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Abstract

Wide-swath satellite missions with short revisit times, such as Sentinel-1 and NISAR, provide an unprecedented wealth
of interferometric time series and open new opportunities for systematic monitoring of the Earth surface. The process-
ing of the emerging Big Data with the state-of-the-art InSAR time series analysis techniques is, however, computa-
tionally challenging. A new demand has emerged for the analysis of the fast growing data volumes specifically for
systematic near real-time (NRT) monitoring of the Earth surface. We have addressed this demand by the proposal of
two efficient alternative estimators for NRT processing of the emerging Big Data in [1, 2]. In this contribution, a hybrid
approach based on the proposed estimators is introduced and applied in efficient wide area processing of two-year

archive of Sentinel-1 data over eastern part of the Trans-Mexican Volcanic Belt.

1 Introduction

The recent launch and planning of the global monitor-
ing wide swath SAR missions provide an unprecedented
wealth of data. The exploitation of the emerging Big Data
entails a new demand on the computational efficiency of
the state-of-the-art time series analysis techniques with
distributed scatterers (DS) [3, 4, 5, 6]. On the one hand,
the exploitation of all interferometric pairs increases the
estimation efficiency in deformation monitoring. On the
other hand, this processing scheme is computationally
demanding, pitting the estimation efficiency against the
computational efficiency. One attitude toward managing
the challenges of Big Data is to resort to parallel comput-
ing and exploitation of a limited selection of moderately-
coherent interferograms in the framework of Small BAse-
line Subset (SBAS) [7]. A second attitude is to migrate
from the conventional state-of-the-art algorithms and in-
vest on alternative estimators to exploit the wealth of data
as far as possible (the importance of full exploitation of
data is twofold: firstly it improves the signal to noise ratio
in phase estimation and consequently enhances the sensi-
tivity to mm-level deformation estimation; secondly, it is
theoretically expected to decrease the estimation bias in
presence of phase inconsistencies [8]). The design crite-
rion for the alternative estimators shall be the optimiza-
tion of the trade-off between the estimation and computa-
tional efficiency. A marriage of such alternative estima-
tors with parallel computing, is an obvious further step
toward a fully optimized scheme for efficient NRT min-
ing of the Big Data.

Following this design criterion, we have proposed two
alternative schemes to the conventional DS interferome-
try. Named Sequential Estimator [1], the first proposal
provides an optimum processing scheme for InSAR time
series. In the reduction of the computational burden of
the conventional approaches, it resorts to batch process-

ing of the SAR time series (the data batch is hereafter re-
ferred to as mini-stack). To prevent the associated perfor-
mance loss due to batch processing, the Sequential Esti-
mator employs data compression within each mini-stack;
it further forms and exploits the so-called artificial inter-
ferograms between the isolated mini-stacks. In doing so
the estimator retains an estimation efficiency comparable
to full-stack processing schemes [1].

The second proposed estimator aims at improving
the estimation and computational efficiency for phase
history retrieval. Termed Eigen-decomposition-based
Maximum-likelihood-estimator of Interferometric phase
(EMI) [2], the estimator reformulates the original prob-
lem of phase estimation into a Lagrangian. The solution
of the resulted Lagrangian outperforms the existing state-
of-the-art phase estimation approaches, both in terms of
estimation and computation efficiency [2].

In this contribution, we propose and demonstrate the
combination of the two methods, i.e. a Sequential pro-
cessing scheme with EMI employed as its phase estima-
tor. This hybrid approach improves the computational ef-
ficiency while retaining the estimation performance.

