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Abstract

This thesis is part of multiple studies aimed at using remote sensing technologies for monitoring

the changes in the Bavarian Forest National Park (48� 580 N 13� 230 E), which has an overall area

of 24.369 hectares. In order to detect changes of biodiversity, additional methods contributing

to regular forest inventories were used. One key component of that goal is the tree species

classi�cation. The scienti�c team of the National Park has been working together with the

German Aerospace Center conducting multiple airborne campaigns collecting hyperspectral

data. The fullcube hyperspectral data (0.4 - 2.498�m ) with a resolution of 3.2 m, acquired in

July 2013 is the basis data set for the pixel based supervised machine learning of tree species.

Along with two �eld campaigns and the forest inventory data, 4775 pixels of ground truth data

were derived. The spectral data were processed using the established CATENA processing

chain developed at DLR, and for further enhancing the predictive capabilities smoothed and

brightness normalized. BRDF e�ects were minimized using the novel approach of BREFCOR

included in the ATCOR4 software for correcting atmospheric disturbances of airborne remote

sensing data.

The classi�cation was carried out using common open source software.1 Additional LiDAR

data and a set of vegetation indices were also used as input data. Seven classi�ers of extremely

randomized trees were trained using di�erent feature combinations. Three levels of predictions

were made based on I. species, II. species groups, and III. coniferous / broadleaf trees. The

classi�cation accuracy was evaluated using Kappa scores, F1-measurements and confusion

matrices. Over �tting was detected as a problem, when using LiDAR based DTM data, because

of the small size of available training data and the speci�c behaviour of random forests. The

large number of training pixels, which would be needed for representing the multitude of

di�erences in species distribution over the height above zero was not achieved. The greedy

behaviour of the used forest of randomized trees lead to a biased learning behaviour. Apart

from comparing machine learning metrics retrieved from the ground truth data, the overall tree

species composition of the both parts of the Bavarian Forest National Park was calculated and

the northern part was evaluated by comparing predicted results to the latest forest inventory.

The fullcube hyperspectral spectrum combined with selected vegetation indices showed an

overall better suitability for classifying the selected tree species reaching a� appa score of 0.589

for the test data set. The highest F1-scores were recorded for the speciesPinus mugo with 0.88,

followed by the speciesFagus sylvatica(0.80), Picea abies(0.65) and Fraxinus excelsior (0.64).

Di�culties in the classi�cation were observed within the conifers and broadleaved species,

rather than between these two groups. The coniferous minority class speciesPseudotsuga

menziesii (0.14) showed low F1-scores based on high misclassi�cation asAbies albaand Picea

abies. While the broadleaved speciesAcer pseudoplatanus(0.29) showed high misclassi�cation

as Fagus sylvatica.

1SciPy Stack v1.0, Geospatial Data Abstraction Library v2.1.1, scikit-learn v0.18.1
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1 Introduction

1.1 Motivation

In the year of 2015 31% of the global land area is covered with forests and within

Europe the area covered by forests is increasing (Keenan et al. 2015). Due to

the importance of forests to the world climate, forest ecosystems especially in

Europe have to ful�l a wide range of needs. The United Nations Conference

on Environment and Development in Rio 1992 established the so called "Rio

Forest Principles". This is a legally non binding document which lays out several

principles of sustainable forest management (Schlaepfer et al. 2000)

Forest resources and forest lands should be sustainably managed to

meet the social economic, ecological, cultural and spiritual needs of

present and future generations. These needs are for forest products

and services, such as wood and wood products, water, food, fodder,

medicine, fuel, shelter, employment, recreation, habitats for wildlife,

landscape diversity, carbon sinks and reservoirs, and for other forest

products.2

In Germany the "Bundeswaldgesetz" obligates forests to ful�l the needs of eco-

nomical use, environmental aspects especially the sustainability of the ecosystem,

the climate, hydrology's balance, and other factors. For this obligations to be

ful�lled an forest management plan is created. The foundation of every forest

management plan is the Forest Inventory. The Forest Inventory structures a forest

in di�erent classes, usually based on parameters concerning the economic age,

species, and height. The needed data acquisition for this inventories is usually

done in teams of two persons and is very time consuming, and thereby expensive.

Thus inventories are only usually conducted once every decade.

