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Abstract: The application of the parameter space method has proven to be useful for
robustness analysis of uncertain parametric systems and robust control synthesis for
quite a number of applications. However, it has been restricted to linear systems and
the consideration of eigenvalue criteria. This paper enhances the application of the
parameter space method to include various locus criteria. This allows not only for
incorporation of linear criteria (e. g. gain and phase margin) but for nonlinear criteria
as well (e.g. Popov- or circle criterion and the dual locus method).
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1. INTRODUCTICN

Among different representations of uncertainties
in system dynamics, with the parametric ap-
proach, structured uncertainties are considered as
possible variations of one or multiple physically
meaningful parameters within defined bounds.
Robustness analysis then means to check for si-
multaneous stability for a faemiliy of plants i.e.
for a finite number of operating points or even
a continous operating domain of the uncertain
parameters. On the other hand with control de-
sign for a chosen controller structure the task
is to find appropriate controller parameters k;
(usually gains) which robustly stabilize a family of
plants. For linear parametric systems, a variety of
methods has been developed for robustness anal-
ysis and robust controller synthesis (Ackermann
et al., 1993). One of them is the parameter space
method. There, stability boundaries are mapped
into a plane of two uncertain or controller pa-
rameters respectively. A short outline of the pa-
rameter space method will be given in 1.3. Not
only Hurwitz stability can be investigated, but
also specifications which are stricter w.r.t. the
location of eigenvalues. This is referred to as I-
stability (Ackermann et al., 1993) and is briefly
explained in 1.2. However, mere eigenvalue con-
sideratious may not be sufficient to ensure good
performance. There are several frequency domain

criteria which apply to open loop loci, bode and
sensitivity plots etc. Furthermore, if nonlinear
characteristics are present, nonlinear stability cri-
teria can be incorporated like the Popov- or circle
criterion and the dual locus method. The key
idea to be presented in this paper is to use the
parameter space method in order to design and
analyze robust control systems w.r.t. some linear
and nonlinear loci criteria. Specifications of this
kind will be introduced in section 2 as @-stability.
The parameter space mapping of further specifica-
tions, namely magnitude contraints in frequency
domain (B-stability), is treated by a related paper
{Odenthal and Blue, 2000). Another related paper
{Kaesbauer, 2000) deals with some mathematical
issues of the parameter space method which are
relevant for all of the -, ©-, and B-type speci-
fications. One favorable item about the parame-
ter space method is the fact, that boundaries of
multiple criteria can be superimposed, ie. they
are simultaneonsly displayable in one parameter
plane plot. Thus all operating points or controller
gains respectively, which simultaneously match all
specifications, can be detected at a glance. In
section 1.1 this paper introduces an aeroelastic
wing section model with anti-flutter controller.
This system is used as an application example
in section 3 of this paper and in (Odenthal and
Blue, 2000} also. Thus the results of both papers
may be compared.



1.1 The BACT model

In {Blue and Balas, 1997) a mathematical model
of a 2D-pirfoil windtunnel model is introduced
(BACT=Benchmark Active Controls Technology)
in order to describe linear aeroelastic phenomena
which may lead to troubling flutter. This 6th order
model facilitates the synthesis and analysis of flut-
ter suppression controllers. Therefore, the model
is equipped with a trailing-edge control surface.
Its dynamics depend on the flight condition (Mach
number Ma and dynamic pressure g). The states
of the model are: plunge position, pitch position,
plunge rate, pitch rate, actuator deflection and
deflection rate. For the purpose of demonstra-
tion, it is assumed in this paper that full state
feedback can be applied. Furthermore, it is as-
sumed that sensors signals for both Mach number
and dynamic pressure are available, making gain
scheduling feasible, Therefore, in this paper only
a single flight condition (Ma = 0.5, ¢ = 225psf) is
exemplarily investigated. At this flight condition
the uncontrolled BACT model is unstable which
means that flutter threatens to destroy the wing,

The open loop eigenvalues are sy = —2.55 +
i 2044, s34 = 1.1 xj- 2566, 55 = —100,
sg = —400. The eigenvalues s5 and s5 correspond

to the actuator states. In a preliminary design step
a state feedback controller has been found which
stabilizes the wing. The feedback gains are

ki1 =0, kg =0, k3 = —0.0214, ky = —4.6, )
k5 = U, .IC(; = —5.6e4

In this paper and in {Odenthal and Blue, 2000)
(for demonstrating the introduced methods) the
the task is to refine the controller design w.r.t.
various specifications by tumng the gains &; and
k2 but leaving the other gains fixed. The opeu
loop transfer function of this system is given in
(Odenthal and Blue, 2000),

