
A Descriptor Systems Toolbox for MATLAB

A. Varga

German Aerospace Center (DLR) - Oberpfaffenhofen
Institute of Robotics and Mechatronics

D-82234 Wessling, Germany
Andras.Varga@dlr.de

Abstract

We describe a recently developed Descriptor Sys-

tems Toolbox implemented under Matlab. This
Toolbox relies on the object oriented approach for con-
trol systems analysis and design provided within the
standard Control Toolbox of Matlab. The basic ap-
proach to develop the Descriptor Systems Toolbox
was to exploit the powerful matrix and system object
manipulation features of Matlab via flexible and func-
tionally rich high level m-functions, while simultane-
ously enforcing highly efficient and numerically sound
structure exploiting computations via the mex -function
technology of Matlab to solve critical numerical prob-
lems. The mex -functions are based on Fortran codes
from Lapack and Slicot.

1 Why a Descriptor Systems Toolbox?

It is well-known that a descriptor system of the form

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

with E square and possibly singular and with A− λE
a regular matrix pencil, is the most general descrip-
tion for a linear time-invariant continuous-time system.
Such systems arise frequently from modelling intercon-
nected systems even with standard tools like Simulink
(recall the ”algebraic loop” warning). Descriptor mod-
els are also common in modelling constrained mechan-
ical systems (e.g., contact problems). Moreover, the
descriptor representation is necessary to perform some
operations even with standard systems like conjugation
or inversion. Discrete-time descriptor representations
are frequently used to model economic processes.

The Descriptor Systems Toolbox is primarily in-
tended to provide an extended functionality for the
Control Toolbox of Matlab by allowing the manip-
ulation of descriptor systems, the most general class
of linear system models. Although these models are
formally supported in the Control Toolbox, systems
with singular E are not allowed. This is why some func-
tions in the Descriptor Systems Toolbox represent

simply extensions of functions already present in the
Control Toolbox. The other functions are new and
allow, for the first time, a convenient user-friendly oper-
ation to solve the most complicated dynamic analysis
problems, as for example, the determination of com-
plete Kronecker-structure of a linear pencil.

The Descriptor Systems Toolbox is also useful for
manipulating rational and polynomial matrices. Re-
call that each rational matrix R(λ) can be seen as
the transfer-function matrix (TFM) of a continuous- or
discrete-time descriptor system. Thus, each R(λ) can
be equivalently realized by a descriptor system quadru-
ple (A− λE,B,C,D) satisfying

R(λ) = C(λE −A)−1B +D,

where λ = s for a continuous-time descriptor realiza-
tion or λ = z for discrete-time descriptor realization.
It is widely accepted that most of numerical opera-
tions on rational matrices, and in particular on poly-
nomial matrices, are best done by manipulating in-
stead the matrices of the corresponding descriptor sys-
tems descriptions. Many operations on standard ma-
trices have nice generalizations for rational matrices.
Straightforward generalizations are the rank, determi-
nant, inverse and several generalized inverses. The con-
jugate transposition of a complex matrix M∗ gener-
alizes to the conjugation of a rational matrix R∗(λ),
where R∗(s) = RT (−s) or R∗(z) = RT (1/z), while the
full-rank, inner-outer and spectral factorizations can
be seen as generalizations of the familiar LU, QR and
Cholesky factorizations, respectively. Many aspects for
scalar polynomials and rational functions, as for exam-
ple, poles and zeros, minimum degree coprime factor-
izations, normalized coprime factorizations or spectral
factorization have nontrivial generalizations for poly-
nomial and rational matrices.

2 The Toolbox

The Descriptor Systems Toolbox provides many
useful functions for manipulating generalized linear sys-
tems with rational or polynomial transfer-function ma-



trices. This toolbox relies on the object oriented ap-
proach for control systems analysis and design pro-
vided within the standard Control Toolbox of Mat-

lab. The basic approach to develop the Descrip-

tor Systems Toolbox was to exploit the powerful ma-
trix and system object manipulation features of Mat-

lab via flexible and functionally rich collection of m-
functions, while simultaneously enforcing highly effi-
cient and numerically sound computations via mex -
functions to solve critical numerical problems. For the
contents of the toolbox see Appendix B.

