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Abstract 

In times of industry 4.0 a production facility should be “smart”. One result of that property could be that it is easier to reconfigure plants for 
different products which is, in times of a high rate of variant diversity, a very important point. Nowadays in typical robot based plants, a huge part 
of time from the commissioning process is needed for the programming of collision free paths. This mainly includes the teach-in or offline 
programming (OLP) and the optimization of the paths. To speed up this process significantly, an automatic and intelligent planning system is 
necessary. In this work we present a system which can plan paths for industrial robots. We compare widely used sampling-based methods like 
PRM or RRT with Computational Intelligence (CI) based methods like genetic algorithms.  
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1. Introduction 

Industry 4.0 robotic facilities should be flexible and easy to reconfigure. The term describes the change of 
production facilities to smart factories [1]. State of the art robotic cells are programmed for a special task which 
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clearly defines all necessary steps and can only react to small deviations in the process. Reconfiguration means 
downtime of the production and programing of the robots which can either be done on the real hardware or in an 
offline programming tool like DELMIA or RobCAD. In both cases this means the facility cannot be used. According 
to the complexity of the new process the programming can need quite a long time.  

2. Related Work 

In general there are not very many publications in the area of 3D path planning for industrial robots. Suh et al. [2] 
and Chen et al. [3] present a system for the automatic path planning of spray robots for a consistent application. 
However the method is very specialized and only applicable for the proposed scenario. Ting et al. [4] and Klanke et 
al. [5] show an approach using wave expansion method. Oh et al. [6] combine a support vector machine with a 
Rapidly Exploring Random Trees (RRT) algorithm for a 6-DOF industrial robot. Qin et al. [7] use a randomized 
parallel search algorithm for a PUMA 200 robot.  

Compared to the small number of publications for realistic path planning problems with actual industrial robots 
there is a huge amount of publications for robots with a high degree of freedom (DOF). The primary goal was to 
find complete planners which means that the planner will find a path if one exists. Due to the high computation 
amount these kinds of planners only work for robots with a small DOF [8]. Today sampling-based planners are often 
used, whose advantage is that not the complete collision free room is constructed in advance. Instead the space is 
just examined at specific positions called samples for collisions. Sampling-based algorithms have been treated in a 
great number of publications like [9] [10] [11]. The most famous are Probabilistic Roadmaps (PRM) and RRT. 

In general there are a manageable number of publications using Genetic Algorithms (GAs) for path planning. A 
popular use case of GA is in the area of mobile robots [12] [13]. In this field the planning is reduced to a 2D 
problem because the robots are not able to move in z-direction. Another application of GAs can be found in the area 
of 2D manipulators [14] [15]. In [16] [17] [18] GAs are used for path planning of industrial robots. Mostly the 
mapping of the robot in the simulation is done with a very reduced model which just represents the kinematic of the 
robots and not the real 3D structure because the collision detection can be very CPU-intensive.  

3. Automatic Path Planning of Industrial Robots 

3.1. Implementation 

In [19], [20]and [21] the CoCo (Collision-free Cooperation) simulation environment has been introduced and 
stepwise improved. It has been developed using the C# programming language. For the visualization of 3D objects 
the Helix Toolkit [22] is used which has been combined with BEPUphysics [23] library for collision detection. To 
speed up the calculation internally the objects are represented as convex hull (see Fig. 2c). For sampling-based path 
planning the Open Motion Planning Library (OMPL) [24] has been integrated into CoCo. OMPL itself does not 
have a visualization or collision detection mechanisms which allows integrating the library into systems that provide 
these functionalities. In our case the CoCo collision detection callback method is registered in OMPL. OMPL 
consists of many state-of-the art sampling-based motion planning algorithms like Probabilistic Roadmaps (PRM), 
Rapidly Exploring Random Trees (RRT), RRTconnect, RRT*, SPArse Roadmap Spanner (SPARS) and many more. 
For the implementation of GA planners we used the AForge [25] library as basis which is also written in C# and 
provides a lot of functions for Computer Vision and Artificial Intelligence e.g. neural networks, genetic algorithms, 
machine learning, etc.. 

