Accelerated Ageing of Solar Receiver Coatings: Experimental Results for T91 and VM12 Steel Substrates

Simon Caron, F. Sutter, N. Algener, M. Esteller (DLR), Y. Binyamin, M. Baidosi, A. Kenigsberg (Brightsource Industries), A. Agüero (INTA), D. Fähsing (DECHEMA), C. Hildebrandt (Fraunhofer ISE)

SolarPaces Conference 2017; Santiago, Chile; 28/09/2017
Outline

• Introduction
 • Solar receiver coatings
 • Degradation mechanisms
• Optical Characterization
 • Solar absorptance
 • Thermal emittance
• Experimental setups
 • Solar cycling tests
 • Climate test chambers
• Results and discussion
• Conclusion & Outlook
Introduction

Solar receiver coatings (1)

• State of the art:
 • Pyromark 2500 (Tempil)
 • “Silicon based coating for metals”
 • “Long lasting vs. oxidation and corrosion”
 • “Withstands high temperature, 1093 °C”
 • High nominal solar absorptivity of 0.95
 • High thermal emittance
 • ~ 0.8 at 100 °C to 0.9 at ~1000 °C

• Reality:
 • Poor durability
 • Max. temp. ~ 750 °C
 • High thermal emittance

• New coating formulations:
 • Coating A:
 • ceramic paint, spray
 • Coating B:
 • protective slurry aluminide + coat. A (top)
 • Coating C:
 • sputtered on polished substrate
 • selective coating (low thermal emittance)
 • Coating D:
 • multi-metallic diffusion coating
 • based on Chromium (Cr) and Manganese (Mn)
Introduction
Solar receiver coatings (2)

• Four different metal substrates
 • End Applications:
 • Solar Receiver Steam Generator (SRSG)
 • Molten Salt Receiver (MSR)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Solar cycling (Tube samples)</th>
<th>Climate chambers (Flat samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T91/P91</td>
<td>Overheated</td>
<td>Completed</td>
</tr>
<tr>
<td>VM12</td>
<td>100+ cycles</td>
<td>In progress</td>
</tr>
<tr>
<td>T22</td>
<td>Start: Mid-October 2017</td>
<td>Start: Mid-October 2017</td>
</tr>
<tr>
<td>Inc-617</td>
<td>Schedule: Early 2018</td>
<td>Schedule: Early 2018</td>
</tr>
</tbody>
</table>

• Flat and tubular sample geometries

VM12 tubes, Before exposure
Introduction
Solar receiver coatings (3)

- Identified degradation mechanisms

- **Effects:**
 - Optical fading
 - Loss of solar absorptance
 - Gain of thermal emittance
 - Gain of thermal emittance

- **Causes:**
 - Corrosion ("red dots")
 - Hot oxidation ("white dots")
 - Flaking / delamination / cracks

- **Goal:** Reproduce mechanisms
 - Outdoor: Dish test facility
 - Indoor: Climate test chambers
Optical Characterization
Solar weighted absorptance

• Weighting formula:

\[\alpha_s = \frac{\int_{\lambda_1}^{\lambda_2} [1 - R(\lambda)] \cdot G_{\text{sol}}(\lambda) \cdot d\lambda}{\int_{\lambda_1}^{\lambda_2} G_{\text{sol}}(\lambda) \cdot d\lambda} \]

• Spectrophotometer:
 • Perkin Elmer Lambda1050
 • UV-VIS-NIR; 0.28 to 2.5 µm
 • Incidence angle: 8°
 • Integration sphere Ø: 150 mm

ASTM G173-03 (direct)

Spectral irradiance (W m⁻² nm⁻¹)

Wavelength (nm)

Extraterrestrial Radiation (AM0) Direct Normal Irradiance (AM 1.5)

UV-VIS-NIR, spectral data

Wavelength (nm)

Coating A Coating B Coating C Coating D Bare substrate Polished substrate
Optical Characterization

Thermal emittance (1)

Weighting formula:

\[
L_{BB}(\lambda, T) = \frac{2\pi h c^2}{\lambda^5 \cdot \exp\left(\frac{hc}{\lambda kT}\right) - 1}
\]

\[
\varepsilon_{\text{th}}(T) = \frac{\int_{\lambda_1}^{\lambda_3} \left[1 - R(\lambda)\right] L_{BB}(\lambda, T) \cdot d\lambda}{\int_{\lambda_1}^{\lambda_3} L_{BB}(\lambda, T) \cdot d\lambda}
\]

