when it is possible to reach temperatures of up to 150°C by using solar collectors. This 

heat can be used in cold seasons (autumn and winter), when ambient temperatures drop 

significantly. This type of storage, by means of chemical processes, allows heat to be stored for a 

long period of time, practically without losses, and then used for space and/or sanitary water 

heating. 

Further lab and pilot-scale experimental studies are needed to confirm whether bischofite can be 

used for seasonal storage. In these studies, measurements of dehydration/hydration cycles should be 

considered under actual partial vapor pressure and temperature conditions at specified locations. 

3.4.2 Activation energy and frequency factor 

For bischofite and MgCl2·6H2O dehydration, the activation energy (Ea) and frequency factor (A) 

kinetic parameters were calculated according to the rate constants k obtained by plotting equations 

8, 9 and 10. The results of the calculation of the logarithm of the dehydration reaction rate constant 

at different temperatures are summarized in Table 14 and plotted in Figure 14, from which the 

activation energy Ea (slope) and frequency factor A (intercept) kinetic parameters were obtained 

(see Table 15), calculated from the linearized Arrhenius equation (eq. 6). 

Table 14: Rate constant values at different temperatures 1/T to calculate activation energy for 

bischofite and MgCl2·6H2O. 

 MgCl2·6H2O Bischofite 

T (°C) 1/T·10
3
 (1/K) ln k 1/T·10

3
 (1/K) ln k 

70 2.9144 -5.7446 2.9144 -5.9522 

80 2.8318 -4.7217 2.8318 -5.2401 

90 2.7538 -3.4022 2.7538 -4.0864 

100 2.6800 -2.9450   
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Figure 14: Arrhenius graph using the natural logarithm of rate constants (ln k) versus the inverse of 

the temperature in Kelvin (1/K), according to data in Table 18. 

Table 15: Activation energy and frequency factor kinetic parameters for bischofite and MgCl2· 

6H2O. 

Materials - Ea/R·10
-3

 ln A A (s
-1

) Ea 

(J/mol) 

R  

Bischofite -11.597 27.762 1.141 ·10
12

 96414.8 0.9541 

MgCl2· 6H2O -12.478 30.670 2.088· 10
13

 103740.9 0.9631 

It is important to remember that each kinetic parameter is associated with a fundamental theoretical 

concept. The activation energy (Ea) is associated with the energy barrier to be achieved for a 

chemical reaction to occur and the frequency factor (A), with the frequency of vibrations of the 

activated complex and indicates the frequency of collisions between particles. According to this and 

the results of the kinetic parameters obtained for bischofite, the minimum energy to initiate the 

dehydration reaction until loss of 2.11 H2O moles (see Table 9) is 96.415 kJ/mol, with a collision 

frequency between particles of 1.141·10
12

 s
-1

 (see Table 15). The minimum energy required by 

MgCl2·6H2O to initiate the dehydration reaction until loss of 2.34 H2O moles is 103.74 kJ/mol, with 

a frequency of collisions between particles of 2.088·10
13

 s
-1

 (see Table 15). 
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It should be noted that these kinetic parameters for bischofite and MgCl2·6H2O are not in 

accordance with those found in literature. Huang et al. [15], calculated much lower activation 

energy and frequency factor values for the first dehydration phase, from MgCl2·6H2O to 

MgCl2·4H2O, equal to 66.8 kJ/mol and 3.6·10
9
 s

-1
, respectively. These differences can be attributed 

to the different conditions of the studies performed, as well as to the different calculation methods 

applied. 

In contrast, the kinetic study performed by Kirsh et al., [19], showed activation energy and 

frequency factor kinetic parameters values equal to 115 kJ/mol and 1.9·10
14

 s 
-1

, which were indeed 

closer to those obtained in this study. 

