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Abstract—While multipath propagation has commonly been
regarded as a drawback for wireless localization technologies, the
spatial information contained in multipath components (MPCs)
can be exploited for positioning a user. In multipath assisted posi-
tioning, each MPC arriving at a receiver is regarded as a line-of-
sight signal from a virtual transmitter. We assume the locations of
the physical and virtual transmitters to be unknown and estimate
them jointly with the user position with simultaneous localization
and mapping (SLAM). In a setting where multiple users move in
the same scenario, maps of physical and virtual transmitters
can be exchanged among them. However, these maps are in
different local coordinate systems with unknown relative rotation
and translation. The distances among transmitters within each
map are exploited in order to find correspondences among
transmitters in different maps. Based on the correspondences,
the unknown rotation and translation parameters are estimated.
This allows a user to exploit the information in a transmitter
map received from other users, and hence extends our multipath
assisted positioning approach from a single user to a cooperative
radiolocation algorithm. In simulations in an indoor scenario
we show that using a prior transmitter map decreases the user
positioning error although the map is in an unknown coordinate
system different from the user’s.

I. INTRODUCTION

The positioning performance of global navigation satel-

lite systems (GNSSs) is sufficient for many applications in

scenarios with a clear view to the sky. In environments

like indoors or in urban canyons, effects such as multipath

propagation, a low received signal power or signal blockage

decrease the positioning performance of GNSSs drastically,

and the precise localization of a user remains a challenge

[1]. Nevertheless, other radio frequency (RF) signals are often

available in such scenarios, and they can be used as signals

of opportunity (SoOs) for localization. For example, cellular

signals are available in nearly all populated areas. Hence, for

localization using cellular signals, no additional infrastructure

for transmission or reception has to be installed.
Positioning approaches using SoOs suffer from multipath

propagation as well when standard methods to combat multi-

path propagation are used. In particular in scenarios such as

urban canyons or indoors, a high multipath propagation can be

expected. Instead of trying to combat multipath propagation,

the spatial information from multipath components (MPCs)

can be exploited. Such an approach is called multipath assisted

positioning. In multipath assisted positioning, each MPC is

regarded as a signal transmitted by a virtual transmitter in a

line-of-sight (LoS) condition. These virtual transmitters can be

used for localizing a user.

Some approaches in multipath assisted positioning assume

the geometry of the environment, for example as a floorplan,

and the physical transmitter locations to be known in advance

[2], [3]. Based on this information, the locations of the virtual

transmitters can be calculated. Our approach does not rely

on such prior knowledge. Hence, the locations of both the

physical and the virtual transmitters are unknown. Instead,

in our approach named Channel-SLAM [4], we estimate the

locations of the physical and virtual transmitters jointly with

the user position in a simultaneous localization and mapping

(SLAM) scheme.

In many GNSS denied environments such as in urban

canyons or public buildings, a high fluctuation of users can

be expected. In other words, many users move through a

scenario on the same or on different trajectories. These users

can cooperate by exchanging maps of observed physical and

virtual transmitters either directly, or via some local entity.

Such an entity could be a base station in a cellular network.

A user entering a scenario can use a map of transmitters

from one or multiple previous users as prior knowledge on

the transmitter locations. We call such a map a prior map.

A map estimated by a user is called a user map. Each map

consists of a set of transmitters whose states are represented

by probability density functions (PDFs).

However, since Channel-SLAM is a relative localization

approach, the user map and a prior map are in different

coordinate systems with an unknown rotation and an unknown

translation. In addition, the correspondences among the trans-

mitters in the two maps are not known. Hence, we define

finding a match between the two maps as both (1) estimating

the relative rotation and translation between the two coordinate

systems, and (2) finding correspondences among transmitters

in the two maps. Only when a reliable match between user
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Fig. 1. The signal transmitted by the physical transmitter Tx is received
by the user via two different propagation paths. The blue signal component
is reflected at the wall and regarded as being transmitted by the virtual
transmitter vTx1. The green signal component is scattered by a point scatterer
and regarded as being transmitted by the virtual transmitter vTx2, which is
located at the scatterer location.

and prior map is found, the information in the prior map can

be exploited by the user.