As soon as worldwide remotely sensed data was accessible with the Launch of

Landsat 1 in 1972 (originally named "Earth Resources Technology Satellite"3),

scientists started to examine the possibilities of these data sources. (Kirvida

et al. (1973), Ebtehadj (1973), Lawrence et al. (1975)). While in the beginning

of Remote Sensing of forest parameters the focus was at gaining information on

forest stands (average tree height, structure and the overall biomass), with the

increased capabilities of data acquisition (Hyperspectral, LiDAR) and processing

(computation power) the focus shifted towards information about individual

2Report of the United Nations Conference on Environment and Development (CONF.151/26

(Vol. III) Principle 2b
3www.landsat.usgs.gov
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trees (J. Hyyppä and Inkinen (1999), Straub et al. (2011), Martens (2012)).

Using Hyperspectral data for tree species classi�cation has already been proven

possible (Gong et al. (1997), Clark et al. (2005), Buddenbaum et al. (2005),

Boschetti et al. (2007), Pu (2009), Dalponte, Ørka, et al. (2013)). Other studies

have already shown the bene�t of combining LiDAR and Hyperspectral data for

assessing Forest parameters (Dalponte, Bruzzone, et al. (2008), Holmgren et al.

(2008), Naidoo et al. (2012), Dalponte, Bruzzone, et al. (2012)). Forest inventory

is especially cost intensive in the rugged mountainous terrain of the Bavarian

National Forest. Due to the increasing heterogeneity of a forest where natural

development without much interference is allowed, common forest inventory

statistics aiming at a homogeneous distribution of species are not appropriate

anymore (Heurich, Krzystek, et al. 2015). By law until the year 2027 three

quarters of the National park should be in a state where no human interference

takes place. Through the natural processes, this will lead to an even greater

diversity in structure and species. Especially the changes in species distribution

(closer to the possible natural vegetation), but also the changes from a mostly

one layered forest (in parts with majority of Picea abies) towards a non layered

multi-aged and multi-species forest, increase the di�culties in manual monitoring.

But due to the need of regular monitoring, which is not possible using common

forest inventories, other approaches are being pursued.

The scienti�c team of the Bavarian National Park has been investigating di�erent

methods of remote sensing to contribute to forest inventories for several years

(Heurich, T. Schneider, et al. (2003), Tiede et al. (2004), Heurich, Schadeck,

et al. (2004), Aulinger et al. (2005), Wei et al. (2012)). Methods for estimating

biomass and structure have already been proven possible using LiDAR data (Lim

et al. 2003). The key component of any further analysis of forests is the species

composition. For achieving a remotely sensed classi�cation of tree species, the

National park is closely working together with the DLR to create a database

of airborne sensed hyperspectral data to investigate the capabilities of species

classi�cation.
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1.2 Aims

The basis for this study consists of a previous tree species mapping exercise

conducted by Sommer (2015). This previous study used data from the VNIR

region of the hyperspectral spectrum (0.4 -� 1.0 �m ) only, obtained from an

airborne campaign in 2013. In this current study the same data set was used, but

the spectral regions of VNIR and SWIR were combined to obtain a hyperspectral

full cube data set. The goal was to optimize the classi�cation and to understand

which regions of the spectrum contributes the most to an enhanced classi�cation

result.

Further data acquisition was successfully completed in 2015 and a continuation

of these campaigns is planned in future. The aim of this study is to create a

reproducible method of utilizing the re�ectance of trees (in addition with LiDAR

data) for a pixel based supervised classi�cation of tree species. In order to achieve

this goal a second �eld campaign for additional sampling of ground truth data was

carried out (2.2.1). These data were used as training data for the classi�cation

after the raw hyperspectral data were preprocessed (3.2) using the established

processing chain at the DLR.

This classi�cation could be the base for monitoring and prediction of the devel-

opment of biodiversity and structure in the Bavarian National Park. In order

to obtain measures of biodiversity, several indexes have been developed, such

as Shannon index, (Shannon 1948) and the related Eveness index, the Species

Pro�le Index (Pretzsch (1995) , Pretzsch (2009)) and the Simpson index (Simpson

1949). But for the applicability of these indexes a successful classi�cation of

tree species, which goes further than a normal point based forest inventory, is

essentially needed.

3
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