The high level m-functions of the toolbox call a rela-
tively small set of powerful mex -functions implement-
ing many of recently developed structure exploiting
pencil reduction and manipulation algorithms. These
functions are listed in the following table:

Name Function
kstair computation of several Kronecker-like

forms [2, 16]
gsminr minimal descriptor realization [14]
gsystr generalized system similarity transfor-

mations
gszero generalized system zeros and Kronecker

structure [7]
qzord real QZ-algorithm and stable/unstable

separation of generalized eigenvalues [5]
sysplace partial pole placement via Schur

method [13]
genleq generalized Sylvester and Lyapunov

matrix equations [4, 12]

All these mex -functions are based on recently imple-
mented Fortran codes from the Lapack [1] and Sli-

cot [3] libraries. Note that two important compu-
tations provided by the Lapack based mex -function
qzord, namely the real QZ algorithm and the reorder-
ing of generalized real Schur forms (both not available
in Matlab) are the basic tools to solve efficiently stan-
dard and generalized Riccati equations.

Several of implemented high-level descriptor systems
m-functions can be seen as extensions of equivalent
functions provided in the standard Control Toolbox
of Matlab. These are: spole to compute poles, seig
to compute generalized eigenvalues, szero to compute
system zeros, dsminreal to compute irreducible or
minimal realizations, sconj to determine the conju-
gate descriptor system, or sinv to invert a descrip-
tor system. The functionality of these functions is
however much richer than that of Matlab counter-
parts. For example, spole/seig computes not only
the poles/eigenvalues (finite and infinite), but also the
complete Kronecker structure of a given (possibly non-
square) pencil A−λE. This is also the case for the rich
functionality provided by the function szero (see the

Appendix A). Practically, this function can be seen as
an universal analysis tool for standard or generalized
time-invariant systems.

The function sinv is another example for a rich func-
tionality. For an invertible system (i.e., with an invert-
ible rational TFM) this function determines a descrip-
tor system which represents the descriptor realization
of the inverse TFM. Note that for standard systems,
this operation is possible only if the feedthrough ma-
trix D is invertible. If the TFM is not invertible as
rational matrix or if it is non-square, sinv determines
a descriptor realization whose TFM is a generalized in-
verse of the system TFM. Stable generalized inverses
can be optionally determined if exist. For stabilization,
a generalized pole assignment technique is employed.
A lower level function kronscf, called by sinv, can be
used to compute several Kronecker-like staircase forms
together with the complete Kronecker structure of a
linear pencil.

The Descriptor Systems Toolbox also provides use-
ful conversion functions: tm2dss to compute a mini-
mal realization of a rational/polynomial matrix [14],
dss2tm and dss2zpk to evaluate the rational matrix
corresponding to a descriptor representation [15], and
dss2ss to convert a proper descriptor system to a stan-
dard system representation. A set of m-functions built
around the mex -function gsystr are available for gen-
eralized state-space similarity transformations, as for
example, for descriptor system scaling or various co-
ordinate transformations (QR, RQ, SVD or SVD-like).
For additive spectral decompositions of a given descrip-
tor system (e.g., finite-infinite or stable-unstable) the
function specdec is provided [6, 5].

The Toolbox contains two functions based on “last
minute” methods for solving two important factoriza-
tion problems of rational matrices in the most gen-
eral setting: iofac to compute the inner-outer fac-
torizations, and nrcf/lrcf to compute the normalized
right/left coprime factorization. Based on iofac, the
function spinv computes the pseudo-inverse of a ra-
tional matrix. All these functions are based on recent
factorizations algorithms [8, 9].

Finally, two functions gplace and gstab are provided
for generalized eigenvalue assignment [10] and stabi-
lization, respectively. A set of five m-functions built
around genleq are available to solve various general-
ized Sylvester and Lyapunov equations [4, 12].

