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Continuous, real-time emotion annotation:
A novel joystick-based analysis framework

Karan Sharma, Claudio Castellini, Freek Stulp, Egon L. van den Broek

Abstract —Emotion labels are usually obtained via either manual anno-
tation, which is tedious and time-consuming, or questionnaires, which
neglect the time-varying nature of emotions and depend on human’s
unreliable introspection. To overcome these limitations, we developed
a continuous, real-time, joystick-based emotion annotation framework.
To assess the same, 30 subjects each watched 8 emotion-inducing
videos. They were asked to indicate their instantaneous emotional
state in a valence-arousal (V-A) space, using a joystick. Subsequently,
five analyses were undertaken: (i) a System Usability Scale (SUS)
questionnaire unveiled the framework’s excellent usability; (i) MANOVA
analysis of the mean V-A ratings and (iii) trajectory similarity analyses
of the annotations confirmed the successful elicitation of emotions; (iv)
Change point analysis of the annotations, revealed a direct mapping
between emotional events and annotations, thereby enabling automatic
detection of emotionally salient points in the videos; and (v) Support
Vector Machines (SVM) were trained on classification of 5 second
chunks of annotations as well as their change-points. The classifica-
tion results confirmed that ratings patterns were cohesive across the
participants. These analyses confirm the value, validity, and usability of
our annotation framework. They also showcase novel tools for gaining
greater insights into the emotional experience of the participants.

Index Terms —Affective Computing, Emotion in human-computer inter-
action, Tools and methods of annotation, Time-series analysis, Change-
point analysis, Pattern Recognition

1 INTRODUCTION

By robustly estimating emotions in real-time, machines can
improve interaction experiences for humans. For example,
in Human-Robot Interaction (HRI) scenarios the robot could
modify its behaviour to reduce human anxiety [1]]. To this
end, wearable sensors for measuring physiological descrip-
tors of emotions (e.g., galvanic skin response, heart rate, etc.)
are often used [1I], [2]], [3]. The data from these sensors need
to be linked to the internal emotions experienced by the
human, and this association step is still a largely unsolved
problem. The standard paradigm in a laboratory setting is
to provide emotion-inducing stimuli (e.g., videos [2], mu-
sic [4], and/or photos [4]) to the participants and measure
their affective response using biosignals [1l], [2]], [5], speech
signals [6], and/or computer-vision based approaches [5].
The ground truth for the subject’s emotional experience is
then either obtained through Likert-scale based post-stimuli
questionnaires or often manually annotated using discrete
emotion labels [3]. Both these rating methods are unsuitable

o K. Sharma, C.Castellini and F.Stulp are with the Robotics and Mechatron-
ics Center, DLR — German Aerospace Center, Wessling, Germany. E-mail:
karan.sharma@dlr.de, claudio.castellini@dlr.de and freek.stulp@dlr.de

e Egon L. van den Broek is with the Department of Information and
Computing Sciences, Utrecht University, Utrecht, The Netherlands.
E-mail: vandenbroek@acm.org

when using dynamic stimuli (e.g., videos), as they do not
consider the time-varying nature of emotions [4], [5]. Sec-
ondly, discrete emotion labels are also insufficient to define
the strength of emotional experiences [3], [7].

Thus, researchers have recently started using annotation
tools that allow for continuous reporting. Most of these
tools are based on the 2-dimensional circumplex model of
emotion by Russell [8], wherein emotional labels (e.g., fear,
joy, etc.) are represented in continuous dimensions of valence
and arousal. Common 1D and 2D tools include, CMS [9],
GTrace [10], CARMA [11], and FEELtrace [12], EMujoy [4],
DARMA [13], respectively. In-spite the abundance of avail-
able tools, several challenges remain. First, there are inher-
ent cognitive and physical loads associated with continu-
ous annotation [14], [15], [16]. This problem is especially
evident when using mouse-based tools, where the user has
to continuously press a button during annotation [16], [17].
Second, although simultaneous annotation of valence and
arousal in a 2D space would allow for a more comprehen-
sive reporting of emotional experience [4], [13], [18]; it is
often not pursued, either due to the lack of tools or due
to concerns regarding cognitive overloading. To address
these shortcomings, two approaches have come to fore: (i)
researchers have gradually started using joysticks, which
have been reported to more intuitive to use than mouse-
based tools [4], [13], [15], [17], [19]; and (ii) 2D tools that
allow for simultaneous acquisition of valence and arousal
ratings have become increasingly prevalent [4], [13]], [14],
[20]. However, approaches that combine both these desired
aspects are still in their nascency; as most current joystick-
based implementations acquire only 1D (valence/arousal)
from each user [9]], [15], [21] and most simultaneous acquisi-
tion approaches have used mouse-based tools [4], [14], [18].

To this end, in this work we describe, test and assess
a new joystick-based annotation framework aimed at con-
tinuous and simultaneous annotation of dynamic stimuli.
While the setup and purpose of our framework (first in-
troduced in 2014 [22]) are similar to those of the recently
published DARMA [13]; our framework is, to the best of
our knowledge, one of the first implementations focussed
on realising the aforementioned aims. The use of a joystick
is central to our framework as most joysticks incorporate a
return spring and hence automatically realign to the center
under no force. Thus, in comparison to mouse-based setups,
the user is consciously aware of the joystick’s position in
the User-Interface (UI) without continuously looking at it.
This property makes joystick-based setups more intuitive to
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use, in turn also reducing the cognitive load associated with
the annotation procedure. Secondly, the 2D setup of our
framework allows users to provide a more comprehensive
description of their emotional experience than is possible by
annotating each dimension separately [3], [8], [13].