- **Spectrophotometer:**
 - Frontier FTIR, Pike int. sphere
 - NIR-MIR; 2 to 16 µm
 - Incidence angle: 12°
 - Integration sphere Ø: 76.2 mm

Spectral Range

- Coating A
- Coating B
- Coating C
- Coating D
- Bare substrate
- Polished substrate

Spectral Range: 0.28 to 16 µm

(\(\sim 97\% \sigma \) at 650 °C)
Optical Characterization

Thermal emittance (2)

Planck's law

\[L_{\text{em}}(\lambda, T) = \frac{2\pi \hbar c^2}{\lambda^5} \cdot \exp\left(\frac{\hbar c}{\lambda kT}\right) - 1 \]

Surface preparation; polished vs. bare substrate

![Graph showing thermal emittance vs. absorber temperature with different coatings and substrate types.](chart8)
Optical Characterization
Performance criterion & initial values

• Thermal efficiency

\[
\eta_{coating} = \frac{\alpha_s Q_{sol} - \varepsilon_{th} \cdot \sigma \cdot T_{abs}^4}{Q_{sol}}
\]

\[
\frac{d\eta_{coating}}{d\alpha_s} = \frac{d\eta_{coating}}{d\varepsilon_{th}} = -\frac{\sigma \cdot T_{abs}^4}{Q_{sol}}
\]

• Default values:
 • \(Q_{sol} = 250\ kW/m^2; T_{skin} = 650\ ^\circ C\)
 • Trade-off: +1\% \(\alpha_s \sim -16.5\% \varepsilon_{th}\)

• Goals:
 • Solar absorptance \sim 96\%
 • Max. acceptable loss: - 0.5\%
 • Maximize thermal efficiency

<table>
<thead>
<tr>
<th>Substrate</th>
<th>VM12 – Tubular samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td>(\alpha_s) (%)</td>
</tr>
<tr>
<td>Coating A</td>
<td>96.2 (\pm 0.3)%</td>
</tr>
<tr>
<td>Coating B</td>
<td>95.3 (\pm 0.3)%</td>
</tr>
<tr>
<td>Coating C</td>
<td>95.1 (\pm 0.4)%</td>
</tr>
<tr>
<td>Coating D</td>
<td>93.2 (\pm 0.3)%</td>
</tr>
<tr>
<td>Bare substrate</td>
<td>71.7%</td>
</tr>
<tr>
<td>Polished substrate</td>
<td>44.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate</th>
<th>T91 – Flat samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td>(\alpha_s) (%)</td>
</tr>
<tr>
<td>Coating A</td>
<td>96.4 (\pm 0.0)%</td>
</tr>
<tr>
<td>Coating B</td>
<td>96.7 (\pm 0.1)%</td>
</tr>
<tr>
<td>Coating C</td>
<td>94.8 (\pm 0.2)%</td>
</tr>
<tr>
<td>Coating D</td>
<td>91.7 (\pm 0.6)%</td>
</tr>
<tr>
<td>Bare substrate</td>
<td>N.A.</td>
</tr>
<tr>
<td>Polished substrate</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
Solar Cycling Tests

Experimental test bench

- **Dish test facility** (Distal II, PSA)
 - 15 tubular samples at a time
 - 5 parallel strings of 3 probes

- **Flux control:**
 - Linear drive (master)

- **Temp. control:**
 - Air blowers (slaves)

- **Sensors:**
 - Water cooled radiometer
 - Thermocouples type K
Solar Cycling Tests
Temperature measurement

• Embedded thermocouples (Type K)

- \(\Delta T \) along wall thickness (1.9 +/- 0.1 mm)
- - 30 K for coatings A, B and D
- - 18 K for coating C (thinner coating)

• Solar blind infrared camera:
 - Optris PI640 G7, 7.9+/− 0.3 \(\mu \)m
 - To be implemented end of 2017
Solar Cycling Tests

Test conditions

- **Test profiles:**
 - 650 °C max. skin temperature
 - Min. 250 kW/m² on samples

- **Total # cycles:**
 - 100 cycles (paper)
 - 150 cycles (Mid-September)
Environmental Test Chambers

Test conditions

• Four independent tests on flat samples:
 • Damp Heat (DH)
 • Condensation (Cond.)
 • Humidity Freeze (HF)
 • Neutral Salt Spray (NSS)

TABLE 2
Summary of climate chamber test conditions for Condensation, Damp Heat (DH), Humidity Freeze (HF) and Neutral Salt Spray (NSS). For each coating, 3 flat samples are exposed in the corresponding climate test chamber.