The remainder of the paper is structured as follows. Sec-

tion II introduces the idea of multipath assisted positioning

and Channel-SLAM. In Section III, we derive how to match

two maps. We evaluate our algorithm based on simulations in

an indoor scenario in Section IV. Finally, Section V concludes

the paper.

II. PRINCIPLES

A. Multipath Assisted Positioning

The idea of multipath assisted positioning and virtual trans-

mitters is illustrated in Fig. 1. The physical transmitter Tx

radiates an RF signal. The signal component in dark blue is

reflected at the wall and arrives at the user as a MPC. Though,

this signal component is regarded as transmitted by the virtual

transmitter vTx1 in a LoS condition. As the user moves, the

reflection point of the signal at the wall moves as well, but

the location of vTx1 is static. In particular, the location of

vTx1 is the location of the physical transmitter mirrored at

the reflecting wall. The physical transmitter Tx and the virtual

transmitter vTx1 are inherently perfectly time synchronized.

The signal component in green arrives at the user after being

scattered by a point scatterer. It is regarded as a LoS signal

from the virtual transmitter vTx2, which is located at the

position of the point scatterer. Again, the virtual transmitter

location is static as the user is in motion. Though, the

transmitters Tx and vTx2 are not time synchronized when the

signal is scattered. The virtual transmitter vTx2 has a delay

offset τ0 towards the physical transmitter Tx, which is the

Euclidean distance between the two transmitters divided by

the speed of light c0. The delay offset τ0 can be interpreted

as a clock offset.

A generalization to the case where the transmitted signal

is reflected and/or scattered multiple times is straightforward

[4].

B. Channel-SLAM

We assume a linear, time-variant multipath channel between

a static physical transmitter and a mobile user. The signal

arriving at the user’s RF receiver is therefore a superposition

of signal components, each with its own power, phase, time

of arrival (ToA) and angle of arrival (AoA).

The Channel-SLAM algorithm works in two stages: In a

first stage, the Kalman enhanced super resolution tracking

(KEST) estimator [5] is used to estimate the parameters of

the signal components arriving at the receiver and track them

over time. Such parameters can be the complex amplitude, the

ToA or the AoA, for example. In a second stage, the KEST

estimates are used as measurements to track the position of the

user and estimate the locations of physical and virtual trans-

mitters with SLAM. Again, each signal component arriving

at the receiver corresponds to a physical or virtual transmitter

whose location is not known. Since Channel-SLAM does not

differentiate between physical and virtual transmitters, i.e.,

between the LoS component and MPCs, the term transmitter

is used as a general term referring to either of them in the

following.

The ToA and AoA estimates from the KEST algorithm at

time instant k are stacked in the measurement vector

zk = [d1,k . . . dNTX,k θ1,k . . . θNTX,k]
T
, (1)

where dj,k denotes the ToA and θj,k the AoA of the jth

transmitter. The number of observable transmitters is denoted

by NTX. Although the number of transmitters might change

over time, the time index in NTX is omitted for the sake of

notational brevity.

In the second stage of Channel-SLAM, the estimates from

Eq. (1) are used to estimate the user and transmitter locations.

In SLAM terms, we localize the user and map the transmitters

simultaneously. The combined state vector at time instant k
consists of the user state xu,k and the states of the NTX

transmitters,

xk =
[

xu,k
T x<1>

TX,k

T
. . . x<NTX>

TX,k

T
]T

, (2)

where x
<j>
TX,k denotes the state of the jth transmitter. The user

state includes the position and velocity in two dimensions, i.e.,

xu,k = [xk yk vx,k vy,k]
T
. (3)

Since transmitters are assumed static, the state of the jth

transmitter consists of its location and clock offset τ<j>
0,k ,

namely

x
<j>
TX,k =

[

x<j>
TX,k y<j>

TX,k τ<j>
0,k

]T

. (4)

We apply recursive Bayesian estimation [6] to estimate

the posterior PDF p (x0:k|z1:k), where x0:k denotes the state

vector from time instants 0 to k, and z1:k the measurements

from time instants 1 to k. The posterior can be factorized into

p (x0:k|z1:k) = p (xTX,0:k,xu,0:k|z1:k)

= p (xu,0:k|z1:k) p (xTX,0:k|xu,0:k, z1:k) (5)

= p (xu,0:k|z1:k)

NTX
∏

j=1

p
(

x
<j>
TX,0:k|xu,0:k, z1:k

)

.



