
International Conference on Space Optical Systems (ICSOS) 2017 

Copyright by IEEE. A similar version of this paper has been published on http://ieeexplore.ieee.org/ 

Quantifying the Effect of Atmospherically-Induced 

Pointing Errors in Optical Geostationary Satellite 

Feeder Links Using Transmitter Diversity 

 

 

Ahmad Mustafa 

Dirk Giggenbach 

Juraj Poliak 

 

Institute of Communications and Navigation (IKN) 

German Aerospace Center (DLR)  

82234 Wessling, Germany 

ahmad.mustafa@dlr.de 

 

Stephan ten Brink  

Institute of Telecommunications  

University of Stuttgart 

 Pfaffenwaldring 47, 70569 Germany 

 

 

 
Abstract—Optical links to geostationary (GEO) satellites 

suffer from atmospherically-induced beam wander which leads 

to pointing errors at the satellite causing deep fades. In this 

paper, we show the benefit of transmitter diversity in reducing 

the fades caused by beam wander. We derive an analytical 

expression for the reduction of overall scintillation index for a 

given number of transmitted beams with Gaussian profile in a 

multiple-input single-output (MISO) system considering solely 

the effect of beam wander. The transmitted power, beam 

divergence angle and pointing jitter are kept as free parameters 

as in the real situation. Moreover, the optimized ratio of 

transmitted powers between multiple beams is obtained though 

simulations for a two-fold transmitter diversity to obtain 

minimum overall power scintillation index (PSI).  

Keywords—Optical GEO feeder link; Pointing errors, 

Transmitter diversity; Power scintillation index, Probability density 
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I.  INTRODUCTION 

There is an ever-growing demand of data and multimedia 
services and reaching remote areas on Earth where a terrestrial 
cable network cannot be established [1], [2]. Communications 
from geostationary GEO satellites can effectively cover such 
gaps in the internet connectivity since it is not obstructed by 
any topological issues on ground. However, ground-to-satellite 
space links, due to atmospheric index-of-refraction turbulence 
(IRT), suffer from intensity and phase fluctuations, also called 
scintillation. Another effect due to atmospheric turbulence is 
the loss of direct line of sight between the optical ground 
station (OGS) and the GEO satellite. This is referred to as 
beam wander which is beam displacement produced by large-
scale turbulence structures, which appear close to the ground 
transmitter in a satellite uplink scenario. These structures 
change the beam path direction, producing a wandering of the 
beam around the satellite receiver. If the angular beam wander 
displacement is greater than the beam divergence, then 
pointing errors lead to deep fades at the satellite, hence loss of 
signal availability [3]. 

 The OGS establishes bidirectional links with the GEO 
satellite using the downlink incoming signal to point the uplink 
beam, the so-called pointing-by-tracking [4]. If both uplink and 
downlink travel through the same atmosphere, by tracking the 
downlink signal, the beam wander should be completely 
precompensated. But in reality, beam wander cannot be 
perfectly compensated because of the point-ahead angle 
(PAA). One major issue, in satellite uplinks, is the relationship 
between isoplanatic angle (IPA) and PAA, when the uplink 
pointing uses the downlink tracking angle to also compensate 
the beam wander. The PAA is needed for compensating the 
movement of the satellite during the time needed by the light to 
reach it from the ground station. The IPA is defined as the cone 
in which the atmospheric turbulence can be assumed constant. 
If uplink and downlink beams travel through the same 
atmosphere, the angle-of-arrival fluctuations of the downlink 
beam could be used to pre-correct the uplink beam wander 
(also assuming same beam size). Due to the PAA, uplink and 
downlink beams will not cross the same atmosphere. So the 
residual pointing error is taken into account as the method of 
“pointing-by-tracking” the transmitted signal cannot ensure a 
zero steady-state pointing error. Due to these realistic scenarios 
for an uplink, we have considered an untracked beam for our 
analysis. 

 The beam wander can be reduced by increasing the beam 
divergence at the expense of reduced mean power. The analysis 
of the variations in optical irradiance due to beam wander in a 
single-input single-output (SISO) system in [5] highlights the 
detrimental effects of beam wander for a small beam. A viable 
solution is to exploit the benefit of transmitter diversity in 
reducing the fades caused by beam wander. A multiple-input 
single-output (MISO) system is considered as a fading 
mitigation scheme which can also effectively reduce the 
influence of beam wandering in the single photodetector at the 
satellite receiver. Multiple beams from separate transmitters at 
the ground station are transmitted through statistically 
independent fading channels and are combined in a single 
receiver at the satellite. 
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In this work, it is assumed that the optical beam possesses a 
Gaussian profile. Therefore, for a short-exposure model, one 
can assume that the Gaussian beam profile does not change in 
the plane of observation [6].  

