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ABSTRACT

This paper compares different similarity measures for the
matching of very-high-resolution SAR and optical images
over urban areas. It is meant to provide guidance about
the performance of both signal-based and descriptor-based
similarity measures in the context of this non-trivial case of
multi-sensor correspondence matching. Using an automati-
cally generated training dataset, thresholds for the distinction
between correct matches and wrong matches are determined.
It is shown that descriptor-based similarity measures outper-
form signal-based similarity measures significantly.

Index Terms— synthetic aperture radar (SAR), optical
image, remote sensing, data fusion, image matching, similar-
ity measures

1. INTRODUCTION

Automatic matching of remote sensing images acquired by
optical cameras to images acquired by synthetic aperture
radar systems has drawn the attention of scientists for many
years, e.g. in the context of image registration or multi-sensor
stereogrammetry. This is caused by the fact that determining
homologous image regions for very-high-resolution SAR and
optical images in general is a highly non-trivial case of multi-
sensor alignment [1, 2], in particular, when highly complex
urban areas are the focus of interest.

Over the years, many different approaches for SAR-
optical image matching were proposed. While some in-
vestigations are carried out regarding the applicability of
conventional similarity measures (e.g. [3, 4]), most of them
rely on more or less complicated pipelines which go beyond
simple similarity determination for potential tie points. For
example, Lehereau et al. [5] estimate the translations between
a SAR and an optical image by exploiting the Fourier-Mellin
invariant calculated from line and edge images, respectively.
Hellwich et al. [6] integrate matching with geocoding in order
to robustify the results of classical tie point matching based on
SIFT and SUREF features. Incorporating prior knowledge in
the form of previously extracted roundabouts and junctions,
Palubinskas & Reinartz [7] employ template-based matching
for identification of sparsely distributed, yet robust tie points.

In contrast to these full-fledged pipelines, which com-
prise a number of different processing steps, we intend to
focus purely on similarity measures that can be used to iden-
tify tie points corresponding to each other across both im-
age domains. As a framework for this investigation, we rely
on the matching procedure for SAR-optical stereogrammetry
proposed in [8].

2. MEASURING THE SIMILARITY BETWEEN
IMAGE PATCHES

In the context of this paper, we follow the generic approach
of Inglada & Giros [9], who define the similarity measure be-
tween two images I and J as a strictly positive scalar function

SC(I’J):f(I7J7C)7 (1)

where c is a to-be-defined similarity criterion. .S, has the max-
imum when the two images are identical according to the sim-
ilarity criterion. In the framework of this paper, we extend this
definition by allowing negative values so that similarity mea-
sure such as the correlation coefficient whose value range by
definition is [—1; +1], can be considered as a similarity mea-
sure as well.

Distinguished by the similarity criterion, there are two
basic categories of similarity measures: signal-based sim-
ilarity measures, and descriptor-based similarity measures.
Some exemplary similarity measures of both categories are
described in the following.

2.1. Signal-based Similarity Measures

Signal-based similarity measures are calculated based on the
original or pre-processed signals, i.e. gray values of pixels in
the image processing case. In this paper, we investigate two
widely used measures:

e Normalized Cross-Correlation (NCC)
The normalized cross-correlation coefficient
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correlates two image patches I and J, where N is the
number of the pixels in the image patch, while implic-
itly normalizing them to reduce the effects of changing
image brightness.

o Mutual Information (MI)
Mutual information is defined as the function of the
joint entropy H(I,J) and the marginal entropies
H(I),H(J) of two images I, J. We employ its nor-
malized version in this paper [10].

2.2. Descriptor-based Similarity Measures

Image descriptors are a well-established means to describe
images on a global as well as a local scale. In the context
of image matching, usually local descriptors are extracted
around previously detected key points. Subsequently, the re-
sulting feature vectors are compared using a suitable distance
metric. In the scope of this paper, we resort to the nega-
tive Lo-norm as similarity metric. We chose the following
descriptors in this investigation:

e Histogram of Oriented Gradients (HOG)
The HOG descriptor was first proposed in 1986 [11] in
the context of object detection. Its principle is to count
occurrences of gradient orientation on a dense grid of
uniformly spaced image cells, using overlapping local
contrast normalization for improved accuracy.