3.2. Path Planning 

In general collision-free path planning means: (a) avoid collisions between obstacles and the robots, and (b) 
optimize the path according to predefined constraints like path length or smoothness. Given that the GAs work in 
Cartesian space also called SE(3) space we also used that space for the sampling-based planners to have a good 
comparability. 
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3.3. Sampling-based Planners 

Single Query algorithms: The main characteristic of single query algorithms is that they search a path from a start 
to a goal configuration without previous knowledge. In general they are faster than multi query algorithms because 
no preprocessing phase is necessary. For another query in the same scene the algorithm completely has to 
recalculate even if the start and goal configuration just changed a little bit. The most famous representatives are 
RRT, Expansive Space Trees (ESTs), Kinematic Planning by Interior Cell Exploration (KPIECE), Potential Field 
Methods, Search Tree with Resolution Independent Density Estimation (STRIDE), Path-Directed Subdivision 
Trees( PDSTs) and Fast Marching Treed (FMTs). 
 
Multi Query algorithms: These kinds of algorithms have a preprocessing phase where the configuration space is 
extensively examined for collision states. Built on that information a data structure is stored which can be used later 
for the planning phase. At the beginning these kinds of planners are slower than single query algorithms but for new 
calculation on the same scene the store data can be used. Thereby multi query algorithms are optimal for static 
environments. Famous representatives are PRMs, SPARS and SPARS2. 

3.4. Evolutionary Algorithms 

EAs were introduced by John Holland in 1975 [26] and are assigned to the class of stochastic and metaheuristic 
methods, because they normally don’t find the optimal solution for a problem. EA’s which are inspired by the 
nature, can be successfully applied to technical issues. There exist four main distinctions of evolutionary algorithms: 
genetic algorithms, evolutionary algorithms, genetic programming and evolutionary programming which mainly can 
be distinguished by the way the chromosomes are represented. EAs are very efficient in optimization problems. In 
this publication we use them for the path planning of 6-DOF industrial robots. An EA algorithm is working 
according to the steps shown in Fig. 1., which are explained in detail below.  

 

Fig. 1. Sequence of a the Evolutionary Algorithm 

Chromosome representation: As already mentioned the success of the genetic algorithm is depending on the 
representation of the chromosome. In general there are two ways to represent each point of the path. Possibility one 
would be by the joint angles , , , , ,   of the robot and possibility two by the coordinates , , , , ,  for 
each point. Additionally there is the possibility to represent the values as real values or as binary code or gray. In our 
implementation we used the representation of the points as real values. To represent the path each chromosome 
stores the points in an array with the following structure: , , , …, ,  (see Fig. 2a) at which a  persists of ,  and  coordinates. 
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Fig. 2. (a) representation of a path – start point (green box), via points (blue), goal point (red box) (b) simplified workspace of the robot (c) 
normal and convex hull representation which is internally used for collision detection 

Initialization: At the beginning the population is initialized randomly which means in our case that all  
are initialized with random coordinates. To avoid absurd points which are located outside the workspace of the robot 
each generated coordinate is proved by the following equation which guarantees that the point is inside the range of 
the robot, not inside the body of the robot and above the ground.  

 +  + >   +  <   < 0 , 
 

whereas = 3340 and = 500 for the used robot type. For each ViaPoint of 
the chromosome new coordinates are generated until the equation is applied. Fig. 2b shows the approximation of the 
workspace. The origin of the coordinate system lies inside the foot of the robot.  

During initialization the size of the population must be set which is an important part for the result of the 
algorithm. For a very large number of populations the algorithm will need a long time to finish, because the number 
of collisions checks rises with the number of chromosomes. However if the population size is too small the 
algorithm will run into in a local minimum very fast.  

 
Selection: The selection operator chooses individuals for reproduction. According to their fitness better individuals 
are copied to the next population and bad individuals die. The fitness of an individual is determined by the objective 
function which is to be optimized for the individuals. There are different kinds of selection methods like Roulette 
Wheel-, Rank- or Steady-State Selection. 
 