 We derive an analytical expression for the reduction of 
overall scintillation index for a given number of transmitted 
beams in a MISO system considering solely the effect of beam 
wander. The analysis is carried out by means of combining the 
beta probability density function (PDF) of the multiple optical 
signals at the receiver in the presence of atmospherically- 
induced beam wander. The PDF for a SISO system is taken 
from [6], [7], [8], and [9]. In our analysis, the beam divergence, 
beam wander and transmitted power of each beam are set as 
free parameters. The analytical results are simulated using 
realistic parameters for the GEO uplink. This analysis is 
helpful in choosing the values of these free parameters to 
obtain the desired gain and overall power scintillation index 
(PSI). 

 The remainder of this paper is organized as follows: The 
theoretical derivation of PSI, of n-fold transmitter diversity 
considering only pointing errors, is presented in Section II. In 
Section III, the simulations of the performance parameters for 
evaluating transmitter diversity is given. Section IV includes 
the results and discussion of the performance parameters. 
Finally, Section V concludes the paper. 

 

II. DERIVATION OF POWER SCINTILLATION INDEX DUE TO 

POINTING ERRORS IN MULTIPLE BEAMS 

In the absence of jitter and assuming a Gaussian beam, the 
irradiance 𝐼r seen by the satellite receiver, after the optical 
wave propagates through the turbulent atmosphere in a FSO 
link at a propagation distance 𝑍 in the far field and in the 
direction 𝛼 from the optical axis (OA) can be expressed as [11]  

 
𝐼r(𝛼, 𝑍) =

2𝑃t

𝜋(𝜔0𝑍)2
exp (−2

𝛼2

𝜔0
2

) (1) 

where 𝜔0 is the 1 𝑒2⁄  beam intensity divergence half-angle and 

𝑃t is the transmitted power. The first term in (1) is the axial 
intensity and the exponential term is the Gaussian function 
with its peak at 𝛼 = 0(on axis) and drops monotonically with 
increasing 𝛼. 

 In the presence of pointing errors, the pointing PDF with 
angular random jitter of 𝜎𝑗 due to turbulence is the Nakagami-

Rice distribution and is given by [6], [7], and [10] 
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where 𝜑 is the bias beam-pointing error angle from the OA and 
𝐼0(∙) is a modified Bessel function of the first kind and order 
zero. We assume that the bias error angle can be regarded as 
zero in this paper and now the pointing PDF reduces to the 
Rayleigh distribution  

 
𝑝𝑗(𝛼, 0) =  

𝛼
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     We consider the intensity 𝐼 which is normalized to the axial 

intensity. This 𝐼 is given by the exponential term in (1). 

Therefore, the PDF of 𝐼 becomes the beta distribution and is 

given according to [6,8] 

 
 𝑝(𝐼) =  𝛽𝐼(𝛽−1)     for 0 ≤ 𝐼 ≤ 1 (4) 

𝐼 ̅ =  
𝛽

𝛽 + 1
 

var(𝐼) =  
𝛽

(𝛽 + 2)(𝛽 + 1)2
 

 

where 𝐼 ̅is the average value, var(𝐼) is the variance, and  

 
𝛽 =  

𝜔0
2

4𝜎𝑗
2⁄  

(5) 

The scintillation index analysis presented in this paper takes 
the beta PDF in (4) into account to come up with an overall 
scintillation index for the combination of 𝑁 transmitted beams 
in a MISO system considering pointing errors only. We define 
PSI as power variance normalized by the square of the mean 
value. We include a power scaling factor 𝑝 for the transmitted 
power of each beam and now we can consider 𝐼𝑚 = 𝑝𝑚𝐼 where 
𝑝𝑚 is the power scale factor of the mth beam. PSI for a SISO 
system with pointing errors is: 

 
𝑃𝑆𝐼SISO =  

var(𝐼𝑚)

mean(𝐼𝑚)2
 (6) 
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𝐸{∙} is the expected value of the random intensity 𝐼 when it 
follows beta distribution. Using definition of 𝐸{∙}, we can write 
(6) as 

𝑃𝑆𝐼SISO =  
∫ 𝐼𝑚

2𝑝(𝐼)𝑑𝐼
1

0
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2
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 The integration limits vary from 0 to 1 because of 
normalization of received beam irradiance. The mean and 
variance of the beam is now given as 𝐼�̅̅̅� =  𝑝𝑚𝐼 ̅ and 
var(𝐼𝑚) =  𝑝𝑚

2var(𝐼) respectively. After solving (6), the final 
𝑃𝑆𝐼 of a SISO system with pointing errors comes out to be 

 
𝑃𝑆𝐼SISO =  

1

𝛽(𝛽 + 2)  
 (7) 
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 Equation (7) can be extended to include the effect of 
multiple incoherent beams with pointing errors. It can be 
written as 

𝑃𝑆𝐼MISO =  
∑ var(𝐼𝑚)𝑁

𝑚=1

(∑ 𝐼�̅̅̅�
𝑁
𝑚=1 )2

 

 

which yields 

 

𝑃𝑆𝐼MISO =  
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𝑁
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𝑝𝑚 and 𝛽𝑚 are the power scaling factor and beta of the mth 
beam. 