e Scale-Invariant Feature Transform (SIFT)
SIFT [12] is the most prominent example of a local fea-
ture descriptor that has found wide application in the
fields of computer vision and optical image analysis for
more than a decade. The SIFT feature vector usually
contains 128 elements depicting the normalized val-
ues of previously computed orientation histograms — an
analogy to HOG. In its original implementation, SIFT
combines both feature point detection and descriptor
extraction, so that the feature vector corresponds to a
specific scale and orientation assigned to the detected
key point. In this paper, we calculate the descriptor for
a fixed scale and orientation of 10 and zero respectively.

e Histogram of Orientated Phase Congruency (HOPC)
HOPC [13] is a relatively new local image descriptor
that is also based on the analysis of oriented histograms,
although the descriptor vector here is calculated from
phase congruency [14] instead of gradient information.
That makes it supposedly well-suited to the case of
multi-sensor image analysis.

3. SIMILARITY THRESHOLD DETERMINATION

In order to decide between a correct and an incorrect match,
usually a threshold is applied to the calculated similarity
value. We determine individual thresholds for the similarity

measures described above by analyzing a training dataset
originally designed for learning a convolutional neural net-
work that is able to identify corresponding image patches
in SAR and optical very-high-resolution images of urban
scenes. Details about this “SARptical” dataset can be found
in [15] and [16]. In short, we employ 8840 correctly matched
patch-pairs, where each pair consists of both a SAR image
patch and an optical image patch pre-processed so that they
are approximately aligned regarding orientation and pixel
spacing. In addition, we created 8840 wrongly matched
patch-pairs by random assignment. The resulting histograms
of the similarity values corresponding to correct and incorrect
matches are displayed in Fig. 1.

The calculation of a proper threshold can be cast in the
framework of detection theory: A decision between H( (two
image patches match) and H; (two image patches don’t
match) has to be made. One way to deal with this problem is
to analyze the likelihood ratio

which reduces the problem of threshold determination to the
question of how to balance the probabilities of: true positives
(TP), true negatives (TN), false positives (FP) and false nega-
tives (FN). Since TP and TN probabilities are always required
to be as high as possible, a trade-off between FP and FN prob-
abilities has to be found, which usually depends on the goal
one has in mind. In the case of multi-sensor image matching,
it is usually much worse to detect a match that is not correct
than to miss a correct match, because wrong matches will al-
ways negatively affect the final result. Therefore, we seek to
minimize the probability for FPs, while we don’t care as much
about the FN probability.

Based on these considerations, the threshold is deter-
mined based on the Neyman-Pearson criterion, which is
based on the rationale to maximize the detection probability
given a maximum allowable false alarm rate Pr ... That
means two patches are considered as correct matches, i.e.
decision is made in favor of Hy when
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where A is chosen so that Pr = Pp y,q,. With the FP set to
5%, the thresholds calculated using the NP criterion are de-
picted as blue bars in Fig. 1 and listed in Tab. 1 where the TP,
TN, FP and FN rates calculated from the patch-pairs of the
training dataset are also shown. Note that the FP rates vary
and are not fixed at Pr 4, = 5%, as the values in Tab. 1
were calculated from the original similarity values, while the
threshold was determined based on the fitted Gaussian distri-
butions.



Fig. 1. Histograms of the similarity values calculated for the correct matches (green) and the incorrect matches (red) of the
“SARptical” training data. The red curves and the green curves are the fitted Gaussian distributions corresponding to correct
and incorrect matches, respectively. The thresholds calculated based on the Neyman-Pearson Criterion are depicted by the blue

lines.

Table 1. NP-based threshold and the probability of
TP/TN/EFP/EN.
NCC MI HOG SIFT HOPC
A 0.19 1.13 -0.71 -0.86 -0.90
TP 122%  6.5% 17.6% 13.7% 21.1%
™N 475% 478% 484% 47.5% 48.2%
FP 2.5% 2.2% 1.6% 2.5% 1.8%
FN 378% 43.5% 324% 363% 289%

4. APPLICATION TO SAR-OPTICAL
STEREOGRAMMETRY

For a more detailed and application-oriented evaluation of
similarity measures for SAR-optical image matching, we use
these similarity measures in the SAR-optical stereogramme-
try framework proposed in [8]. Similar to the experiments
described in [8], two very high resolution spaceborne datasets
acquired by TerraSAR-X and Worldview-2, respectively, over
the city of Munich, Germany, are used. The height interval for
constructing the IMBLS window was set to [hg — 5m, hg +
20m], where h was taken from the SRTM DEM of the study
area. A *£1 pixel pre-defined buffer in the row direction was
used to form the final IMBLS search window. The patch size
used for similarity calculation was set to 111 x 111 pixels.