In the last step in Eq. (5), we assume independence among

the measurements for different transmitters, i.e., for different

signal components. The actual estimation is performed by a

Rao-Blackwellized particle filter [4], [7]. For every user par-

ticle, the state of each transmitter is estimated independently

from the other transmitters by an own particle filter. In the

user particle filter, the user posterior state PDF from Eq. (5)

is approximated by

p (xu,k|z1:k) =

Np
∑

i=1

w<i>
k δ

(

xu,k − x<i>
u,k

)

, (6)

where x<i>
u,k is the ith user particle, w<i>

k its associated

weight, Np the number of user particles, and δ (·) the Dirac

distribution. Likewise, the posterior state PDF of x
<i,j>
TX,k , i.e.,

the jth transmitter for the ith user particle, is represented as

p
(

x
<i,j>
TX,k |z1:k,x

<i>
u,k

)

=

Np,Tx
∑

l=1

w<i,j,l>
k δ

(

x
<i,j>
TX,k − x

<i,j,l>
TX,k

)

,

(7)

where x
<i,j,l>
TX,k is the lth particle, w<i,j,l>

k its associated

weight, and Np,Tx the number of particles for that transmitter.

A full derivation of Channel-SLAM can be found in [4].

III. ESTIMATION OF ROTATION AND TRANSLATION

PARAMETERS AMONG TWO MAPS

As the user travels through a scenario, the information

contained in a prior map obtained from some entity can not

be used until a reliable map match between the user map and

the prior map is found, i.e., until the rotation and translation

parameters between the coordinate systems are estimated.

Therefore, we try to find a match between the two maps at

each time instant k as described below. Once a reliable match

is found, the transmitters in the prior map are used as prior

information when the user initializes new transmitters.

Our approach to find a match between two maps is to first

find correspondences among the transmitters in the two maps

and subsequently the corresponding rotation and translation

of the coordinate systems. We assume no dilation or skew

between the coordinate systems.

Each measurement of a signal component, or transmitter,

is two-dimensional, assuming ToA and AoA measurements,

whereas a transmitter’s state is of three dimensions, comprising

its two-dimensional location and its clock offset. Hence, when

initializing a new transmitter, the uncertainty about its state

tends to be high, i.e., the variance in the state PDF of the

newly initialized transmitter is high. It only decreases when

the user moves through the scenario taking measurements from

different locations. Thus, depending on the user trajectory,

the shapes of the estimated state PDFs of one transmitter

for two different users may differ considerably, for example

due to different geometrical delusions of precision (GDoPs) or

time spans during which the corresponding signal component

can be tracked. Consequently, calculating a distance between

two transmitter state PDFs estimated by different users with

standard metrics or divergences such as the Kullback—Leibler

divergence (KLD) might cause misleading results.

Therefore, we regard only a subset of transmitters in the

user map and the prior map. In particular, we consider only

those transmitters whose state PDF variances are smaller than

a threshold δσ . The distance between two transmitter state

PDFs is then defined by the Euclidean distance between their

means, i.e., the distance dA,B between two transmitters A and

B is calculated as

dA,B =‖

Np
∑

i=1

Np,Tx
∑

l=1

w<i>
k w<i,A,l>

k x
<i,A,l>
TX,k (8)

−

Np
∑

i=1

Np,Tx
∑

l=1

w<i>
k w<i,B,l>

k x
<i,B,l>
TX,k ‖, (9)

where ‖·‖ denotes the Euclidean norm of a vector.