<table>
<thead>
<tr>
<th>Test</th>
<th>Condensation</th>
<th>Damp Heat (DH)</th>
<th>Humidity Freeze (HF)</th>
<th>Neutral Salt Spray (NSS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>480 hours</td>
<td>1000 hours</td>
<td>1500 hours</td>
<td>480 hours</td>
</tr>
<tr>
<td>Conditions</td>
<td>T_{amb}: 40 °C</td>
<td>T_{amb}: 65 °C</td>
<td>T_{amb}: -40 to 65 °C</td>
<td>T_{amb}: 35 °C</td>
</tr>
<tr>
<td></td>
<td>RH: 100 %</td>
<td>RH: 85 %</td>
<td>RH: max. 85%</td>
<td>pH 6.5 to 7.2 at 25 °C</td>
</tr>
</tbody>
</table>
Experimental results
Solar cycling tests

• Observations:
 • No significant optical degradation observed after 100 cycles for A,B,C,D
 • Early oxidation of ref. uncoated samples

• Ranking:
 • Highest solar absorptance: Coatings A,B,C (> 95%)
 • Highest thermal efficiency: Coating C (91 %)
 • Coatings A and B have similar efficiencies (~ 85%)
 • Coating D performance had to be improved
Experimental results

Solar cycling tests

Coating A

Coating B

Coating C

Coating D

Polished

Bare substrate
Experimental Results

Climate Chamber Tests

Observations:
- Coatings A, B passed all tests
 - Par efficiency (85%)
- Coating C still ranks 1st in efficiency
 - ... but it failed NSS test
- Coating D only passed DH test

<table>
<thead>
<tr>
<th>T91</th>
<th>COND</th>
<th>DH</th>
<th>HF</th>
<th>NSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating A</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Coating B</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Coating C</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Coating D</td>
<td>❌</td>
<td>✔️</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>
Conclusion

• Solar cycling test (VM12):
 • No significant degradation after 100 cycles
 • First signs of degradation started to show up after 150 cycles and “dust rain” event

• Climate chamber tests (T91):
 • Coatings A,B passed all tests
 • Coatings C,D did not pass NSS

• Coating comparison:
 • Performance: Coatings A,B,C
 • Durability: Coatings A and B
 • LCOC: Coating A (spray)
 • Coating C has the highest efficiency (selective)
 • Coating D performance had to be improved

<table>
<thead>
<tr>
<th>Substrate</th>
<th>VM12 – Tubular samples</th>
<th>T91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating</td>
<td>α_r (%)</td>
<td>$\varepsilon_{th,650^\circ C}$ (%)</td>
</tr>
<tr>
<td>Coating A</td>
<td>96.2 ± 0.3 %</td>
<td>71.7 ± 1.2 %</td>
</tr>
<tr>
<td>Coating B</td>
<td>95.3 ± 0.3 %</td>
<td>63.0 ± 0.7 %</td>
</tr>
<tr>
<td>Coating C</td>
<td>95.1 ± 0.4 %</td>
<td>22.4 ± 0.6 %</td>
</tr>
<tr>
<td>Coating D</td>
<td>93.2 ± 0.3 %</td>
<td>70.6 ± 1.8 %</td>
</tr>
<tr>
<td>Bare substrate</td>
<td>31.7%</td>
<td>40.3%</td>
</tr>
<tr>
<td>Polished substrate</td>
<td>44.7%</td>
<td>12.3%</td>
</tr>
</tbody>
</table>

Dish – After 100 cycles
Thank you for your attention!

M.Sc. Simon Caron
simon.caron@dlr.de
German Aerospace Center (DLR e.V.)
Institute for Solar Research, Almeria, Spain

- Financial support from the European Union is gratefully acknowledged (EU-Raiselife project, Horizon 2020, Contract nº686008). The author also thanks and Tomas Reche Navarro, Lucia Martinez Arcos for their assistance in optical measurements and all project partners for supplying coated samples.

[Website Link]
https://www.raiselife.eu/