1.2 I'-Stability

A common stability criterion for linear time-
invariant systems requires that all eigenvalues (i.e.
roots of its characteristic polynomial {CP)) have
negative real parts (“Hurwitz”). A more gener-
alized stability notion is I'-stability. A system is
called T-stable if all eigenvalues are located in the
complex s-plane within a defined region T’ being
bounded by 8I'. If I is the open left half plane
then Hurwitz and T'-stability are identical. Fig. 1
shows a more sophisticated [-region representing
the eigenvalue specifications which are assumed
for the BACT model. It consists of the union of
two real number intervals (—400 < s < —150 and
—140 < s < —10) and a complex number region.
Black “+”-markers are plotted at the location of
the open loop eigenvalues. By means of the control
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Fig. 1. I'-stability definition for the BACT model;
the right plot is zoomed from the left plot

(1} the badly damped and unstable eigenvalues
which are related to the pitch and plunge modes
are shifted into the complex part of I' while the
actuator related eigenvalues remain in the two as-
signed real intervals. Thereby, a maximum settling
time, a minitnum damping and a maximum band-
width of the pitch/plunge eigenvalues are ensured.
Gray “x”-markersin Fig. 1 indicate the position of
the closed loop with controller (1). The I'-region is
coustructed such that two eigenvalues are located
just at the T-stability region boundary oI.

1.3 The Parometer Spoce Method

The parameter space method for robustuess anal-
ysis and robust control design is described in de-
tail in (Ackermann et al., 1993). The core of it is
also presented in the introduction of (Kaesbauer,
2000), I'-stability boundaries are mapped into a
plane of two parameters! being uncertain physi-
cal parameters (in the case of robustness analysis)
or controller parameters (in the case of controller
design} respectively. From a mathematical point
of view they are alike; therefore, in this paper,
these two parameters {denoted t; and #2) are com-
bined in a generic parameter vector t = [t; #3]7.
The mapping is based on the condition that the
characteristic polynomial p{s,t1,22) has a root
exactly on the [-region boundary dT". Therefore,
s = ogla) + jwla) € AU is substituted into the
characteristic equation which then is separated
into real and imaginary parts. This yields two
equations:

pQ(avtlr-t?) =0 (2)

The parameterisation o of 9T is denoted gen-
eralized frequency. The mapping of the stability
boundaries by algebraic solving of these two eqna-
tions is described in (Ackermann et al., 1993;
Kaesbauer, 2000).

i, ty,ta) =0,

L If more than two parameters are to be considered at a
time, then gridding of the third, fourth,... parameter can
be applied. This, however, is not considered in this paper
but can be easily combined with the described methods.



1.4 T-Boundaries in the k1, ko-plane of the controlled

BACT model

Fig. 2 shows the mapped I'-stability boundaries
in the ky, ko-plane of the BACT model with state
feedback and ks...ks according to (1). The I'-
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Fig. 2. I'-stability boundaries in the ki, kz-plane

stable region is marked with “Kr”. The initial
controller (1) with ky= ko= 0 lies right on the
[-stability boundary which corresponds to the
marginally T-stable closed loop pole locations
in Fig. 1. Fromn Kr a new controller can be
selected according to further considerations, e.g.
according to ©-specifications as introduced in the
next section.

2. ©-STABILITY

As indicated in the introduction, mere eigen-
value considerations may not be sufficient to
ensure good performance. Thus the parameter
space method is enhanced by the introduction
of frequency domain criteria. Analogous with T-
stability for eigenvalues now the noticn of ©-
stahility is defined for freqnency loci. In this sec-
tion a Nyquist locns will be exemplarily consid-
ered; however the statements can logically be ap-
plied to other frequency loci (e.g. the locus of the
linear part transfer function in a single loop with
a nonlinear characteristics or the Popov locus,
see section 3). In any case, only the locus branch
with positive real valued frequency is considered
{w=0).

Definition 1. Let © be an open region in the
complex plane. This region is bounded by the
O-boundary 80{f) = Raa(f} + j{sc(#) which is
assumed to be piecewise smooth. For the sake of
simplicity the display of the parameterisation # of
80 is omitted in the sequel.