A. Identification of Transmitter Correspondences

The set U of size NU denotes the set of transmitters in the

user map whose state PDF estimates have a variance smaller

than δσ , and the set P of size NP denotes the corresponding

set of transmitters in the prior map. In the following, we

assume that NU ≤ NP to simplify the notation, but to drop

this assumption is straightforward.

In order to reduce the computational complexity, we try to

find a map match based on any NT transmitters in each map.

The factorial of an integer N is denoted by N !. Since there are
N !

NT !(N−NT )! possibilities to choose NT out of N transmitters,

and there are NT ! possibilities to arrange NT transmitters,

there is a total of

NC =
NU !

NT !(NU −NT )!

NP !

(NP −NT )!
(10)

distinct sets C1, ..., CNC
of possible transmitter correspon-

dences. Each set Cu contains NT tuples that are of the form

(Uq, Pr), describing a correspondence between the transmitter

Uq from the user map and the transmitter Pr from the prior

map.

At the beginning, there is no information on the relation

of the transmitters in the two maps, since the maps are in

different coordinate systems. However, the relative positions of

the transmitters within the maps can be exploited. In particular,

the relative distances between any two transmitters within

each of the two maps are calculated. As mentioned above, we

define the distance between two transmitters as the Euclidean

distance between the means of their state PDFs. For notational

brevity, we denote the distance between the transmitters Uq

and Uq̃ in the user map by dUq,q̃ = dUq,Uq̃ and likewise by

dPr,r̃ = dPr,Pr̃ as the distance between two transmitters Pr and

Pr̃ from the prior map.

Fig. 2 illustrates a simple example for finding a map match.

There are four transmitters in light and dark blue in the user

map, U = {U1, ..., U4}, and five transmitters in light and dark

green in the prior map, P = {P1, ..., P5}. From both maps,

any NT = 3 transmitters from the maps are chosen to find a

match map. In Fig. 2, these are exemplarily U1, U2 and U3 from
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Fig. 2. The distances among the NT = 3 transmitters in light and dark blue
in the user map and in light and dark green in the prior map are indicated by
dotted lines. Based on the distances, correspondences among the transmitters
are to be found.

the user map and P1, P2 and P4 from the prior map, drawn

in dark blue and green, respectively. Based on the distances

among the NT = 3 transmitters in each map, indicated by the

dotted lines, correspondences among the transmitters are to be

found.
For each possible set Cu of correspondences, the distances

between any two of the NT regarded transmitters in the user

map are compared to the distances between the corresponding

two transmitters in the prior map. The squared differences

between any two of these distances are summed up. The

correspondence set Ĉ for which this sum is minimized is the

chosen set of correspondences, i.e.,

Ĉ = argmin
Cu

u=1,...,NC

∑

(Uq,Pr)∈Cu∧(Uq̃,Pr̃)∈Cu

(

dPr,r̃ − dUq,q̃
)2
. (11)

B. Estimation of the Rotation and Translation

Based on the NT correspondences of transmitters in the set

Ĉ , the rotation β and translation γ =
[

x̄ ȳ 0
]

between

the coordinate systems of the user map and the prior map

are estimated. First, the transmitters in the two maps are

re-arranged such that the set of correspondences is Ĉ =
{(U1, P1), ..., (UNT

, PNT
)}, i.e., there is a correspondence be-

tween the jth transmitter in the user map and the jth transmitter

in prior map for j = 1, ..., NT .

Let µu
j =

[

xu
j yuj τuj

]T
be the mean of the jth transmitter’s

state PDF in the user map, and accordingly µ
p
j the mean of

the jth transmitter’s state PDF in the prior map. The means of

the transmitters in the user map are combined in the matrix

Mu =
[

µu
1 . . . µu

NT

]T

, (12)

and likewise, the matrix of the means of the transmitters in

the prior map is

Mp =
[

µ
p
1 . . . µ

p
NT

]T

. (13)

With the rotation matrix

Rβ =







cosβ sinβ 0

− sinβ cosβ 0

0 0 1






. (14)

the maps Mp and Mu are related by

Mu = MpRβ + Jγ +E, (15)

where J =
[

1 1 . . . 1
]T

is of dimension NT × 1, and E

is a residual matrix. Let cj = σ2
Uj

+ σ2
Pj

, where σ2
Uj

and σ2
Pj

are the variances of the state PDFs of the jth transmitter in the

user map and the prior map, respectively. We seek to find x̄,

ȳ and β that minimize the match error Tr(ETC−1E), where

C =









c1 0

. . .

