Shadow camera system for the validation of nowcasted plant-size irradiance maps

Pascal Kuhn, pascal.kuhn@dlr.de

European Conference for Applied Meteorology and Climatology 2017, 6-Sept-2017
Overview

1. Importance of reference irradiance maps for nowcasting systems
2. Approach & methodology of the shadow camera system
3. Validation of the shadow camera system
4. Conclusion and further work
Validation of all-sky imager based nowcasting systems
All-sky imager based nowcasting systems support plant & grid operations

- Ramp rates regulations for solar plants are discussed
- Ramp rate penalties can reduce gross revenue of solar plants by 20% [1]
- All-sky imager based nowcasting system like the WobaS system [2] are one solution for this challenge

Validation of all-sky imager based nowcasting systems
Spatial and temporal aggregation effects must be considered

Nowcasting systems are usually validated against radiometers e.g. for one-minute averages.

CSP plants have thermal inertia of several minutes, which is not considered this way (similar: PV + battery).

Temporal aggregation effects change the behavior.

What about spatial aggregation?
Generation of reference irradiance maps

Two options are available for highly spatially resolved irradiance maps

Grid of irradiance sensors [3]
- Straight forward approach
- Costly and labor intensive
- Limited spatial coverage

Shadow camera system [4]
- Fairly inexpensive
- Low maintenance
- Large imaged area

- 4 all-sky imager
- 6 shadow cameras
- 20 Si-pyranometers
- Pyrheliometers + pyranometers

Working principle of the shadow camera system
Six cameras provide raw images from which an orthoimage is derived
Working principle of the shadow camera system
Sunny and shaded reference orthoimages allow shadow detection

How do we obtain reference irradiance maps?
- For the unshaded areas: Clear Sky irradiance
- For the shaded areas:

why? \((1) \) \[DNI_{mn,\text{current}} = \frac{E_{BB,\text{mn,current}} - E_{BB,\text{mn,shaded}} \cdot \frac{DHI_{mn,\text{current}}}{DHI_{mn,\text{shaded}}}}{E_{BB,\text{mn,sunny}} - E_{BB,\text{mn,shaded}} \cdot \frac{DHI_{mn,sunny}}{DHI_{mn,\text{shaded}}}} \cdot DNI_{mn,\text{sunny}} \]
Working principle of the shadow camera system

Every pixel on the camera chip measures a broadband irradiance

Every pixel m,n images an area illuminated by DNI and DHI irradiance:

\[E_{BB, mn} = \alpha_{mn} \left(DNI_{mn} \cdot BRDF_{DNI, mn} + \sum_{i=1}^{N} DHI_{mn,i} \cdot BRDF_{DHI, mn,i} \right) \]

- $E_{BB, mn}$: broadband irradiance on pixel m,n
- α_{mn}: pixel-wise calibration factor
- DNI_{mn}: DNI on area imaged by pixel m,n
- $BRDF_{DNI, mn}$: bidirectional reflectance distribution function for pixel m,n and DNI at the given angles
- $DHI_{mn,i}$: irradiance contribution to total DHI on area imaged by pixel m,n from sky element i of N
- $BRDF_{DHI, mn,i}$: BRDF for $DHI_{mn,i}$
Working principle of the shadow camera system
A simplified BRDF and reference orthoimages lead to DNI formula

Further needed assumptions:
- DNI$_{mn}$ for the shaded reference orthoimage is zero
- The relative angular diffuse radiance distribution of the sky is the same for all three orthoimages
- BRDFs for DNI are the same for all three orthoimages
- BRDFs for DHI are the same for all three orthoimages

This leads to

$$DNI_{mn, current} = \frac{E_{BB,mn, current} - E_{BB,mn, shaded}}{E_{BB,mn, sunny} - E_{BB,mn, shaded}} \cdot \frac{DHI_{mn, current}}{DHI_{mn, shaded}} \cdot DNI_{mn, sunny}$$

As we do not have pixel-wise DHI measurements, we furthermore assume that the DHI is constant over the imaged area.
Results: Accuracy of the shadow camera system
Looking at an example day