 

III. SIMULATION PROCEDURE FOR EVALUATING TRANSMITTER 

DIVERSITY 

 
To verify the scintillation index of the SISO and MISO 

system as given by the expressions in (7) and (8) respectively, 
we perform numerical simulations for an optical signal with 
pointing errors in the uplink of a ground-GEO satellite channel. 
We assume symmetric Gaussian functions along 𝑥 and 𝑦 
direction from OA. The radial angle 𝛼 in (1) becomes a 
random variable in the presence of pointing errors with angular 
jitter 𝜎𝑗,𝑥 and 𝜎𝑗,𝑦 in 𝑥 and 𝑦 direction, respectively. The 𝜎𝑗,𝑥 

and 𝜎𝑗,𝑦 are used in (1) to generate the irradiance seen at the 

satellite. The 𝜔0 and 𝜎𝑗 define the 𝛽 value of the beam with 

received irradiance 𝐼𝑚 = 𝑝𝑚𝐼 as described in Section II. The 
𝜔0 for all beams is kept the same assuming the collimator and 
beam size is fixed at the ground station. The performance 
parameters to evaluate the benefit of transmitter diversity in 
mitigating fades due to the pointing errors are taken as PSI and  
PDF. The results are presented and discussed in Section IV. 

A.  PSI  

PSI for the beta distributed intensity vector is found by 

numerically calculating the variance and mean and using the 

definition of PSI in (6). PSI for this beam is also calculated 

using (7) which depends on the value of 𝛽 only. To observe 

the benefit of transmitter diversity and to verify (8), we 

simulate 4 uplink beams as in the SILEX setup at the OGS in 

Tenerife [12]. The beams are simulated with both equal and 

unequal values of 𝛽 as in the real case. Also, the simulations 

are done taking unequal transmitted powers and when the 

powers are reduced equally by the factor 𝑁. In the latter case, 

the overall scintillation index is expected to reduce by 𝑁 when 

all beams have same values of β [13]. 

B. PDF 

 Besides that PDF of a 4x1 MISO system is compared with   
that of a SISO system. The PDFs are obtained from the 
histogram of the received intensities.  

C. Influence of Unequal Transmitted Powers 

Simulations are done to find the optimum transmitted 

power for each beam to get minimum PSI using (8) for given 

values of β. Currently, this optimization is done for 2-Tx 

diversity as an example. Two cases are simulated and in each 

case a unique β value of one of the beams β1is fixed and the β 

value of the second beam β2 is varied along with the transmit 

powers to find the combined PSI values. In the simulations the 

total transmitted power is normalized to one.  

 

IV. RESULTS AND DISCUSSION 

 
We present and discuss the results in this section to show 

the benefits of using multiple beams in reducing the fades 
caused by pointing errors only. For this purpose, four cases are 
presented in Table I.  

In case I, the transmitted power of each beam is equally 
reduced by 𝑁 and equal pointing jitter is assumed. This case is 
taken as a benchmark. The sum of power of transmitted beams 
in all cases is the same as the individual beam without 
transmitter diversity for a fair comparison. The value of β from 
(6) is 2.93 as an example which is taken using 𝜔0 and 𝜎𝑗 values 

from [14]. 

In case II, the transmitted power of each beam is left 
unchanged while 𝜎𝑗 is varied to see the effect of jitter on 

individual and combination of beams.  

In case III, jitter for individual beams is kept the same and 
the transmitted powers are changed. 

Finally, in case IV, both transmitted powers and jitters are 
varied to find the combined effect on the overall PSI. 

The effect of the power and jitter values on the selected 
performance parameters is presented next:  

A. PSI 

In the first case, the PSI of a MISO system reduces by a 
factor equals to the number of transmitters because of 
combination of equal irradiance from all beams at the receiver. 
This is in accordance with the known theory [13]. The PSI of a 
SISO and MISO system varies according to (7) and (8). It is 
seen, that PSI for the SISO system is independent of beam 
intensity. The PSI for a MISO system changes due to change in 
irradiance statistics when multiple incoherent beams are 
combined. As shown later, the overall scintillation index can be 
controlled by selecting appropriate transmitted power 
according to the pointing jitter associated with each beam. 