The complement of 8 is denoted 6. Since © is
open, it holds that 80 C ©. The locus G(jw, tg)
with a nominal parameter vector tg Is called ©-
stable, if

{Gliw,to) Vw e R } ¢ ©, (3)

i.e. the locus is entirely included in ©. The locus
Gljw, to) with w > 0 is called marginally ©-stable
if

G(to) C (OUBO) A (BONG(to)) # {}, (4)

ie. G(jw,to) is ©-stable except for a finite number
of points where G{jw,tg) touches the boundary
2CH O

Definition 1 is generic; in practice such &-regions
are used which are suitable fo represent reason-
able control specifications. Figure 3 shows a circle
around the critical point -1 with a radius 0<r<1
as an example for a ©-reglon definition in the
Nyquist diagram. The region © being *admissi-
ble” for the Nyquist locus is the exterior of the
circle - in contrast any intersection with 4O is
“forbidden”. Thus, if G(jw,tp) avoids the circle a
certain stability margin is guaranteed.

Analogous with robust I-stability, robust ©-
stability is defined: An uncertain system is called
robustly ©-stable in a predefined operating do-
main @, if the locus G(jw,q) representing the
system is @-stable for all operating points q € @,
where q is the vector of uncertain parameters.

Fig. 3. A definition of @-stability in the Nyquist
diagram

2.1 Application of the parameter space method for
mapping Q-stability specifications

Like with T-stability, for robustness analysis or
controller design matching ©-specifications the
parameter space method can be applied, The as-
sumptions about the system and parameters are
the same as described in (Ackermann et al., 1993).
In the sequel it is assumed that 9@ is constructed
using a conic section or is composed of the con-
junction of conic section segments. This has the
advantage that a parameter-free representation
of 90 is feasible. Furthermore conic sections are
smooth curves of only second order. This helps
to limit the arithmetic effort. Hence 86 is com-
posed of smooth segments and conjunction points.
Cenjunction points are present at the nonsmooth
conjunction of two smooth segments.

For the application of the parameter space method
a system is considered which depends on a vector
t of parameters (plant or controller parameters)



and whose dynamics is represented by a frequency
locus G(jw,t}). It is assumed that the nominal
parameter vector tp is ©-stable, ie. the locus
G(jw, ty) avoids the forbidden region ©. Now the
set of all possible steady variations t of ty has
to be found such that the system does not lose
the property of ©@-stability. The set of all ©-stable
values of t is called the stability set Tg:

Definition 2.
To={t|Glw,t) COVweR{} (5
|

As a result of the assumptions formulated in
{Ackermann et al., 1993) steady variations of the
parameters t result in steady variations of the
locus G(jw,t). Based on this property, the very
marginal case when the locus is marginally ©-
stable can be considered for mapping ©-stability
boundaries into parameter space. From the vari-
ous marginal cases which may theoretically occur
only three cases are relevant in practice:

I G(jw,t) touches a smooth segment of the
boundary 80.
II G(jw,t) runs across a conjunction point z* of
the ©-boundary.
Il G{jw,t) starts (w = 0) on 8E.

It turns out that two kinds of simple mathe-
matical conditions suffice to establish the map-
ping equations for marginal cases which occur in
practice. The tangent condition allows to handle
case | whereas by formulating a point condition
case II may be treated. The mapping equations
for case III directly follow from the condition
G(0,t) = A0 which is to be solved for the real
part.

For the establishment of the point condition and
the tangent condition the real part and imaginary
part of the considered locus have to be deter-
mined. For the sake of simplicity the following
notation is used:

G(jw,t) = Re(jw, t) + jlo(jw, t) (6)

2.2 The point condition

For the point condition w.r.t. a generic point
2t = R, + jl,», the set of all frequency loci is
to he determined which include z*. This leads to
the two point condition equations:

Ra(w,t) = Ry
To(wt) = L. (7)

These equations can be rearranged and w can
he substituted  hy e such that (7) matches the

? In many cases w occurs only with even exponents. Then
substituting w? by «a is more convenient.

form of (2). Hence the parameter space method
as described in sections 1.3 and 1.4 is directly
applicable for mapping the point condition.