3.5 Energy storage density and storage cost 

The thermal study with TG coupled to DSC provided ΔHD for the dehydration reactions of 

bischofite and MgCl2·6H2O samples at the different working temperatures, which are presented in 

Table 16. In addition, the amount of energy in Joules (J) that can be stored in 1 cm
3
 (esd) was 

calculated for the studied salt hydrate samples and energy storage costs were estimated considering 

only the cost of the material (see Table 16). 

Table 16: Analysis of thermochemical energy storage density and costs. 

Materials Temperature

s (°C) 

ΔHD 

(kJ/kg) 

ρ solid  

(kg/m
3
) 

Cost 

(US$/kg) 

esd 

(J/cm
3
) 

Energy cost             

(US$/MJ) 

Bischofite 70 440.42 1513 

(50°C) 

0.1583 666.36 0.36 

80 527.66 798.35 0.30 

90 612.04 926.02 0.26 

100 826.76 1250.89 0.19 

MgCl2·6 H2O 70 445.5 1570 

(20°C) 

0.5202 699.44 1.17 

80 647.66 1016.82 0.80 

90 713.44 1120.10 0.72 

100 882.38 1385.34 0.59 

According to the results in Table 16, the esd of dehydration of MgCl2·6H2O and bischofite are in 

accordance with table 2 values to the releasing of 2 water molecules at 100°C, where esd is similar 

or even greater than found in literature. But the main importance of this table is that bischofite has a 
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lower esd than MgCl2·6H2O, with a difference ranging from 4.73% to 21.49% between the different 

temperatures. However, at 100 °C, the calculated cost to store 1 Mega Joule of energy, as 

thermochemical energy, for bischofite was found to be three times smaller than storage cost using 

MgCl2·6H2O. 

In addition, according to the study by Ushak et al. [13], when using bischofite to store energy as 

latent heat, the energy density obtained was 170 J/cm
3
, energy seven times lower than the one 

obtained with bischofite when used as thermochemical material at 100 °C (1251 J/cm
3
). Cost to 

store energy as latent heat is 1.28 US$/MJ [47], almost seven times greater than the one obtained to 

store thermochemical heat in bischofite (0.915 US$/MJ). 

 

4. CONCLUSIONS 

The viability of storing thermochemical energy in bischofite, a waste material containing 97.39% of 

MgCl2∙6H2O in its composition, has been experimentally demonstrated in this study, by means of 

the dehydration reaction of this material at different temperatures. Dehydration, at a constant rate of 

1 K/min, showed that the reaction occurs in four stages of water molecules loss, at times and 

temperatures slightly higher, up to about 25°C and 25 minutes, than in MgCl2∙6H2O samples. The 

fastest dehydration kinetics for bischofite was obtained at 80 °C (isotherm) compared to 

temperatures of 90 °C and 100 °C. Bischofite kinetics, compared to that of MgCl2∙6H2O ore, was 

generally up to four times slower, which could be affected by the impurity factors contained in 

bischofite, as well as, to a lesser extent, by particle size, which turned out to be twice that of the 

MgCl2∙6H2O sample. 

The study of the bischofite dehydration mechanism, by means of the fitting of experimental kinetic 

data, allowed to determine the R2 model (cylindrical particle contraction) at 70 °C and 80 °C and F1 

(first order reaction) at 90 °C, which are based on the control mechanism by chemical reactions in 

limit phase for bischofite. Results for MgCl2∙6H2O at 90 °C and 100 °C were different, and resulted 

in nucleation and particle growth: A2. 

Finally, the study of bischofite energy storage density (esd) showed a slightly lower value than that 

of MgCl2∙6H2O, but storage costs for 1 MJ of bischofite thermochemical energy at 100 ° C was 

found to be three times lower than that of MgCl2∙6H2O and seven times smaller than the type of 

energy stored as latent heat. Thus, this work demonstrated the potential for reuse of bischofite in 
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seasonal thermochemical storage, as a way to use cleaner energy and to help decrease the 

accumulation of nonmetallic mining waste. 
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