2 Hybrid Efficient Approach in Big
Data Processing

DS interferometry aims at the retrieval of systematic
phase series, from all possible interferograms within a
stack of coregistered SAR images. The latter phase se-
ries pertain to the topographic, deformation and atmo-
spheric signals. The estimation of the systematic phase
series is hereafter referred to as Phase-Linking (PL). Two
broad conventional approaches to PL are: Phase Triangu-
lation Algorithm [3, 4] and Eigen Value Decomposition
(EVD) [5, 6]. The former follows from the Maximum
Likelihood Estimation (MLE), ergo is asymptotically the
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(d) long-term coherence scenario

Figure 1: Performance assessment of different estimators compared to CRLB using simulated cases; the impact of coherence es-
timation error on phase estimation is studied in (a) & (b) the absence and (c) & (d) the presence of this error. In (a) (b) & (d),
where coherence estimation error is absent/insignificant, EMI performs identical to PTA and EVD is shown to be suboptimum in
phase estimation. Performance of the proposed hybrid method is presented as ’Sequential EMI’. Note that the hybrid method is the
optimum estimator in presence of coherence estimation error, compared to the other approaches.

optimum estimator for PL. The latter is computationally
efficient but compromises the performance in phase esti-
mation.

Our aim is to bridge between the two mentioned PL
approaches and put forward an optimum PL which en-
joys both the computational efficiency of EVD and the
estimation efficiency of the PTA. EMI achieves this
objective[2]. It firstly proposes a new covariance model
for phase estimation. Formulating an MLE with the pro-
posed model, its efficient solution is sought through ap-
proximation of the formulated MLE and via the method
of Lagrange Multipliers. Our studies in [2] indicate the
comparable computational efficiency of EMI to EVD ap-
proaches and slight gain in its estimation efficiency as
compared to the PTA.

The estimation and computational Efficiency of the Se-
quential Estimator is bound to the employed PL for the
processing of each mini-stack [1]. By employing EMI
as the PL of the Sequential Estimator, an efficient hybrid
approach results which enjoys both estimation and com-
putational efficiency. Using simulations, in the following
the performance of EMI and the Hybrid Sequential Esti-
mator is compared to conventional methods.

3 Validation with Simulation

For the investigations of this section, two coherence ma-
trices are simulated following the simulation scenarios of
[1]. 7o is set to 0.6 in both cases, while v, is respec-
tively 0 and 0.2 for the exponential-decay and long-term
coherence. Two stacks of 50 images each containing an
ensemble of 300 statistically homogeneous samples are
synthesized as follows: A complex circular Gaussian pro-
cess is assumed; the stationarity is imposed by setting the
topographic and the atmospheric induced phase compo-
nents to zero; the deformation phase is simulated with a
temporal linear trend with velocity of 1 [mm/year]; the
temporal sampling, similar to Sentinel-1, is set to 6 days.
As highlighted by [1], performance of PTA is affected by
the well-known error in coherence estimation. In order to
investigate this effect, PL is studied in two cases: In the
first case, the coherence matrix I is set to the simulated
coherence; representing a scenario where the coherence
error is negligible. In the second case, I is set to the
estimated coherence. This case is closer to reality as co-
herence is unknown and its estimation is inevitable. The
RMSE of phase estimation is reported in Fig. 1.a and b
for the former and Fig. 1.c and d for the latter case. The
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Figure 2: Inspection of the performance of the proposed hybrid approach in phase estimation; left column: coherence map of the
observed data compared to the a posteriori coherence of the estimated phases after the hybrid sequential processing. right column:
observed and estimated interferograms with the longest temporal baseline of 732 days. Comparing (b) to (d) and (f) the improved
SNR as a result of phase linking is apparent. Comparing (d) to (f) the agreement of the conventional and Sequential approaches
is observable. In all provided interferograms and coherence maps, spatial adaptive multi-looking is considered alike. Densely
vegetated areas are masked in visualization of the interferograms.

theoretical lower bound for PL is provided by Cramér-
Rao Lower Bound (CRLB) [9].