3 Implementation aspects

The Descriptor Systems Toolbox supports all three
basic system representations in the standard Control

Toolbox of Matlab: descriptor state-space, rational



and pole/zero/gain representations. By function over-
loading, the same function performs (if appropriate)
on all three representations. Automatic model conver-
sions are performed when necessary and the results are
provided in accordance with the original system repre-
sentation. All system level functions of the toolbox are
available for both continuous-time as well as discrete-
time descriptor systems. For some computations (e.g.,
system zeros, minimal realization) separate algorithms
are used according to the type of system: standard
(E = I) or descriptor.

All used SLICOT programs are based exclusively on
numerically reliable and efficient (complexity O(n3))
algorithms. Most staircase reduction algorithms use
the LAPACK-style incremental rank estimators in
combination with QR-factorization with column piv-
oting. All algorithms are based on real computations.
The implementations of all functions exploit the best
of both Matlab and Fortran programming, by try-
ing to balance the matrix manipulation power of Mat-

lab with the intrinsic high efficiency of carefully imple-
mented structure exploiting Fortran codes available
in Lapack and Slicot. This approach is in our opin-
ion a very promising way to address the development
of future computer aided control engineering environ-
ments.

The Toolbox works with Matlab 5.3 and of CON-
TROL Toolbox 4.2 under Windows NT/95/98. The
mex -functions have been produced using the Compaq
(former Digital) Visual Fortran V 6.0. The only used
Fortran 90 features are code parts for memory alloca-
tion which however can be easily replaced by equivalent
calls to memory allocation routines provided by Mat-

lab. Therefore it is expected that no difficulties arise
when porting the mex -functions to Unix based systems,
provided a suitable Fortran 90 compiler is available.

4 Examples

Consider the non-proper transfer-function matrix

G(λ) =

 λ2 λ

λ− 1
0

1
λ


A minimal order descriptor system representation of
G(λ) is given by

[
A− λE B
C D

]
=



−λ 1 0 0 0 0 0
0 1− λ 0 0 0 0 −1
0 0 1 −λ 0 0 0
0 0 0 1 −λ 0 0
0 0 0 0 1 1 0
0 −1 −1 0 0 0 1
1 −1 0 0 0 0 0



A continuous-time (λ = s) Transfer Function object in
Matlab can be defined with the command

gtf = tf({ [1 0 0], [1 0]; 0, [1] },...
{ 1, [1 -1]; 1, [1 0] })

Transfer function from input 1 to output...
#1: s^2
#2: 0

Transfer function from input 2 to output...
s

#1: -----
s - 1
1

#2: -
s

The corresponding Descriptor System object can be de-
fined with the command

gds = dss(a,b,c,d,e)

a =
x1 x2 x3 x4 x5

x1 0 1 0 0 0
x2 0 1 0 0 0
x3 0 0 1 0 0
x4 0 0 0 1 0
x5 0 0 0 0 1

b =
u1 u2

x1 0 0
x2 0 -1
x3 0 0
x4 0 0
x5 1 0

c =
x1 x2 x3 x4 x5

y1 0 -1 -1 0 0
y2 1 -1 0 0 0

d =
u1 u2

y1 0 1
y2 0 0

e =
x1 x2 x3 x4 x5

x1 1 0 0 0 0
x2 0 1 0 0 0
x3 0 0 0 1 0
x4 0 0 0 0 1
x5 0 0 0 0 0

Continuous-time system.

Note that E being singular, this command is not al-
lowed in the standard Matlab.



The poles and zeros of G(s) can be computed as

poles = spole(gds)

poles =
0
1

Inf
Inf

zeros = szero(gds)

zeros =
1.0000
0.0000
-0.0000

Inf

The inverse of G(s) is

G−1(s) =

[ 1
s2 − 1

s− 1
0 s

]

and can be computed with either of commands

dss2tm(sinv(gds)) or sinv(gtf)

obtaining

Transfer function from input 1 to output...
1

#1: -------------------------------
s^2 - 1.771e-017 s - 7.025e-017

#2: 0

Transfer function from input 2 to output...
-1

#1: -----
s - 1

#2: s - 7.882e-016

The conjugate of the transfer-function matrix G(s) is

G∼(s) := GT (−s) =

[
s2 0
s

s+ 1
−1
s

]

