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Abstract

We describe the model reduction software developed re-
cently for the control and systems library SLICOT. Be-
sides a powerful collection of Fortran 77 routines imple-
menting the last algorithmic developments for several
well-known balancing related methods, we also describe
model reduction tools developed to facilitate the usage
of SLICOT routines in user friendly environments like
Matlab or Scilab. Extensive testing of the imple-
mented tools has been done using both special bench-
mark problems as well as models of several complex in-
dustrial plants. Testing results and performance com-
parisons show the superiority of SLICOT model reduc-
tion tools over existing model reduction software.

1 Introduction

Model reduction is of fundamental importance in many
modeling and control applications. Still, reliable and
high quality model reduction software tools are scarce.
Even the model reduction tools available in commercial
packages have strong limitations because using either
inappropriate algorithms or poor software implemen-
tations. The lack of good general purpose model re-
duction software was the motivation to develop with
the highest priority a model reduction chapter for the
control and systems library SLICOT in the framework
of the European project NICONET1 [2].

In this paper we describe the recently developed model
reduction software for SLICOT. A powerful collection
of user callable Fortran 77 routines has been imple-
mented based on the latest algorithmic developments
for three balancing related methods: the Balance and
Truncate (B&T) method [9], the Singular Perturbation
Approximation (SPA) method [7] and the Hankel-Norm
Approximation (HNA) method [5]. These methods be-
long to the class of additive error methods and rely
on guaranteed error bounds. They are primarily in-
tended for the reduction of linear, stable, continuous- or
discrete-time systems. However, in combination with

1http://www.win.tue.nl/niconet/niconet.html

additive spectral decomposition or coprime factoriza-
tion techniques the basic methods can be employed to
reduce unstable systems too.

The new model reduction routines for SLICOT are
among the most powerful and numerically most reli-
able software tools available for model reduction. To
facilitate the usage of the new model reduction rou-
tines, easy-to-use and flexible interfaces have been de-
veloped to integrate them in two popular user friendly
computing environments for engineering and scientific
applications: the commercial package Matlab2 and
the free software Scilab [3].

Several benchmark examples have been employed for
testing and performance comparisons. The test results
and performance comparisons show the superiority of
SLICOT model reduction tools over existing model re-
duction software. The complete test results and com-
parisons with existing model reduction software is pre-
sented in an extended version of this paper [21].

2 Development of model reduction subroutines

In this section we present the standardization effort
done within the NICONET project [2] to develop nu-
merically reliable software for model reduction for the
SLICOT library.

2.1 Balancing related model reduction
Three basic model reduction algorithms belonging to
the class of methods based on or related to balancing
techniques [9, 7, 5] form the basis of model reduction
software in SLICOT. These methods are primarily in-
tended for the reduction of linear, stable, continuous- or
discrete-time systems. They rely on guaranteed error
bounds and have particular features which recommend
them for use in specific applications. In what follows
we present succinctly the main features of balancing
related model reduction.

Consider the n-th order original state-space model

2Matlab is a registered trademark of The MathWorks, Inc.



G := (A,B, C, D) with the transfer-function matrix
(TFM) G(λ) = C(λI − A)−1B + D, and let Gr :=
(Ar, Br, Cr, Dr) be an r-th order approximation of the
original model (r < n), with the TFM Gr = Cr(λI −
Ar)−1Br + Dr. According to the system type, λ is ei-
ther the complex variable s appearing in the Laplace
transform in case of a continuous-time system or the
variable z appearing in the Z-transform in case of a
discrete-time system. In our overview we focus on the
so-called absolute (or additive) error model reduction
method which essentially tries to minimize the absolute
approximation error

‖G−Gr‖∞. (1)

A large class of model reduction methods can be in-
terpreted as performing a similarity transformation Z
yielding

[
Z−1AZ Z−1B

CZ D

]
:=




A11 A12 B1

A21 A22 B2

C1 C2 D


 , (2)

and then defining the reduced model Gr as the leading
diagonal system

(Ar, Br, Cr, Dr) = (A11, B1, C1, D). (3)

When writing Z and Z−1 in partitioned form

Z := [ T U ], Z−1 :=
[

L
V

]
,

then LT = Ir and Π = TL is a projection matrix. Thus
the reduced system is given by

(Ar, Br, Cr, Dr) = (LAT, LB, CT, D).