Crossover: The crossover is important to exchange material between different chromosomes in analogy to 
reproduction in nature. During crossover two parent chromosomes are crossed to generate a new child. In our 
implementation we used the single-point crossover operator which is working according to the sketch in Fig. 3. First 
a seed point is randomly chosen in the range of . Afterwards the values of two chromosomes are swapped 
at the seed point.  
 

 
 
 
 
 

Fig. 3. Crossover operator (a) two chromosomes before crossover (b) two chromosomes after crossover 

Mutation: Mutation describes the randomly change of values of the chromosome. It is analog to the biological 
mutation. During mutation one or more gene values are altered from its initial state. For a genetic algorithm it is 
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possible to assign the mutation probability. It should be set to a low value because otherwise the search of the 
algorithm will turn into a primitive random search. 

In our implementation we randomly pick one of the  of the chromosome and modify its coordinate. 
 
Evaluation: The fitness function is used to summarize the quality of an individual. The value of the fitness is 
calculated by the objective function. In our implementation the objective function minimizes the path length and 
guarantees collision avoidance between the robot and obstacle. It is calculated as follows: 

 =  +   
 

The path length is calculated by the Euclidean distance between ,  and  points. For good comparability 
of  and  it is important to normalize the values e.g. between 0 and 1. Additionally 
each addend is weighted by a factor to strengthen or weaken its influence. Due to performance reasons the 

 value is calculated in two steps. First a ray intersection is calculated for each path segment of the 
chromosome with the Axis Aligned Bounding Boxes of all obstacles in the scene. For each chromosome the number 
of ray intersection is counted. If the value is above a threshold (in our case two) the chromosome gets a very small 
value for its fitness e.g. epsilon. If the number of ray intersection is smaller than two a convex hull collision check is 
performed. Therefore each path segment of the chromosome point list is interpolated according to a predefined 
distance. Afterwards the robots tool center point is set to each interpolation point and detected collisions are 
summed up. Choosing a small interpolation distance means a very accurate and slow collision check and a huge 
interpolation distance means an imprecise and fast check. The number of collisions for all path segments of a 
chromosome are counted. When the counted collisions exceed a threshold the fitness of the chromosome is set to 
epsilon. Given that the number of potential collisions rises with a smaller interpolation distance and declines with a 
higher interpolation distance the convex hull collision threshold is set according to the length of the interpolation 
distance between 20 and 100 at which 100 is chosen for a very small interpolation distance.  
 
Termination: The whole process as shown in Fig. 1 is repeated until a termination condition is reached. Possible 
conditions are: a solution which reaches the minimal fitness or a fixed number of iterations is reached.  

4. Experimental Results 

The size of the scene is correlated to the maximal range of the KUKA KR210 R3100 robot of maximal 3095mm 
in all directions. Each planner was tested ten times. The maximal allowed time for one planner was limited to 20 
minutes. The resolution of the planning for the OMPL planners was set to 0.01% of the scene size. The evaluation of 
all planners was done by the following parameters: solution found (yes/ no), planning time (smaller=better) and path 
length (smaller=better). The planning was done with constraints which means that the orientation of the Tool Center 
Point (TCP) was fixed during the whole movement. The paths have not been smoothened after planning. All 
calculations have been performed on an Intel Xeon E5620 with 2,4 GHz and 12GB RAM and a NVIDIA Quattro 
4000 graphic card. Table 1 and Fig. 4 show the planning results. 

For sampling-based planner the study showed that RRT*, PRM, RPM*, TRRT and RRTconnect have the best 
performance regarding path length from the various planners available in OMPL. Referring planning time, 
RRTconnect, RRT and TRRT performed best. The star-algorithms are so called optimizing planners which converge 
to a best path regarding an optimization criterion, in our case path length. It tries to optimize, until a stopping 
condition is met. It was found for all planners that in average planning in SE(3) space gives best results compared to 
Joint Space. Depending on the requirements the right planner can be chosen. Optimized planners could be extended 
by another stop criterion like no changes of the path length in the last x-iterations which could speed them up 
dramatically. 
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Table 1 Overview of planning results (SE(3), with constraints) 

Planner Success rate 
(%) 

Calculation time (s) 

Avg / min /max 

Euclidian path length (mm) 