and can be computed with either of commands

dss2tm(sconj(gds)) or sconj(gtf) or gtf’

resulting

Transfer function from input 1 to output...
#1: s^2

s - 4.441e-016
#2: --------------

s + 1

Transfer function from input 2 to output...
#1: 0

-1
#2: --

s

Consider now the same transfer-function matrix, but
in discrete-time case

G(z) =

 z2 z

z − 1

0
1
z

 .
Its conjugate

G∼(z) := GT (1/z) =


1
z2 0

−1
z − 1

z


can be computed as follows

gtfd = tf({ [1 0 0], [1 0]; 0, [1] }, ...
{ 1, [1 -1]; 1, [1 0] }, 1 );

gsysd = tm2dss(gtfd);
dss2tm(sconj(gsysd))

Transfer function from input 1 to output...
1

#1: -------------------------------
z^2 - 2.215e-016 z - 9.415e-017

-1
#2: -----

z - 1

Transfer function from input 2 to output...
#1: 0

#2: z + 1.11e-016

Sampling time: 1

The computation of the inner-outer factorization of the
TFM

G(s) =


s− 1

(s+ 2)
0

s− 1
s+ 2

s

(s+ 2)
s− 2

(s+ 1)2

s2 + 2s− 2
(s+ 1)(s+ 2)

1
(s+ 2)

s− 2
(s+ 1)2

2s− 1
(s+ 1)(s+ 2)


raises difficulties because G(s) has a zero at ∞ and
has normal rank 2. Thus, none of known standard
methods are applicable to compute this factorization.
Using the recently developed inner-outer factorization
algorithm based on pencil manipulation technique [11]
we computed the factors with the command

[Gi,Go] = iofac(G)



obtaining

Gi(s) =



√
2(s− 1)

(s+ 1)(s+ 2)
−
√

6(s− 1)
3(s+ 2)√

2(s− 1)
2(s+ 1)

−
√

6
6√

2s(s− 1)
2(s+ 1)(s+ 2)

√
6(s− 4)

6(s+ 2)

,

Go(s) =


√

2(s+ 1)
2(s+ 2)

√
2

s+ 1

√
2(s+ 3)

2(s+ 2)

−
√

6(s+ 1)
2(s+ 2)

√
6

(s+ 1)2 −
√

6(s2 + 2s− 1)
2(s+ 1)(s+ 2)

,
where Gi is inner satisfying G∼(s)G(s) = I and Go is
outer being a surjective (i.e., full row rank), stable and
minimum-phase TFM.

5 Conclusions

In this paper we presented a recently developed De-

scriptor Systems Toolbox for Matlab. The pri-
mary goal for developing this toolbox was to provide
tools for manipulating generalized state-space systems
and rational/polynomial matrices. However, the appli-
cability of the Descriptor Systems Toolbox is cer-
tainly much wider than the intended original function-
ality.

One particular aspect of this toolbox is that almost
all its functions are based on matrix pencils ma-
nipulations. Examples where pencil techniques play
a crucial role are the computation of controllabil-
ity/observability staircase forms, determination of in-
finite poles/zeros structure and minimal indices, per-
forming additive spectral separations like finite-infinite
or stable-unstable splitting, or conversions between de-
scriptor representations and rational matrices. Note
that, virtually, matrix pencil techniques can be used
for every linear system analysis and design computa-
tion! Thus, the available pencil reduction tools are
also useful to solve several difficult standard control
problems, as for example, the solution of discrete-time
Riccati equations, solution of non-standard H∞ prob-
lems, computation of infinite zeros, determination of
the Kronecker structure of the system pencil, compu-
tation of inner-outer and spectral factorizations.

