Optimized DNI forecast using combinations of nowcasting methods from the DNICast project

Goals

The efficient Operation of Concentrating Solar Technologies (CST) requires reliable forecasts of DNI.

Ground-based Sky Imagers
- Intra-hour nowcasting: 0 – 15 min

Satellite based cloud and DNI nowcasting
- Intra-hour and intraday: 5 – 360 min

Numerical Weather Prediction
- Intra-hour and intraday: 60 – 360 min or more

TECHNICAL ASPECTS

- Three different methodologies for combining nowcast outputs.
- Nowcasting outputs tested at Plataforma Solar Almería - Spain.
- 4 time periods:
 - Jan – Mar 2010
 - Mar – May 2013
 - Jul – Aug 2014
 - Sep – Nov 2015

Uncertainty weighted based approach
- Uses uncertainty of input nowcasting data set.
- Includes only available data set.
- Combines several nowcasts by weighting quality.

Multi-regressive approach
- Uses time-dependent multi-regressive model.
- Applies adaptive linear merging.
- DNI predicted values in previous forecast are the inputs used.

Distance weighted combination
- Uses the distance of previous measurements.
- Includes only available data set.
- Weights based in Euclidean distance and CoV comparisons.

GENERAL RESULTS

- Lower errors in combined nowcast than in single nowcasts.
- Better results in Summer periods: better coincidence in persistence and less clouds.
- UWA model is simple and effective.
- Combined nowcast used to evaluate benefits of power plant operation.

ACKNOWLEDGEMENTS

The DNICast project, http://www.dnicast-project.net, has received funding from the European Union’s Seventh Framework Programme, under Grant agreement no. 608623.