The matrices L and T are called truncation matrices.

The partitioned system matrices in (2) can be used to
construct a so-called singular perturbation approxima-
tion (SPA):

Ar = A11 + A12(γI −A22)−1A21 ,
Br = B1 + A12(γI −A22)−1B2 ,
Cr = C1 + C2(γI −A22)−1A21 ,
Dr = D + C2(γI −A22)−1B2 ,

(4)

where γ = 0 for a continuous-time system and γ = 1
for a discrete-time system. Note that SPA formulas
preserve the DC-gains of stable original systems.

Another class of so-called modal methods, determine Z
such that

[
Z−1AZ Z−1B

CZ D

]
:=




A11 0 B1

0 A22 B2

C1 C2 D


 , (5)

and A11 and A22 contain the dominant and non-
dominant modes of the system, respectively. Thus,

the reduced model (3) contains essentially the domi-
nant dynamics of the system. The modal approach
can be easily used in combination with balancing re-
lated methods for reduction of unstable systems. In
this case, the dominant part includes all unstable dy-
namics and the model reduction is performed only on
the non-dominant stable part.

In selecting numerical algorithms for model reduction,
specific requirements for a satisfactory algorithm have
been formulated to assess its suitability to serve as ba-
sis for robust numerical software implementations: (1)
general applicability regardless the original system is
minimal or not; (2) emphasis on enhancing the numer-
ical accuracy of computations; (3) relying on numeri-
cally reliable procedures; (4) independence of results of
state space coordinate scaling. In what follows we only
discuss aspects (1) and (2). For the complete discussion
of all these features see [21].

The first requirement is very important because, in
practice, due to the presence of roundoff errors, it is
often impossible to distinguish between a true non-
minimal and a nearly non-minimal system. At algo-
rithmic level, this requirement can be fulfilled by using
algorithms which compute L and T directly, without
determining Z or Z−1. In particular, if the original
system is non-minimal, then L and T can be chosen
to compute an exact minimal realization of the origi-
nal system [14]. In this way, model reduction can also
serve as a numerically sound alternative to solve mini-
mal realization problems.

The emphasis on improving the accuracy of computa-
tions led to so-called algorithms with enhanced accu-
racy. In the balancing related model reduction meth-
ods, the truncation matrices L and T are usually deter-
mined from the controllability and observability grami-
ans P and Q, satisfying a pair of continuous-time Lya-
punov equations

AP + PAT + BBT = 0
AT Q + QA + CT C = 0 (6)

or a pair discrete-time Lyapunov equations

APAT + BBT = P
AT QA + CT C = Q

(7)

Since P and Q are positive semi-definite symmetric
matrices, they can be expressed in Cholesky factor-
ized forms P = ST S and Q = RT R with S and R
upper-triangular matrices. The Cholesky factors can
be computed directly by solving (6) or (7) using nu-
merically reliable algorithms proposed by Hammarling
[6] to solve non-negative definite Lyapunov equations.
Then, the computation of L and T can be done entirely
on basis of the Cholesky factors S and R, leading to
the so-called square-root (SR) methods for model re-
duction.



Consider the singular value decomposition (SVD)

SRT =
[

U1 U2

]
diag(Σ1,Σ2)

[
V1 V2

]T
, (8)

where

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn),

and σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn ≥ 0 are the Han-
kel singular values of the system. The (SR) method
for the B&T approach of [9] determines L and T as [12]

L = Σ−1/2
1 V T

1 R, T = ST U1Σ
−1/2
1 .

If r is the order of a minimal realization of G then the
gramians corresponding to the resulting realization are
diagonal and equal. In this case the minimal realization
is called balanced. Since the SR method can be used
to compute balanced minimal representations resulting
in a partitioned form like in (2), it can also be used
for computing reduced order models by using the SPA
formulas [7] or as the preliminary step in performing
the HNA [5]. The SR approach is usually very accurate
for well-equilibrated systems. However if the original
system is highly unbalanced, potential accuracy losses
can be induced in the reduced model if either L or T
is ill-conditioned (i.e., nearly losses maximal rank).