One interesting aspect worth mentioning is that in solv-
ing many control problems the use of pencil meth-
ods make non-standard Riccati equations based ap-
proaches obsolete! Such equations appear in solving
non-standard H∞ problems or in computing several
rational matrix factorizations (e.g., inner-outer, nor-
malized coprime, spectral). By using deflating tech-
niques based on appropriate pencil reductions, the so-
lution of non-standard Riccati equations in all such

problems can be avoided by solving instead reduced
order standard Riccati equations (again by using pen-
cil techniques). Notable examples are the computation
of inner-outer and normalized coprime factorizations
using the algorithms proposed in [11, 9].

In the future, several extensions and enhancements
of the toolbox are planned, as for example, imple-
mentation of algorithms for the minimum-degree co-
prime factorization [10], J-lossless-outer factorization
and canonical J-inner-outer factorization. Further, a
new implementation of the algorithm of [16] to compute
Kronecker-like forms is envisaged based exclusively on
incremental rank estimation techniques.
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A The function SZERO

SZERO System transmision zeros of LTI systems.

Z = SZERO(SYS) computes the transmission zeros
of the LTI system SYS. (Z is a column vector).

Z = SZERO(SYS,TOL) uses tolerance TOL for rank
determinations.

[Z,MI] = SZERO(SYS) returns also information
on multiplicities of infinite zeros as follows:
there are MI(k) multiplicity k infinite zeros.

[Z,MI,KRONS] = SZERO(SYS) returns additionally
the normal rank, and the singular and infinite
Kronecker structure of the system pencil in
the MATLAB structure KRONS as follows:
KRONS.kronr - right Kronecker indices
KRONS.infe - elementary infinite blocks
KRONS.kronl - left Kronecker indices
KRONS.nr - normal rank of the system pencil

Z = SZERO(A,E,B,C,D) works directly on the
state space matrices and returns the
transmission zeros of the state-space system:

.
Ex = Ax + Bu or Ex[n+1] = Ax[n] + Bu[n]
y = Cx + Du y[n] = Cx[n] + Du[n]

Z = SZERO(A,E,B,C,D,TOL) uses tolerance TOL
for rank determinations.

Z = SZERO(A,E) or Z = SZERO(A,E,TOL) works on
the matrix pencil A - lambda E, where A and E
are arbitrary matrices of compatible
dimensions.

Z = SZERO(A) works on the matrix pencil
A - lambda I.

B Contents of Descriptor Systems Toolbox

Descriptor Systems Toolbox.
Version 0.6 04-August-1999

Model Conversions
dss2zpk - Conversion to zero/pole/gain form
dss2tm - Conversion to transfer function matrix
tm2dss - Minimal descriptor realization of a

transfer function matrix

Operations on rational matrices/LTI systems
sconj - Conjugate transpose
sinv - Inverse/generalized inverse
spinv - Pseudo-inverse
nrcf - Normalized right coprime factorization
nlcf - Normalized left coprime factorization
iofac - Inner-outer factorization
specdec - Additive spectral decomposition

(finite-infinite or stable-unstable)

Model dynamics analysis
spole - System poles and Kronecker structure
szero - System zeros and Kronecker structure
seig - Eigenvalues and Kronecker structure
kronscf - Kronecker-like staircase forms

State-space transformations
dsqr,dsrq - Descriptor QR/RQ forms
dssvd - Descriptor SVD and SVD-like forms
dsctrbf - Descriptor controllability forms
dsobsvf - Descriptor observability forms
dsbal - Scaling of descriptor realizations
dsminreal - Minimal realization
dss2ss - Conversion to standard state space

Design tools
gplace - Generalized eigenvalue assignment
gstab - Generalized stabilization

Generalized linear matrix equation solvers
glyap - Continuous Lyapunov equations
gplyap - Discrete Lyapunov equations
gplyap - Positive continuous Lyapunov equations
gpdlyap - Positive discrete Lyapunov equations
gsylv - Generalized Sylvester equations

Basic mex-functions
gsystr - Generalized similarity transformations
gsminr - Generalized system minimal realization
gszero - System zeros and Kronecker structure
qzord - Real QZ-algorithm and stable/unstable

ordering of generalized eigenvalues
kstair - Staircase reduction of a pencil
sysplace - Pole placement via Schur method
genleq - Generalized matrix linear equations