B. PDF 

The PDFs for the SISO and MISO system with the four 

cases in Table 1 are presented in Fig. 1-4. The received 

intensity for the SISO system from (1) is normalized to the 

maximum transmitted power of one transmitter from case I 

while the received intensity for MISO system is normalized to 

the total transmitted power of all four transmitters. The 

improvement in the PDF of a MISO system depends on the 
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pointing jitter values and transmitted power associated with 

each beam.  

TABLE I.  COMPARISON BETWEEN THEORETICAL AND SIMULATED PSI 

FOR SISO AND MISO SYSTEM 

 

Beam 

# 

𝒑𝒎 

( %) 

𝝈𝒋 

(𝝁rad) 

 

β 

 

𝑷𝑺𝑰𝑺𝑰𝑺𝑶 

𝑷𝑺𝑰𝑴𝑰𝑺𝑶 

From 

Simulations 

From 

(8) 

 

Case I 

1 25 1.87 2.93 0.069 

0.017 0.017 
2 25 1.87 2.93 0.069 

3 25 1.87 2.93 0.069 

4 25 1.87 2.93 0.070 

 

Case II 

1 25 1.87 2.93 0.070 

 

0.018 

 

0.018 

2 25 2.01 2.53 0.087 

3 25 2.37 1.82 0.144 

4 25 1.27 6.35 0.019 

Case III 

1 25 1.87 2.93 0.069 

0.020 0.012 
2 30 1.87 2.93 0.069 

3 35 1.87 2.93 0.070 

4 10 1.87 2.93 0.070 

Case IV 

1 25 1.87 2.93 0.069 

0.027 0.027 
2 30 2.01 2.53 0.087 

3 35 2.37 1.82 0.142 

4 10 1.27 6.35 0.019 

 

 
Fig. 1: Case-I -- Equal transmit powers and equal β values 

 

 
Fig. 2: Case-II -- Equal transmit powers and unequal β values 

 

 
Fig. 3: Case-III -- Unequal transmit powers and equal β values 

 

 
Fig. 4: Case-IV -- Unequal transmit powers and unequal β values 

  

C. Influence of Unequal Transmitted Powers 

The influence of transmitted powers on the combined PSI can 
be seen in the contour plots in Fig. 5 and Fig. 6 where values of  
𝛽1 are fixed to 2.93 and 5, respectively. For each case and a 𝛽2 
value, there are optimum transmit powers which yield in 
minimum PSI as shown by the red curve in the contour plots. 
From the plots we deduce that the beam with higher β value 
should have more transmit power to get the minimum 
combined PSI. The color bar represents PSI values in 
logarithmic scale. 
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Fig. 5: Contour plot displaying the isolines of PSI variations in logarithmic 

scale  

 

 
 

Fig. 6: Contour plot displaying the isolines of PSI variations in logarithmic 
scale  

 

Table II.     REQUIRED TRANSMIT POWERS FOR MINIMUM PSI IN A 

2x1 MISO SYSTEM  

 

Nr. 𝜷𝟏 𝜷𝟐 𝑷𝐓𝐱𝟏 𝑷𝐓𝐱𝟐 𝑷𝑺𝑰𝐦𝐢𝐧 

Case I 

1 2.93 0.20 88 12 0.067 

2 2.93 2.93 50 50 0.035 

3 2.93 7 21 79 0.013 

Case II 

1 5 0.20 94 6 0.028 

2 5 5 50 50 0.014 

3 5 7 37 63 0.010 

 

Also, we see the effect of increasing the 𝛽1 on combined 
PSI in Fig. 6. When comparing it with case I in Fig. 5, it is seen 
the PSI values can be further reduced for the same 𝛽2 if 𝛽1 is 
increased. However, in this case, the transmit powers for each 
of the two beams are changed. As an example, for each case of 
𝛽1, three different values of 𝛽2 along with the associated 
transmit powers to obtain minimum PSI are given in Table II. 

V. CONCLUSION 

In this paper, we derive the analytical expression for the 
scintillation index considering the combined effect of multiple 
beams with pointing errors only. This expression includes the 
transmitted power, beam divergence and jitter as free 
parameters as it is in the case of real uplink. We then verify the 
theoretical expression with simulations and find the results 
supporting each other. The performance of transmitter diversity 
is evaluated in terms of PSI and PDF. Also, it is shown for a 2-
Tx diversity that the transmitted powers of each beam can be 
optimized to achieve minimum PSI for given β values 
associated with each beam. Transmitter diversity is shown to 
be an attractive scheme to mitigate the effect of 
atmospherically-induced pointing errors. Using the analysis 
presented in this paper, we can say that the desired 
performance in the GEO uplink can be achieved by proper 
selection of number of transmitters, beam divergence, and 
transmitted power of each beam to reduce the effect of beam 
wander and to achieve the desired signal quality at the satellite 
receiver.  
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