In order to avoid computations with ill-conditioned
truncation matrices, a balancing-free (BF) approach
has been proposed in [11], where well-conditioned trun-
cation matrices L and T can be always determined.
These matrices are computed from orthogonal matrices
whose columns span the orthogonal bases for the right
and left eigenspaces of the product PQ corresponding
to the first r largest eigenvalues σ2

1 , . . . , σ2
r . Because of

the need to compute explicitly P and Q as well as their
product, this approach is usually less accurate for mod-
erately ill-balanced systems than the SR approach.

A balancing-free square-root (BFSR) algorithm for the
B&T method, combining the main advantages of the
BF and SR approaches has been introduced in [14].
The truncation matrices L and T can be determined
as

L = (Y T X)−1Y T , T = X,

where X and Y are n × r matrices with orthogonal
columns computed from two QR decompositions

ST U1 = XW, RT V1 = Y Z,

with W and Z non-singular (upper-triangular) matri-
ces. The accuracy of the BFSR algorithm is usually
better than either of SR or BF approaches. A BFSR
method for the SPA approach has been proposed in
[13]. The matrices L and T are computed such that the
system (LAT, LB, CT, D) is minimal and the product
of corresponding gramians has a block-diagonal struc-
ture which allows the application of the SPA formulas.

For all three methods B&T, SPA and HNA the norm
of the absolute approximation error G−Gr for an r-th
order approximation satifies

‖G−Gr‖∞ ≤ 2
n∑

k=r+1

σk. (9)

Note that the actual error may be considerably less
than the above error bound, so that this formula can be
seen generally only as a guide to choose the appropriate
order of the reduced system. In case of optimal HNA
method, the optimum Gr achieves

inf ‖G−Gr‖H = σr+1

and a feedtrough matrix Dr can be chosen (see [5] for
details) such that the error bound in (9) is one half
of the bound for B&T and SPA. This feature is not
available in the implemented SLICOT routine for HNA.

2.2 Reduction of unstable systems
The reduction of unstable systems can be performed
by using the methods for stable systems in conjunction
with two embedding techniques. The first approach
(see [19]) consists in reducing only the stable projec-
tion of G, computed via a spectral separation of the
form (5), and then including the unstable projection
unmodified in the resulting reduced model. The second
approach (see [16]) is based on reducing the factors of
a stable rational coprime factorization of G. For in-
stance, having G = M−1N , where M and N are stable
rational TFMs of same order as G, we can compute an
approximation [ Nr Mr ] of order r of [ N M ] and form
the r-th order approximation Gr = M−1

r Nr. Note that
both approaches for the reduction of unstable system
can be implemented with practically no computational
overhead if the original system G is already stable.

2.3 Implemented model reduction software
The basis for implementation of the model reduction
routines in SLICOT formed the collection of routines
available in the RASP-MODRED library [15], imple-
mented on basis of the linear algebra standard pack-
age LAPACK [1]. The underlying algorithms ful-
fill the requirements for generality, numerical reliabil-
ity, enhanced accuracy, etc. formulated for model re-
duction algorithms and thus are completely satisfac-
tory to serve as bases for robust software implementa-
tions. All new SLICOT routines originating from the
RASP-MODRED library have been practically rewrit-
ten. Several routines represent completely new im-
plementations. A special emphasis has been put on
an appropriate modularization of the routines in the
model reduction chapter of SLICOT. For this purpose,
a computational kernel formed of three basic routines
is shared by all higher level user callable routines.

Three user callable routines AB09AD, AB09BD and
AB09CD implement the basic algorithms for B&T,



SPA and HNA methods, respectively. Both the SR
and BFSR versions of the B&T and SPA algorithms
are implemented in AB09AD and AB09BD. The im-
plementation in AB09CD of the HNA method uses the
SR B&T method to compute a balanced minimal real-
ization of the original system. The singular perturba-
tion formulas (4) are implemented in the user-callable
routine AB09DD. All model reduction routines perform
optionally the scaling of the original system and handle
both continuous-time as well as discrete-time systems.
For implementing the discrete-time HNA method, bi-
linear continuous-to-discrete transformation techniques
have been employed.

