Insights on the operation of Me-S batteries: a modeling perspective

Timo Danner¹,², Raphael Richter¹,², Joachim Häcker¹, Brigitta Sievert¹, Norbert Wagner¹, K. Andreas Friedrich¹, Arnulf Latz¹,²,³

¹ Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany; ²Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) and ³Institute of Electrochemistry, University of Ulm, Ulm, Germany

Motivation

Development, understanding & rational design of Metal-Sulfur batteries

Mg-Sulfur batteries:
- High volumetric energy density
- Low rate performance
- Cheap & abundant materials
- Short cycle life

→ Transfer of knowledge & methodologies from Li-Sulfur

Cell model [1]

Electrolyte

Mass conservation:
\[\frac{\partial \varepsilon_{\text{elode}}}{\partial t} = -P_{\text{elode}} + \sum_{m} a_{m}^{n} v_{m,\text{elode}} r_{m} \]

Charge conservation:
\[\sum_{m} a_{m}^{n} v_{m,\text{elode}} r_{m} = 0 \]

Species flux by Nernst-Planck equation (Diffusion + Migration):
\[N_{i} = -D_{i} F C_{i} \frac{\partial C_{i}}{\partial x} + \frac{F}{RT} D_{i} C_{i} F \text{volta} \]

Solids (charge conservation)

\[0 = -\varepsilon_{\text{elode}} F \text{volta} - \sum_{m} a_{m}^{n} v_{m,\text{elode}} r_{m} \]

Reaction rate (Butler-Volmer-Type):
\[\gamma_{m} = k_{\text{cat}}^{\text{eff}} \text{volta}^{\sigma} \exp \left(-\frac{E_{\text{a}}}{RT} \right) \]

Particle model [2]

→ The whole cell model in a spherical particle

→ Coupling to cell model

- Electrolyte: Mass & charge conservation:
 \[\frac{\partial n_{m}}{\partial t} = -D_{m} \frac{\partial^{2} n_{m}}{\partial r^{2}} + \frac{F}{RT} D_{m} C_{m} F \text{volta} \]
 \[\frac{\partial C_{m}}{\partial t} = \frac{F}{RT} \frac{\partial n_{m}}{\partial x} \]

- Carbon matrix: Same potential

Nucleation & growth

- Previous work [2]: Phenomenological treatment
 \[\frac{\partial N_{b}(r)}{\partial t} = \frac{\partial}{\partial r} \left(\frac{\partial N_{b}(r)}{\partial r} \right) \]

- Surface passivation: \(a_{m}^{n} = a_{m}^{n,\text{eff}} \) (Butler Volmer)

- Pore clogging: \(\varepsilon_{\text{elode}} = 1 - \sum_{k} \varepsilon_{k} \)

- Now: Classical theory of nucleation & growth

Particle size distribution

\[\frac{\partial N_{b}(r)}{\partial t} = \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} \right) \]

Li-S cell simulation

- Discharge & charge simulations
 - Initially homogeneous Sₙ particle size distribution & no Li-S
 - Dissolution of Sₙ
 - Growth of LiS
 - Reverse processes during charge
 - No degradation: Reversible cycling

Mg-S cell simulation

- S/C composite cathode preparation
 - Milled vs. Melt infiltration
 - Cell model vs. Cell+particle model
 - Mg foil anode

- Electrolyte: Mg(HMDS)₂ / TEG:DEG [4]

- Capacity: Possible end product MgS₂

- Discharge mechanism?
 - Capacity: Possible end product MgS₂
 - Sloping potential in 2nd plateau
 - Surface passivation? (→ nucleation)
 - Viscosity effects? (no nucleation)
 - Experimental evidence needed!

- Infiltrated particles: Polysulfide 'bleeding' & shuttle

- Polysulfides 'escape' from particles
 - Surface loss: particles decreases
 - Polysulfide migration towards anode
 - MgS₂ film on particles increases
 - Formation of MgS₄ on anode surface

- Capacity loss

References