0 cNT









. (16)

For minimization, Tr(ETC−1E) is derived by β, x̄ and

ȳ, and the results are set to zero. We denote the trace of the

matrix C−1 by TC , i.e.,

TC = Tr(C−1) =

NT
∑

j=1

1

cj
. (17)

Inserting the resulting equations into each other yields an

estimate for the rotation parameter

β̂ = arctan (−φ) , (18)

where

φ =

NT
∑

j=1

xu
j y

p
j

cj
−

NT
∑

j=1

x
p
j
yu
j

cj
− 1

TC

NT
∑

j=1

xu
j

cj

NT
∑

j=1

y
p
j

cj
+ 1

TC

NT
∑

j=1

yu
j

cj

NT
∑

j=1

x
p
j

cj

NT
∑

j=1

x
p
j
xu
j

cj
+

NT
∑

j=1

y
p
j
yu
j

cj
− 1

TC

NT
∑

j=1

xu
j

cj

NT
∑

j=1

x
p
j

cj
− 1

TC

NT
∑

j=1

yu
j

cj

NT
∑

j=1

y
p
j

cj

,

(19)

as well as translation parameters

ˆ̄x =
1

TC

NT
∑

j=1

xu
j

cj
− cos (β)

1

TC

NT
∑

j=1

xp
j

cj
+ sin (β)

1

TC

NT
∑

j=1

ypj
cj

(20)

and

ˆ̄y =
1

TC

NT
∑

j=1

yuj
cj

− cos (β)
1

TC

NT
∑

j=1

ypj
cj

− sin (β)
1

TC

NT
∑

j=1

xp
j

cj
.

(21)

With Eq. (15), the residual matrix and consequently the

match error Tr(ETC−1E) can be calculated for the obtained

parameters. Note that the arctan function in Eq. (18) returns

values in the interval
]

−π
2 ,+

π
2

[

, leaving an ambiguity be-

tween the estimated angle β̂ and β̂+π. Both values have to be

considered and the one with smaller match error is chosen. If

the match error falls below a threshold, a reliable estimate for

the parameters has been found, and the prior map is converted

into the user coordinate system.

If the match error is above the threshold, no map match

is performed in this time step. This may occur when the

estimate for one or more transmitters is biased or has a too

high variance, or if there is no actual correspondence among

the transmitters in the two maps, for example due to a change

in the environment.



C. Complexity and Implementation

Map matching may increase the complexity of Channel-

SLAM due to the high amount of possible correspondences

of transmitters in the user and prior map in Eq. (10). Though,

in the beginning, transmitters are initialized with a rather

high variance in their state PDF. Hence, no map matching

is performed until the state PDFs of at least NT transmitters

tracked by the user have a variance smaller than the threshold

δσ . If there are exactly NT such transmitters, i.e., NU = NT ,

the number of sets of possible correspondences in Eq. (10)

becomes NC = NP !
(NP−NT )! .

Since the transmitter state PDFs are expected to change

only slightly during one time step, map matching may not

be needed at every single time instant. Instead, it may be

performed every qth time instant, or if the variance of a

transmitter’s state PDF falls below the threshold δσ for the

first time. It can be computed in parallel to the actual Channel-

SLAM algorithm.

Typically, we expect the number of transmitters in the user

map to be smaller than the number of transmitters in the prior

map. If in addition 2NT < NP , NC and hence the complexity

increase with increasing NT . On the other hand, for small NT ,

ambiguities in the correspondences can arise depending on the

relative geometry of the transmitters.