Three supporting routines AB09AX, AB09BX and
AB09CX perform basically the same reductions as the
corresponding main user callable routines, but for sys-
tems with the state matrix already reduced to the
real Schur form and possibly already scaled. These
lower level routines form the computational kernel of
the whole model reduction software in SLICOT, be-
ing called by the user-callable routines for reduction of
both stable and unstable systems.

SLICOT also provides tools to perform the reduction of
unstable systems. On the basis of newly implemented
routines to compute left/right coprime factorizations
with prescribed stability degree or with inner denomi-
nators, or to compute additive spectral decompositions
(see next paragraph), several user callable routines
have been implemented for reduction of unstable sys-
tems. A modular implementation allowed flexible com-
binations between various factorization/decomposition
and model reduction methods for stable systems.

The routines AB09ED, AB09MD and AB09ND im-
plement the spectral separation approach in combina-
tion with HNA, B&T, and SPA methods, respectively.
They provide an additional flexibility by allowing to
specify an arbitrary stability boundary inside the stan-
dard stability regions (continuous or discrete). The
dominant part of the system having poles only in the
”unstable” region is retained in the reduced model, and
only the ”stable” part is approximated. This leads to
an effective combination of balancing methods with the
dominant modal reduction (see also [19]). The coprime
factorization based routines AB09FD and AB09GD al-
lows arbitrary combinations of B&T and SPA methods,
respectively, with four types of coprime factorizations.

It is important to emphasize that the model reduction
routines for unstable systems can be applied with prac-
tically no efficiency loss to reduce stable systems too.
Since these routines can be seen as completely general
tools for order reduction of linear time-invariant sys-
tems, they form the basis to implement the interface
software to user-friendly environments (see Section 3).

2.4 Additional software for model reduction
An important number of user-callable and auxiliary
routines have been implemented for the special needs of
the model reduction software, as for example for com-
puting system norms, several factorizations and decom-
position of TFMs, or frequently used similarity trans-
formations on system matrices. A complete list of im-
plemented model reduction and auxiliary routines is
given in [21].

3 Integration in user-friendly environments

One of the main objectives of the NICONET project is
to provide, additionally to standardized Fortran codes,
high quality software embedded into user-friendly en-
vironments for computer aided control system design
(CACSD). Two target environments have been en-
visaged: the popular commercial numerical computa-
tional environment Matlab and the public domain
Matlab-like environment Scilab. Both allows to eas-
ily add external functions implemented in general pur-
pose programming languages like C/C++ or Fortran.
In case of Matlab, the external functions are called
mex -functions and have to be programmed according
to precise programming standards. In Scilab, external
functions can be similarly implemented and only sev-
eral minor modifications were necessary to the Matlab
mex -functions to adapt them to Scilab. With appro-
priate wrappers, the Matlab mex -functions can also
serve as basis to implement external function interfaces
to other similar environments (e.g., MatrixX).

For the integration in Matlab, one important aspect
for implementing mex -functions was to keep their total
size as small as possible. Since the standardized model
reduction programs in SLICOT share many routines
from BLAS, LAPACK and SLICOT, it was decided
to implement a single function covering all model re-
duction functionality provided in SLICOT. The mex -
function for model reduction is called sysred and pro-
vides a flexible interface to practically all functional
features provided by the model reduction routines for
reduction of stable/unstable linear systems using the
B&T, SPA and HNA methods in conjunction with sta-
ble coprime factorization and stable/unstable spectral
decomposition.

To provide a convenient interface to work with control
objects defined in the Control Toolbox, several easy-to-
use higher level model reduction functions have been
additionally implemented explicitly addressing some of
available features. A completely similar interface has
been implemented for Scilab too3.

3done by F. Delebeque



4 Testing and performance comparisons

Extensive testing of the implemented software has
been performed using several benchmark problems [21].
Simple, well behaving models have been used to check
the correct installation of the software. In what fol-
lows we only present test results where we compare
the speed of our software with carefully implemented
Matlab m-functions from the HTOOLS Toolbox [20].

In the Table 1, we present timing results for randomly
generated stable systems of orders up to 512 compar-
ing, in case of square-root B&T method, the efficiency
of the mex -function sysred, the m-functions sqrmr
from HTOOLS and balreal from the Control Toolbox
[8]. Note that for system orders above 32, balreal sys-
tematically failed issuing the message "System must
be reachable". The results in Table 1 have been ob-
tained on a Pentium II 400 Hz Personal Computer
running under Windows NT 4.0. The mex -function
sysred has been produced using Digital/Compaq Vi-
sual Fortran V 5.1.