2.3 The tangent condition

The second mathematical condition for mapping
marginal cages in terms of ©-stability can be de-
rived from the geometric situation when G(juw,t)
touches the boundary &8 at a smooth segment of
#0. This condition can be represented by three
equations:

RG(wat) = Rse, IG(w=t) = lag (8)

8l (w,t)/Ow . 8lpe /00
ORg(w,t)/0w  B8Ryy/00

If compared to (7), in (9) there is one more
equation but one more unknown variable as well,
namely the parameterisation 8 of 30 = Hgg +
jlse. Since conic sections are used for forming
80 which allow a parameter free representation
of 9@, (9) is reduced to a set of two equations.
This is demonstrated with the example of a circle
forming the definition of 86 (the center of the
circle is located at zq on the real axis and the
radius is r):

(Roo —x0)? + I3 = 1* 9
The slope of the tangent to the circle is

0ls0/00 _ _Rae—.’l’:g- (10)

OR 5 /00 Ise

The equations {9) are substituted into {9) and {10)
which yields

1w, t) = (Rg(w,t) - .’1’30)2 + (Ic(w;t))z ~r2 =0

pofw,t)=80p(w,t) /0w =0 (11)

As with the point condition these two equations
can be arranged such that they correspond to (2)
and mapping can be executed. Since pa{w,t) is
the partial derivative of p;(w,t) w.r.t. w, solving
(11) means to find double roots of p;. This corre-
sponds to solving the discriminant of p; which is
explained in detail in (Kaesbauer, 2000).

3. ©-STABILITY BOUNDARIES FOR THE
BACT MODEL

In this section various specifications in terms of
B-stability are mapped into the controller ky, ko-
plane of the BACT-model with anti-flutter con-
trol. The cornmon setup for all examples is that al-
ways the open loop SISO transfer function (given
in (Odenthal and Blue, 2000}} from the actuator
set point input for the trailing edge control surface
deflection to the controller output is considered
(denoted G'(s, k1, ka)).



Ezxample 1. For the first example, the ©-specifi-
cation given in Fig. 3 is applied: A circle around
the critical point with radius r. Here » = 0.95
is chosen to guarantee good robustness against
unmodelled dynamics. This ©-region (the exterior
of the circle) is denoted €. According to this kind
of ©-boundary, only the tangent condition and
the fixed frequency peoint condition for w = 0 are
relevant. The ©;-stability boundaries are shown
in the left plot of Fig. 4. The ©;-stable region
in the ki, ko-plane is indicated by “Kg,”. The
fixed frequency point condition is plotted with
black, the tangent condition with gray color. In
the background the I'-stable region from Fig. 2 is
shown to illustrate how the set of controller gains
which simultaneously meet all specifications gets
somewhat reduced from the I'-stable region by
forming the intersection with the 8,-stable region.

Aoboy B bk e .

Fig. 4. BACT ©,;-stability boundaries {left) and
O2-stability boundaries for the circle criterion
(right)

Frample 2. The second and third example de-
monstrate how also nonlinear characteristics even-
tually being present in the control loop may be
considered by the ©-stability approach by using
corresponding nonlinear stability criteria. For the
BACT problem it is assumed that a nonlinear
characteristics y = f(u) is present at the actua-
tor input (e.g. trigonometric nonlinearities due to
the controller surface deflection mechanism). The
slope of the characteristics is one in the origin bnt
degressive with increasing input amplitude. Tt is,
however, assumed that a sector can be assigned to
the characteristics which includes the function f

Fig. 5. Sector for the circle and Popov criteria

entirely. This sector is formed by two straight lines
(both including the origin) with slope x; = 1/3
and kg = 1 respectively (Figure 5). The open
control Ioop can be interpreted as a series con-
nection (see Figure 6) of the nonlinearity char-
acteristics and the transfer function G(s, ki, ka).

For this kind of structure two different sufficient

[$m=mﬂ¥+k@mm—j
O

Fig. 6. Single loop structure with a nonlinear
characteristics and a linear transfer function

nonlinear criteria exist to prove absolute stability
of the closed loop: The circle criterion and the
Popov criterion.