For quantitative evaluation of the stereogrammetic 3D re-
construction result, point distances to a dense LiDAR refer-
ence point cloud are analyzed. In order to ensure as unbiased
results as possible, we calculate the median of the euclidian
distances between the stereogrammetrically reconstructed 3D
points and a least square plane fitted through its 10 nearest
neighbors in the LiDAR dataset.

The evaluation results of the five similarity measures in-
vestigated in this paper, both using 80% of the points with
highest similarity and using the NP-based threshold, are
shown in Fig. 2 and Fig. 3, respectively.

S. DISCUSSION

From the analysis results shown in this paper, it becomes
obvious that especially mutual information is not a suitable
measure for SAR-optical image matching, as it does not pro-
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Fig. 2. Distance distribution of the reconstructed points cor-
responding to 80%-quantile of most similar points.
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Fig. 3. Distance distribution of the reconstructed points cor-
responding to the NP threshold with Pg 4, set to 5%).

vide a sufficiently high discriminative power — the similar-
ity value distributions of both the correct and the incorrect
matches are almost identical, thus leading to an accuracy of
only 54.3%, and an FN rate of 43.5%. In contrast, NCC, HOG
and SIFT provide accuracies of 59.7%, 66.0%, and 61.2%, re-
spectively, with reduced FN rates of around 35%. The seem-
ingly most discriminative similarity measure regarding the
theoretical detection rates, however, is HOPC, which shows
an accuracy of almost 70% at an FN rate of less than 30%.
This is also confirmed by the stereogrammetry results de-
picted in Figs. 2 and 3, where MI gives the worst results, in-
dependent of whether the 80%-quantile of the most similar
points is used for 3D-reconstruction or the NP-based thresh-



old is applied. Similarly, HOPC shows the best performance
in both cases, with more than 50% (80%-quantile) and 60%
(NP-threshold) of all reconstructed points lying in a £2 m
accuracy interval. The other similarity measures lie in be-
tween, with NCC and SIFT performing slightly better than
HOG. Interestingly, MI, HOG and HOPC reduce the number
of matched points significantly, while both NCC and SIFT
keep a much higher share of point-pairs. Given their still ac-
ceptable accuracies and FN rates, this indicates that also SIFT
and NCC are useful similarity measures, albeit not as robust
as HOPC. However, this will probably not hold for NCC in
case the patches are not pre-processed but dissimilar with re-
gard to scale and orientation.

Besides giving us an impression about the performance of
the individual similarity measures, these results also illustrate
the benefit of applying a proper threshold to exclude dissim-
ilar patches from further processing. However, it is obvious
that the NP threshold, which was trained on an independent
dataset, does not lead to quasi-perfect results. While a lack
of domain adaptation might be part of the explanation, an-
other reason is the nature of the key points processed in the
experiments: As Fig. 4 shows, the worst points (numbered in
Fig. 4) lie in areas containing trees, which appear blurred in
the despeckled SAR image, or in the surroundings of larger
buildings, where mismatches can occur due to layover and
shadowing. This indicates that there will always be the need
for additional post-processing, e.g. employing suitable regu-
larization techniques or support by prior knowledge about the
semantic contents of the scene.

(a) Optical image.

(b) SAR image.

Fig. 4. Stereogrammetrically reconstructed points using
HOPC-based similarity and the NP-based threshold. The
points are colorized by the distance from the LiDAR refer-
ence (in meters).

6. CONCLUSION AND OUTLOOK

In this paper, we discussed several signal-based and descriptor-
based similarity measures for the identification of homolo-
gous patches in SAR and optical imagery. We came to

the conclusion that descriptor-based measures outperform
signal-based measures, whereas mutual information overall
performed worst, while the novel histogram-of-oriented-
phase-congruency descriptor performed best. Still, none of
these handcrafted similarity measures provides the perfect
solution to the SAR-optical similarity determination prob-
lem, which motivates investigations towards the learning of a
suitable similarity measure from sufficient annotated training
data.
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