Times [sec]Order
sysred sqrmr balreal

16 0.003 0.17 0.04
32 0.01 0.5 0.17
64 0.11 2.14 ∗
128 0.78 10.55 ∗
256 6.12 63.75 ∗
512 76.23 478.69 ∗

Table 1: Timing results for sysred, sqrmr and balreal.

This table illustrates not only the numerical robustness
of structure exploiting algorithms, but also the signifi-
cant speed-up obtained using mex -function based soft-
ware (up to one order of magnitude) allowing to solve
relatively large order dense problems on a desktop PC.

5 Testing on industrial examples

In [21] we report test results on three industrial mod-
els exhibiting some challenging features like poor scal-
ing, lack of minimality, or presence of unstable modes.
Here, we present some results for three linearized mod-
els of a gasifier at 0%, 50% and 100% loads. These
models have been obtained by starting from a nonlin-
ear model, developed by GEC ALSTHOM to serve as a
benchmark problem for simulation and robust control.
Some analysis results on the 100% load model are dis-
cussed in [10], where numerical difficulties have been
encountered by using Matlab model reduction tools,
but also the numerical tools in Mathematica.

The gasifier models have order 25 and are non-minimal.
The real cause of numerical difficulties appear to be
the poor scaling of the models. The norms of state
matrices for the three models are about 109, but after
appropriate scaling, all norms can be reduced below
100. Such a preliminary scaling is an implicit feature
of sysred and raised no special numerical challenges to
the SLICOT model reduction codes. The computed 10
smallest Hankel singular values of the 100% load model
are very accurate

σ16−25 = {0.64046, 1.0852 · 10−4, 0, 0, 0, 0, 0, 0, 0, 0, }
and indicate that the order of a minimal realization
is 17. The computed 16 order reduced models can be
practically not distinguished from the original models
on basis of time or frequency responses. Approxima-
tions of orders 6, 8 and 12 have been also computed.
The 12 order models represent very good approxima-
tions of the original models and can serve as basis for a
robust controller design. A comparison of approxima-
tions for elements g35(s) of the corresponding TFMs is
shown in Figure 1.
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Figure 1: Frequency responses for g35(s) elements.

6 Summary of results and perspectives

The model reduction tools of SLICOT consists of a
functionally reach collection of standardized, compre-
hensively documented and fully tested Fortran routines
implementing rigorously selected methods for order re-
duction of continuous-/discrete-time, stable/unstable
linear time-invariant systems. The final model reduc-
tion package consists of 9 user-callable routines and 3
supporting routines. All these routines are thoroughly
documented. The documentation is automatically gen-
erated from the comments in the preamble of each rou-
tine. The documentation is available in html -format



and can be viewed with standard browsers like Win-
dows Internet Explorer or Netscape. The documenta-
tion also includes for each user callable routine a test
program example, test data and the corresponding test
results. The documentation of all library routines can
be accessed on-line via the ftp-site of NICONET.

Besides standardized Fortran routines, the SLICOT
model reduction tools include interface software to two
popular user-friendly CACSD environments: Matlab
and Scilab. A special mex -function sysred has been
implemented as Fortran interface to Matlab to pro-
vide access to all facilities available in the SLICOT rou-
tines. This mex -function also served to prepare the
interface software for Scilab. Additionally, 9 easy-to-
use m-functions have been implemented. They fully
exploit the advanced object oriented facilities available
both in Matlab Control Toolbox as well as in Scilab
to manipulate control objects. Standard help facili-
ties for the mex -function and m-functions are available
both for Matlab and Scilab.

Two main directions are envisaged to continue the
efforts to develop reliable numerical model reduction
software for SLICOT. The first direction focuses on
the reduction of very high order systems using special
implementations exploiting parallel architecture ma-
chines. The second direction continues the efforts to de-
velop model reduction software for relative error meth-
ods and frequency weighted problems, with the main
objective to have a powerful collection of tools for con-
troller reduction. This software will complement the
H2/H∞ software developed recently for SLICOT.
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