Meteorological Measurements for Solar Energy

Energy Meteorology Symposium, Wageningen, 11.5.2017

Stefan Wilbert, Fabian Wolfertstetter, Natalie Hanrieder, Bijan Nouri, Pascal Kuhn, Florian Sutter, Florian Wiesinger

DLR – German Aerospace Center
Institute of Solar Research
Qualification
Solar Energy Meteorology

Knowledge for Tomorrow
Overview

Meteorological measurements for solar energy

• Introduction:
 • Solar energy options
 • Solar energy meteorology and its relevance for solar power plants

• Presentation of meteorological parameters that help solar power and their measurement
Photovoltaic (PV) power plant options

- Different cell types
- Fixed tilt, 1 or 2 axes tracker
- Concentrating PV (CPV)

Concentrating Solar Power (CSP) technology options

- Electricity and/or heat
Other solar energy technologies

- Flat plate collectors for heating and cooling
- Collectors for solar water treatment
- ...
Solar energy meteorology

Ground measurements → Modelled data → Satellite data

Prediction of plant yield
- long term yield of future plant
- behavior & yield of existing plant

Application:
- Site selection
- Site specific plant layout
- Optimal decisions during plant operation
Meteorological parameters relevant for solar plants

Parameters

- GTI (Global Tilted Irradiance)
 and/or DNI (Direct normal irradiance)
 - Circumsolar radiation
 - Spectrally resolved
- Wind speed, direction and gust
- Temperature, humidity, pressure
- Soiling rate, dew, snow, rain
- Extinction between heliostats and receiver
- UV, salt concentration, abrasion

➢ Historical and live meteo data & forecasting required for bigger plants

Meteo data collection not a burden, but a chance for energy cost reduction

- Low data uncertainties reduce financial risk and financing costs!
- Cost reductions due to smart site specific design
- Cost reductions due to optimized operation (live data, forecasting → yield ↑)
Solar radiation measurements
Solar radiation measurements

Satellite derived data and ground measurements are required for MW+ plant projects - to reach the required accuracy for historic long term data - & for the plant operation.
Solar radiation measurements
Rotating Shadowband Irradiometers

Principle of operation
1. Pyranometer measures global irradiance
2. Shadowband rotates once per minute
3. During rotation:
 measure the diffuse irradiance

→ DNI is calculated
→ GTI calculated

- Robust instrument used for solar resource assessment at remote sites
- Characterization, further improvements & calibration
Instrument calibration and characterization

- Calibration is the greatest uncertainty source of common radiometers
- Enhancement of calibration techniques
- Evaluation of systematic errors and accuracy
- Correction functions for systematic errors
- Calibration of Si-sensors & RSI
Solar spectra

- Measurements with spectroradiometers
- Simulations with radiative transfer codes based on measurements (aerosol properties, broadband DNI & GHI, temp., rel. hum., press., ...)

Relevant for:
- efficiency
- selection of PV type

Legend:
- \(\text{DNI}_{\text{avg}1}, \text{AM} = 1.5 \)
- \(\text{GHI}_{\text{avg}1}, \text{AM} = 1.5 \)
- \(\text{DNI}_{\text{avg}2}, \text{AM} = 1.5 \)
- \(\text{GHI}_{\text{avg}2}, \text{AM} = 1.5 \)
- \(\text{DNI}_{\text{ASTMG173}} \)
Spectral effects on solar technologies and radiometers

- Spectral effects on PV and Si pyranometers must be considered for yield analysis.
- Measurement of aerosol properties
- e.g. NASA’s AERONET
- reference for satellite based aerosol measurements
Circumsolar radiation

- Circumsolar radiation is forward scattered solar radiation
- **Concentrating collectors use:** nearly the complete disk radiation + a smaller fraction of the circumsolar radiation

Relevant for:
- operation and plant output
- design of plants (field size)
- selection of solar technology
Measurement of circumsolar radiation – SFERA system

- SAM (Sun & Aureole Measurement), software (+ optional sun photometer)
 - camera based system @ 670nm
 - broadband radiation needed for CSP, spectral radiation for CPV

- master-system running at PSA
 - 2 replicas: CNRS/Odeillo (France), Masdar Institute (United Arab Emirates)
Circumsolar Radiation Sensor using pyrheliometers

Black Photon Instruments
Circumsolar radiation measurement with RSIs
Circumsolar radiation measurement with RSIs