The circle criterion simply demands that the locus
of the linear part transfer function G(jw, k1, k2)
avoids a circle with its center on the real axis
and real axis intersection points at —1/x; and
—1/#9 respectively. There, k) and &9 correspond
to the slopes which form the sector bounds of the
nonlinear characteristics. Therefore, a very similar
kind of ©-stability region as in Example 1XS can
be applied to map absolute stability boundaries
into the ky, ko-plane. Only the radius and center
of the circle being used as £Q, is different from

O,: gy = —2, 7 = 1. The result is shown in the
right plot of Fig. 4, indicating the ©s-region with
a “Kg,”-mark. O

Frample 5. The Popov criterion is related to
the circle criterion but may potentially vield less
conservative results. However the application of
the Popov criterion takes more effort to be evalu-
ated. First of all, no unstable linear part transfer
functions can be treated offhand. The system has
to be transformed into an equivalent system such
that a transformed nonlinear characteristics and
a transformed stable linear part transfer function
can be investigated with the Popov criterion. This
transformation which can be found in (Ackermann
et al., 1993) is not further explained here. Using
a proportional feedback gain of 1 = 1/3 for that
transformation, the linear part transfer function is
stabilized, resulting in the transformed linear part
transfer function G(s, k1, k). The transformed
nonlinear characteristics is represented by a sector
with lower slope zero and upper slope k£ = 2/3.
A graphical representation of the Popov criterion
uses the Popov locus which is calculated from the
real and imaginary parts of G(s, k1, k2):

Gp(iw) = Re Gljw, ky, k) 2
+jw Im é’(jw, ki, ka)

According to the Popov criterion, the system is
proven to be ahsolutely stable if the Popov locus
lies entirely to the right hand side of the Popov
straight line

Imz=m(Re z+1/x) (13)



This Popov straight line is a straight line with
arbitrary slope? m intersecting the real axis at
—1/k. In this example the slope of the Popov
straight line is set m = 90. Establishing the
mapping egnations here only needs the tangent
condition for the marginal case that the Popov lo-
cus Gp(jw, k1, ko) touches the Popov straight line.
The O3 tangent condition hence is represented hy
the following two equations:

p1{w, kr, ko) =1m Gp(jw, k1, ko)
-m (Re G (jw, ki, k) + 1/5)
=0 (14)
palw, ki, ko) = Op1{w. k1, k2) /B =0

The results are illustrated in the left plot of Fig. 7.
The Oa-stable region Kg, in the ki, ke-plane is

1
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Fig. 7. ©-stability boundaries for the Popov crite-
rion (left) and stability region for simultanous
I'-stability and & s-stability (right)

f
3

now much more advantageous than Kg, in the
right plot of Figure 4 since the entire I-stahle
region is contained in Ke,. That is to say that no
further restrictions on the countroller gains come
in to play due to the nonlinearity, The difference
between the results of the last two examples is due
to the fact that both the circle- and the Popov
criterion are different criteria (though related)
which are both sufficient but not necessary, O
Note that also describing functions and the dual
locus method can be used to deal with nonlinear
characteristics in conjunction with the parameter
space method. In {Ackermann and Biinte, 1999,
Biinte, 1998) it has been demonstrated how with
this approach the avoidance of limit cycles can
be proven for an actively steered car despite
the presence of parametric uncertainties and rate
limitation of the steering actuator,

Erample 4. Finally, the right plot of Fig. 7 shows
the superposition of all @-criteria boundaries from
the previous examples but the circle criterion since
the Popov criterion leads to less conservative re-
sults. The shaded region Kre, , is the intersection
of Kp, Ke,, and Ke, representing the set of con-
trollers which simultanously meet all considered

% When using the parameter space method, the slope of
the Popov straight line can be chosen arbitrarily such that
a most favourable stability region is obtained.

specifications. For an optimal choice of the actual
controller the stable region should be made even
smaller by additionaly imposing further specifica-
tions or by increasing the present ones. ]

For the final choice of the controller, the present
specifications can be made stricter in order to
reduce the set of controllers which fullfil all specs.
Another possibility is to superimpose stability
boundaries of further different type specifications
in the k;, ks-plane. Reasonable further demands
are constraints on the sensitivity functions which
are helpful to ensure good closed loop perfor-
mance [(B-stebility). The mapping of this kind
of constraints is considered in (Odenthal and
Blue, 2000).

4. CONCLUSIONS

The uotion of 8-stability can be used to map a va-
riety of frequency locus specifications into a plane
of parameters by application of the parameter
space method. Hence, additionally to the common
mapping of eigenvalue specifications, another class
of criteria can be considered for both robustness
analysis and robust control design while exploiting
the benefits of the parametric approach like sim-
plicity and interpretability of the controller struc-
ture, transparency of the design, nonconservative-
ness (if not used in conjunction with conservative
criteria) etc.
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