Once a reliable map match has been found, the transmitters

from the prior map are used as prior information and incorpo-

rated in the estimation process. Data association is necessary

to associate the measurements obtained by the KEST estimator

with transmitters from the prior map. We incorporate the

data association scheme from [8]. Every time a new signal

component is detected, the corresponding new transmitter is

either associated with a transmitter from the prior map, or it

is initialized as a new transmitter. When the signal component

is associated with a transmitter in the prior map, the initial

high uncertainty, i.e., the high variance in the transmitter state

PDF, can be avoided, and the user position estimate can be

corrected. This increases the performance of Channel-SLAM

in terms of both accuracy and computational complexity.

IV. EVALUATIONS

To evaluate our approach, we performed simulations in a

simple indoor scenario. Fig. 3 shows a top view of a indoor

mall with one physical transmitter marked by the red triangle

labeled Tx. The transmitter continuously broadcasts a known

RF signal with a carrier frequency of 1.5GHz and a bandwidth

of 100MHz. The thick black lines are walls that reflect the

transmit signal, and the black dots model point scatterers.

The user walks on the trajectory of total length 346.4m
drawn in blue from the point labeled START to the point

labeled END with a velocity of 1m/s. Every 100ms, it records

a snapshot of the received signal. The simulated channel

impulse response (CIR) is then passed to the KEST estimator

for parameter estimation. The average signal-to-noise ratio at

the receiver is 3.4 dB. Markers indicate the traveled distance

every 50m.

Tx

START

END

50m
100m 150m

200m

250m300m

50

100

150

200

50 100 150 200 250 300
x [m]

y
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Fig. 3. Top view on the simulation scenario in an indoor mall. The physical
transmitter is marked by the red triangle labeled Tx. Thick black lines are
walls reflecting the transmit signal, and thick black dots point scatterers. The
user walks on the blue trajectory from START to END.

The user carries an inertial measurement unit (IMU) with

them. Though, only heading change rates of the IMU are

used in the estimation process to avoid ambiguities of turning

left or right. The user is assumed to be equipped with a

two-dimensional antenna array consisting of nine elements to

obtain ToA and AoA estimates from KEST.

Based on the floorplan of the indoor scenario, a prior map

is created with the physical transmitter and virtual transmitters

that arise due to reflections and scattering of the transmit

signal. Interactions up to an order of two, i.e., single and

double reflections and/or scattering, are incorporated, leading

to a total of NP = 51 transmitters in the prior map. Note that

not all of these transmitters can be observed by the user on

its trajectory. The variance of these transmitters’ state PDFs

is set to 2m2 for both the x and the y component. Though,

the prior map is in a coordinate system different from the user

map, and the parameters relating the two coordinate systems

are random and unknown. We set NT = 4.

Fig. 4 shows the mean absolute error (MAE) of the user

versus its traveled distance averaged over 700 simulation runs.

The MAE at time instant k is calculated as

MAEk =

Np
∑

i=1

w<i>
k ‖x<i>

u,k − ẋu,k‖, (22)

where ẋu,k denotes the true state of the user at time instant k.

The red curve is the MAE when no prior map is used, while

the blue curve shows the MAE with using the prior map.

As expected, both MAE curves coincide in the beginning

when no match between the prior map and the user map has

been found yet. The MAE without the prior map increases

throughout the track. One the one hand, this is due to the

geometrical delusion of precision (GDoP) getting worse as

the user moves away from the physical transmitter. On the

other hand, when the user moves away from the physical
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Fig. 4. The MAE of the user versus the traveled distance. No prior map is
used for the curve in red, whereas a prior map is used for the curve in blue.

transmitter, less and less signal components can be tracked

by KEST, and therefore less transmitters are observable and

can be used for localization. When the user takes a turn and

moves back towards the physical transmitter, more transmitters

become observable again, but they are initialized with a high

uncertainty about their state, since KEST can not associate the

corresponding signal components with the previously tracked

ones.

Once the estimates for the transmitters in the user map have

converged far enough after a traveled distance of approxi-

mately 75m, a match between user and prior map can be

found. From this moment on, knowledge from the prior map

can be exploited by the user, and the MAE including the prior

map stays considerably far below the MAE without prior map.

V. CONCLUSION

In multipath assisted positioning, the difficulty in exchang-

ing transmitter maps among users is the unknown relative
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