- Algorithm analyses measurement during rotation
- No additional hardware required

![Graph showing GHI and DHI measurements with shadow on pyranometer and circumsolar radiation contribution from 1° to 3.2° measured with an RSI.](chart.png)
Variability of irradiance & forecasting
Variability of irradiance & forecasting

Forecasting and temporal and intra-plant-spatial variability are relevant for:
- PV production ramp rate control
- PV back up system control (diesel generator)
- CSP&PV plant yield optimization (e.g. market participation)
- CSP & PV plant design (storage size)
- selection of solar technology depending
- grid operation
Spatial resolution (log-scale)

Forecast lead time (log-scale)

All sky imagers
Satellite
Limited area NWP
Global NWP

Irradiance nowcasting

0.1 min 1 min 5 min 30 min 45 min 60 min 6 h
All sky imager (ASI) based irradiance nowcasting

- Spatially resolved DNI, GTI, GHI maps with high temporal resolutions
- Combination with NWP (numerical weather prediction) and satellite nowcasts
Working principle of ASI based nowcasting systems

ASI cameras film clouds

Clouds are segmented

Clouds are geolocated

Shadow map is estimated

Sensors provide irradiance data

Irradiance map is created

Track cloud position and extrapolate
User interface of a nowcasting system (WOBAS)
Radiometer and ShadowCam-system

Ground-filming cameras provide irradiance maps
Radiometer and ShadowCam-system

- 4 Q24 ASI (All Sky Imager)
- 6 M25 ShadowCams
- 20 Si-pyranometers
- Pyrheliometers + pyranometers
- Ceilometer
Soiling
Soiling measurements for PV modules and reference cells

CSP-specific soiling measurements with TraCS or handheld reflectometers

Relevant for:
- operation and plant output
- When do we have to clean?
- plant design, site selection
Soiling modelling based on simple measurements
Dust sampling

Optical systems, e.g.:
- Scatterometer type
- Gravimetical system
- Filter in air flow
Beam attenuation between heliostat and receiver
Beam attenuation in tower plants

Relevant for:
- design of tower plants (field size)
- selection of solar technology
- operation and plant output
Beam attenuation in tower plants

ABC - Absorption and Broadband Correction

ABC improves coincidence between both sensors!

Commercially available instruments applicable for CSP if ABC correction is applied!
Extinction modelling based on DNI measurement

Compare clear sky DNI measurement with modelled DNI for aerosol free atmosphere

+ Assumption about aerosol height profile

→ Calculate extinction coefficient close to ground

Validated for PSA

Mean \((T_{1km, modeled, 2015} - T_{1km, ref}) = 0.0095 \)

RMS \((T_{1km, modeled, 2015} - T_{1km, ref}) = 0.049 \)

Nr. data points = 77127, time res = 1min

Constant aerosol extinction coefficient
Parameters affecting durability
Parameters influencing durability

Radiation
- especially UV-A, UV-B
- *Chemical reactions*

Temperature
- Diurnal changes
- frost
- *Mechanical stress*

Humidity
- Air humidity, dew, rain
- *Chemical reactions*
- *Soiling*

Wind
- *Mechanical loads*
- *Soiling*

Aerosols
- Salt, dust, industrial emissions
- *Soiling*
- *Chemical reactions, especially on hot surfaces*

Sandstorms
- *Abrasions*

Relevant for: cheaper components & longer lifetime
Abrasion due to sandstorms

- Durability tests of new products by outdoor exposure take too long
- Accelerated aging tests in the laboratory are used
- Analysis of wind speed and flying sand concentration analyses
 - Operation parameters for laboratory tests
Meteorological Measurements for Solar Energy
Summary and conclusion

Solar irradiance is the most relevant parameter, but several other parameters also have to be measured

Meteo data collection & application = chance for energy cost reduction
- Low data uncertainties reduce financial risk and hence financing costs
- Cost reductions due to smart site specific design
- Cost reductions due to optimized operation:
 live meteo data, nowcasting, forecasting required
Thank you for your attention and for the invitation!

Questions?

Contact:

Dr. rer. nat. Stefan Wilbert

Team Leader ‘Solar Energy Meteorology’

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

German Aerospace Center Institute of Solar Research - Qualification

Plataforma Solar de Almería, Carretera de Senés s/n, km 5, 04200 Tabernas, Spain

Tel. 0034-950277619 | Fax 0034-950260315 | stefan.wilbert@dlr.de