Sulfur Poisoning of Ni/CGO Anodes: A Long-Term Degradation Study

Matthias Riegraf, Rémi Costa, Günter Schiller, K. Andreas Friedrich

German Aerospace Center (DLR), Stuttgart, Germany

Motivation and aim of the work

- Sulfur-containing impurities in common SOFC fuels
- Surface poisoning of Ni-based anodes with sulfur
- Higher short-term sulfur tolerance of Ni/CGO than Ni/YSZ in H₂/H₂O fuels [1]
- CO conversion on Ni/CGO possible even under severe sulfur poisoning conditions
- Long-term stability?

Goal: Understanding of long-term degradation behavior of Ni/CGO-based cells under sulfur poisoning conditions

Methodology

- Simultaneous measurement of up to four cells under variation of H₂S concentration and current density
- → Comprehensive parameter studies

Methodology

Cell A, Ni/CGO10 anode (25 μm)

- 90 µm 3YSZ electrolyte
- 65 µm LSM cathode
- 5 µm CGO10 barrier layer

Cell B, Ni/CGO10 anode (20 µm)

- 160 µm 10Sc1CeSZ electrolyte
- 65 µm LSMM' cathode
- 5 µm CGO10 barrier layer
- ➤ 4 long-term tests (up to 4 cells) between 200-1500 h
- > 900 °C, to allow operation with high current densities

Cell A, 0.5 A•cm⁻², **100 % H₂**

Only little sulfur-induced degradation!

 $T = 0.5 \text{ A} \cdot \text{cm}^{-2}$, 100 % H₂

No resistance increase of anode charge transfer process

- No microstructural changes visible
- Increase of ohmic resistance due to electronic conductivity decrease of CGO?

Cell A, 0.125, 0.5 & 0.75 A•cm⁻², 0 & 10 ppm, **25 % H₂,75 % N₂**

- Higher fuel utilization (47 % for 0.75 A cm⁻²) and pH_2S/pH_2 (= 40 ppm)
- Degradation of anode charge transfer resistance at 0.5 & 0.75 A cm⁻²
- $pH_2S/pH_2 = 40$ ppm is not the only determining parameter
- Reason: Large anode overpotential (smaller anode potential step) + H₂S exposure?

0.75 A•cm⁻² ,10 ppm

0 ppm

- Ni depletion at electrode/electrolyte interface
- Has been reported in SOFC mode before [1,2]
- Similar to degradation in electrolysis mode [3,4] → However, operation at completely different potential

[1] Holzer et al, *J. Power Sources*, **196**, 1279 (2011). [2] Zekri et al., *Fuel Cells*, **17**, 359 (2017).

[3] Hoerlein et al., ECS Trans., 68, 3553–3561 (2015). [4] Chen et al., J. Electrochem. Soc., 160, F883 (2013)

Long-term test 2: 3D reconstruction via FIB/SEM [1]

Reduced reference cell, 0.125 (with 10 ppm) & 0.75 A•cm⁻² (with 10 ppm) 12.2 x 12.73 x 12.75 μm³ (=1980 μm³)

Test	Ni	CGO	Pore	Percolation	TPB density
	content	content	content	Ni	[µm•µm ⁻³]
Reference	28.5	15.3	56.2	92.7	4.59
0.125-10ppm	28.5	14.8	56.7	93.4	3.14
0.75-10ppm	24.4	14.8	60.8	90.9	2.79

Not degraded

Degraded

- Degraded sample: Ni depletion correlates with increased porosity
- Also loss in Ni percolation and decreased TPB length
- ☐ Microstructural changes related to Ni → Where does the Ni go?

Long-term test 2: 3D reconstruction via FIB/SEM [1]

Four segments in the anode functional layer

1: at electrolyte,...,4: at contact layer (3.0 x 12.73 x 12.75 µm³)

[1] Measurements carried out by Atef Zekri at University of Oldenburg

Cell B, 0.5 & 0.75 A•cm⁻², 25 % H₂,75 % N₂

- Same conditions as for cell A → No visible degradation
- Confirms effect of anode overpotential on onset of degradation
- → Extent of short-term poisoning indicates long-term stability

 $0.5 \text{ A} \cdot \text{cm}^{-2}$, $25 \% \text{ H}_2$, $75 \% \text{ N}_2$, **500 ml/min** Experiments at more realistic fuel utilization (FU = 60 %)

Cell A (Low sulfur tolerance)

- Degradation at 10 ppm H₂S
- No degradation at 2.5 ppm H₂S

Influence of sulfur coverage on Ni

- Voltage degradation similar to previous experiment
- Stable operation with 10 ppm H₂S at 60 % FU

Discussion of mechanisms

<u>Identification of 2 degradation effects:</u>

- 1) Increased ohmic resistance
 - Only visible after ~ 1000 hours
 - No significant phase transformation detected via XRD
 - Decreased electronic conductivity of CGO?
- 2) Increased anode charge transfer resistance (consistent with Ni/YSZ [1])
 - Triggered by small anodic potential step and large sulfur coverage on Ni
 - Ni depletion at electrolyte/electrode interface
 - Mechanism unclear

Discussion of mechanism

- Dissolution of sulfur into Ni bulk phase at high chemical oxygen potential → Ni surface reconstruction, enhanced Ni diffusion [1]
- Changes could lead to loss in Ni percolation
- Purely chemical mechanism not sufficient → Influence of electrochemical oxygen potential on sulfur dissolution?
- Transport mechanism either Ni evaporation or Ni diffusion
- Ni migrates away from electrolyte → Ni evaporation likely
- Possibly via Ni(OH)_x formation? pH₂O as driving force?
- Loss in Ni percolation precursor for Ni evaporation, similar to electrolysis mode? [2]

Summary and conclusions

- Promising long-term stability of Ni/CGO anodes
- Degradation is induced by combined influence of sulfur coverage on Ni and large anode overpotential
- Identifikation of two degradation effects: Increase of ohmic and anode charge transfer resistance
- Ni depletion at electrolyte/electrode interface
- Short-term sulfur poisoning as indicator for long-term stability
- → Operation of SOFC without desulfurization unit possible?
- → Especially ESC with 3YSZ electrolyte

Acknowledgments

 Financial support from the German Ministry of Education and Research (BMBF) in the framework of the "SOFC Degradation" (Verbundvorhaben SOFC Degradation: Analyse der Ursachen und Entwicklung von Gegenmaßnahmen) project.

Thank you for your attention!

Supplementary Information

Particle size distribuion

FIB/SEM