19.9.2015

<table>
<thead>
<tr>
<th></th>
<th>GHI</th>
<th>DNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>48.8 W/m²</td>
<td>68.7 W/m²</td>
</tr>
<tr>
<td></td>
<td>(8.2%)</td>
<td>(10.0%)</td>
</tr>
<tr>
<td>MAE</td>
<td>37.0 W/m²</td>
<td>38.8 W/m²</td>
</tr>
<tr>
<td></td>
<td>(6.2%)</td>
<td>(5.7%)</td>
</tr>
</tbody>
</table>

1 pixel of shadow camera system

Pyrheliometer
Spatial aggregation effects
Preliminary validation period of 5 days

- The validation of GHI reference maps is conducted with 23 pyranometers as reference for 23 pixels of the GHI map

- “Average of stations’ GHI RMSE” is calculated as the mean of the RMSEs derived for all 23 pixels independently

- Spatial average is the RMSE of the average GHI of all 23 pixels for each timestamp

<table>
<thead>
<tr>
<th>Validation period</th>
<th>average of stations’ GHI RMSEs [W/m²]</th>
<th>23 pixel spatial average GHI RMSE [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-09-18</td>
<td>35.2</td>
<td>30.7</td>
</tr>
<tr>
<td>2015-09-19</td>
<td>62.1</td>
<td>48.8</td>
</tr>
<tr>
<td>2016-05-11</td>
<td>98.0</td>
<td>89.8</td>
</tr>
<tr>
<td>2016-09-01</td>
<td>46.8</td>
<td>39.9</td>
</tr>
<tr>
<td>2016-12-09</td>
<td>40.1</td>
<td>43.7</td>
</tr>
</tbody>
</table>

Spatial aggregation effects are visible even for averages of only 23 pyranometers
WobaS system compared to reference irradiance maps

For validations, spatial aggregation effects must be considered

- Spatial aggregation significantly reduces deviations
- Spatial aggregation effects are inherent in industrial solar power plants
- Benchmarking of nowcasting systems must consider temporal and spatial aggregation effects
Conclusion and further work

- A shadow camera system is operated at PSA since 2015

- Reference DNI, GHI and GTI irradiance maps are available in high spatial (5m*5m) and temporal (15s) resolutions

- The shadow camera system was used for the validation of all-sky imager based nowcasting systems

- Cloud motion vectors can be derived and used as reference for ground based sensors, satellite based products and NWP models

- Future work:
 - Validation of a shadow camera based nowcasting system

Thank you! Questions?
Thank you!

Questions?

Pascal.Kuhn@dlr.de
Publications

- See also: http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-10436/20662_read-48274/
Further applications of shadow camera systems

Shadow camera systems can measure cloud motion vectors

Shadow camera

Shadow camera image
(4 per minute)

Orthoimage
(5m per pixel)
Velocities are measured without detecting shadows. Differential approach derives cloud motion vectors.

\[t = 0 \text{ s} \]

\[t = -15 \text{ s} \]

\[t = -30 \text{ s} \]

Shadow speed \(v_{m/s} = \frac{\Delta x \times k}{\Delta t} \) meter/pixel

\(\Delta x \) displacement [pixel]
Shadow cameras provide reference cloud velocities
Reference cloud shadow speed measurements are used for validations

• Shadow cameras provide reference cloud shadow motion vectors

• This data was used to validate the cloud shadow speed sensor [2], both for velocity and measured direction on 59 days

• Cloud motion vectors of NWP or satellite forecasts could potentially be validated on extensive periods

![Image of cloud shadow measurement equipment]

![Chart showing correlation between shadow camera and LSQ method velocities]
Shadow cameras can act as nowcasting systems
Shadow cameras have distinct advantages over all-sky imagers

Case study for Andasol plants:
- 2 cameras 20 km away 2 km above the plant on a mountain
- 10 km field of view around the plant
- Mean shadow velocity: 7.36 m/s
→ mean forecast horizon: 22.6 minutes