As depicted in Fig. 1.a and b, in the absence of coher-
ence estimation error, EMI and PTA perform identically
and close to the CRLB, while EVD provides a subopti-
mum estimation deviant from the CRLB. However, the
coherence estimation error degrades the performance of
PL, as evident from Fig. 1.c and d. In the latter fig-
ures, two solutions are considered for the phase estima-
tion, namely the conventional PL processing based on the

full data stack, as well as the proposed Sequential Es-
timator employing different estimator as its PL. As evi-
dent, using EMI as its PL algorithm, the Sequential Es-
timator is able to slightly improve the performance and
approach the CRLB. The hybrid approach is therefore
seen to slightly outperform the state-of-the-art techniques
in DS interferometry, while improving the computational
efficiency for Big Data processing.



4 Efficient Wide Area Processing:
Trans-Mexican Volcanic Belt

The performance of the proposed hybrid approach is
demonstrated in processing a time series of Sentinel-1
over part of the Trans-Mexican Volcanic Belt. The data
compromises of 59 SAR images spanning two years of
acquisition from October 2014 to October 2016. The Se-
quential Estimator with EMI as its PL is considered for
the efficient processing. For comparison purposes, full-
stack processing with EMI is performed as well. A snap-
shot of the results is provided here.

4.1 Performance in Phase Estimation

The observed and estimated interferograms accompanied
by their coherence maps are summarized in Fig. 2 for
visual inspection. Comparing the smallest and longest
temporal baseline coherence maps in subfigures (a) and
(c) indicates the severe temporal decorrelation; the a pos-
teriori coherence depicts the improved coherence as the
result of the efficient phase estimation. The observed
and estimated interferograms with the longest temporal
baseline of 732 days are provided in the right column.
Spatial adaptive multi-looking is considered for all inter-
ferograms. Comparison of subfigure (f) and (d) shows
the agreement between the full-stack and the sequential
approach. From the comparison of the latter interfer-
ograms with the observed interferogram in (b), the im-
proved SNR is visually evident.

4.2 Quantitative Performance Assessment

The computational efficiency of the hybrid approach has
been studied and discussed before [2, 1]. Here the fo-
cus is on quantitative assessment of the estimation effi-
ciency for the chosen test site. The discrepancy between
the estimated phases of the hybrid Sequential approach
and the full-stack processing is evaluated for each pro-
cessed resolution cell in the time series. The phase dis-
crepancies consist of 7.4 X 4, values in the spatial and
n — 1 values in the temporal direction. To have a statisti-
cal analysis on the performance, the g X 74, X (n — 1)
values are accumulated. The spatio-temporally accumu-
lated phase discrepancies are clustered according to their
respective a posteriori coherence. The normalized his-
togram of each cluster is presented, with its first and sec-
ond order moment describing the bias and variance of the
estimator, respectively (Fig. 3). The agreement of the ef-
ficient and full-stack approaches increases with the a pos-
teriori coherence, as the quality of phase-retrieval. Note
that the low coherence levels pertain to fast decorrelating
regions. From simulation analysis, the Sequential Esti-
mator is expected to outperform full-stacking techniques
(cf. Fig. 1.c) in such cases. Therefore, comparison with
full-stacking techniques is inconclusive for coherence of
low coherence levels.
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Figure 3: Quantitative performance assessment of the estima-
tion bias and variance of the Sequential Estimator compared to
full-stack processing at different a posteriori coherence levels.
The bias (u;) and standard deviation (o;) of the estimator is
reported relative to the a posteriori coherence.

5 Conclusions

In efficient processing of the emerging Big Data from the
current and future SAR missions, we have proposed two
phase estimation schemes [1, 2]. The two estimators are
combined to further improve the estimation and compu-
tational efficiency of time series analysis in the realm of
distributed scaterrer interferometry. The performed sim-
ulation analysis and wide area processing with 2-year
archive of Sentinel-1 data demonstrate the estimation ac-
curacy and precision of the proposed hybrid algorithm.
In fast decorrelating DS regions, simulations indicate
the improved performance of hybrid approach over the
conventional full-stack processing. Performance assess-
ments with real data is currently ongoing and will be re-
ported in future communications.
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