Avg / min /max 

PRM 100 1200 / 1200 / 1200 5956.7 / 5034.31 / 9346.53 

RRTconnect 100 9.36 / 3.7 / 29.52 6195.55 / 5182 / 9901.62 

RRT 100 15.62 / 2.66 / 46.82 6066.35 / 5043.03 / 11689.81 

RRT* 100 1200 / 1200 / 1200 6464.78 / 5182.85 / 12027.31 

TRRT 100 12.19 / 2.13 / 43.63 6462.78 / 5182.85 / 12027.31 

PRM* 100 1200 / 1200 / 1200 12403.45 / 5020.68 / 41282.02 

SPARS 70 1200 / 1200 / 1200 6989.14 / 5199.34 / 15768.85 

STRIDE 100 130.14 / 3.07 / 346.26 7548.09 / 5152.4 / 15990.59 

Genetic (1 ViaPoint ) 100 91.4 / 88 / 97 4587.83 / 4414.75 / 5198.06 

Genetic(2 Via Points) 100 118 / 109 / 130 4738 / 4543.69 / 4952.78 

Genetic (3 Via Points)  100 134 / 122 / 150 5350 / 5124.64 / 5706.33 

Genetic (4 Via Points) 100 142 / 123 / 175 6895.91 / 6175.60 / 7780.91 

 
For the genetic algorithm there are a lot of parameters which can be changed and have direct influence to the 

result of the algorithm. For the results which can be seen in Table 1 the following settings were used: individual 
count = 50, number of iterations = 20, single mutation rate = 0.15 (determines the total amount of mutated 
chromosomes), one-point crossover rate = 0.75 (determines the amount of chromosomes which participate in 
crossover), random portion selection = 0.2 (defines the amount of random chromosomes in the new population), 
population count = 1, collision interpolation distance = 100mm, fitness weight = 0.3 and = 0.7. The parameters 
individual count, roulette wheel selection, number of iterations, collision interpolation distance and number of 
populations have a huge influence on the computing time of the algorithm, because the higher the values more 
collison checks have to be performed.  
 

During the experiments additionally the following points were identified. Really crucial for the success of the 
genetic algorithm is the fitness function. Only if that function provides meaningful values which allow comparing 
different chromosomes, the algorithm will find a collision free solution. The range of mutation should be not to low 
and not too high. If the value is too small the mutation will not help very much to find new good chromosomes. If 
the value is to big the algorithm will have very high jumps also after many iterations which makes it very unstable. 
For our experiments a good value was 10% of the working space which is around 300mm. The more ViaPoints are 
chosen the longer the final path will get. This is due to the zig zag form of the found path. To add a smoothness 
criterion of the path to the fitness function could improve this problem. As stop criterion we used the maximal 
number of iterations reached which sometimes was too long, because a good path was already found after some 
iterations. Here a more intelligent stop criterion which e.g. considers the overall fitness of the population should be 
used. 
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Fig. 4. Setting of the test scene and different planning results. Start point in the front in red and goal point in the 
back in green. The direct distance between start and goal is 4184mm. The blue and yellow boxes and the grey 
ground represent obstacles. The red line with blue boxes shows the found path. The screenshots of genetic planners 
additionally show the residual solution of the population with black lines and white boxes. 
 

5. Conclusion 

It could be shown that both sampling-based planners and genetic algorithm can be used for path planning 
applications of 6-DOF industrial robots. On the one hand RRT and TRRT are much faster than the genetic planner 
but on the other hand the paths found by genetic planner are shorter although e.g. RRT* had 1200s calculation time. 
In practice it seems that probabilistic planners are better to use them in real production scenarios, because the paths 
are much smoother 

 We already successfully connected the CoCo simulation framework with real robotic hardware to validate the 
paths where it arised that automatic planning can be really useful in industrial context. To connect the path planning 
system with the robot system, we used the RoboticAPI [27] which provides an object-oriented programing interface 
for industrial robots. All operations which require hard real-time such as motion planning are automatically 
translated into an intermediate language and executed by an external motion controller called Robot Control Core 
(RCC) [28]. The direct communication with the robotic hardware allows us to dynamically react on changes in the 
process and to replan which is an advantage compared to state of the art offline programming tools planning 
solutions. 
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