The rest of the paper is organised as follows. Section
introduces the setup, the usability questionnaire, and the
psychophysical experiment that was undertaken to acquire
annotations using this framework. The usability analysis is
presented in Section [3J] where the results on simplicity,
intuitiveness and usability of the system are highly positive,
thus validating the setup of this framework. Since, annota-
tion frameworks are used both in psychology and affective
computing research [13], [15], the analysis presented here
aims to address common challenges faced in both these
domains. In Sections [3.2] and multivariate statistical
and sequence analysis are presented that assess the con-
sistency in mean and continuous rating patterns, respec-
tively. A robust regression based approach for combining
multiple subjective Continuous Annotations (CA) into a
single representative CA is also presented in Section
Then, in Section 3.4] a novel approach for automatically
determining emotionally salient events in the stimuli, by
undertaking Change Point Analysis (CPA) on the annotations,
is presented. Following on, in Section a standard clas-
sification method is trained on the change-points detected
in the annotations to investigate the coherence of change-
points across different subjects. Through the usability- and
the data-analyses presented in this work, we postulate: (i)
that our joystick based framework is a viable alternative
to commonly used computer-mouse based systems; and
(ii) that the analysis methodology presented here makes
relevant contributions to the field of CA data analysis.

2 METHODS

An experiment involving thirty volunteers (15 males, age
28.61+4.8 years and 15 females, age 25.743.1 years; range
of age 22-37 years) who watched a series of 8 videos
and simultaneously self-reported their affect state using the
joystick-based annotation framework was designed. The 4
target emotions that the selected videos were expected to
elicit are: amusement, boredom, relaxation, and scaredness.
Thus, for every emotion, 2 videos were used.

To evoke the intended emotional response using videos,
first their emotional content/label needs to be determined.
To this end, an initial pool of 20 videos was drawn from
several commonly used pre-labelled video-sets [23], [24],
[25] and other sources. Through an internal review and
evaluation, 8 videos were subsequently shortlisted for the
experiment (see Table [I). To avoid carry-over effects in the
experiment, a unique ordering of these 8 videos for each
participant was pseudo-randomly generated, such that no
two videos of the same emotion type followed each other
in a sequence. The ordered videos were then interleaved by
2’-long blue screens which were not annotated by the par-
ticipants, thus allowing them to rest during the experiment.

The annotation framework was developed using the
data acquisition and graphical programming software Lab-
VIEW [26]. Thus, this implementation also enables easy ac-
quisition and synchronizing of sensor data (e.g., ECG, GSR
etc.) with the annotations. The open-source VLC media player
was used for video playback. Since, a large 42" flat-panel TV
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TABLE 1: Details and intended valence/arousal attributes
of each video in the experiment.

Label Intended attributes Dur.

valence arousal [s]

Title (year of release) Genre

amusing-1 ~ Hangover (2009) comedy mid/high ~ mid/high 185
amusing-2  When Harry met Sally (1989)  romantic comedy ~ mid/high  mid/high 173
boring-1 Europe travel advisory (2013)  monologue low low 119
boring-2 Japanese tea ceremony (2012)  monologue low low 160
relaxed-1 Pristine beach (2011) nature docu. mid/high low 145
relaxed-2 Zambezi river (2011) nature docu. mid/high low 147
scary-1 Shutter (2004) horror low high 197
scary-2 Mama (2008) horror low high 144

Blue screen (transition) 120

was used in the experiment, the annotation Ul was superim-
posed in the upper-right corner of the video playback win-
dow (see Figure [I); however, other configurations are also
possible. The valence (horizontal) and arousal (vertical) axes
of the UI also included Self-Assessment-Manikins (SAM)
that serve as visual guides to the participant for determining
her valence-arousal levels [27]. The instantaneous position
of the joystick in the Ul is denoted by a red pointer (see
Figure [I). The joystick was sampled at 20 Hz, which is in
line with recent research on human motor control [28].

The experiment was approved by the DLR Ethics Com-
mittee. Before the experiment, each participant was pro-
vided a thorough written and oral description of the ex-
periment, and was asked to sign an informed consent form.
The participant then sat in a chair, with her hands resting
comfortably on tables at either sides, and operated the
joystick with her dominant hand. The chair was set at a
comfortable viewing position from a TV screen fixed on the
wall. The room was silent and darkened for an enhanced
viewing experience. High quality headphones were pro-
vided to ensure the best sound effects. Before starting the
experiment, the participant was instructed to relax, watch
the videos, and indicate her perceived affective experience
by appropriately positioning the red pointer on the inter-
face. The participant was instructed to rate her “feeling
while watching the video, and not the emotional content
of the video”. Moreover, she was told to move the joystick
only when her feeling changed. To help the participant in
habituating to the annotation procedure and framework,
she practised on 5 videos that elicited distinct emotions.
Also, any questions regarding annotation were addressed.
After this, the actual experiment, containing the 8 videos
and spanning approximately 40 minutes, was started.

At the end of the experiment, the participant was asked
to provide feedback on the interface’s usability, by answer-
ing the System Usability Scale (SUS) questionnaire [29].
As the standard SUS questionnaire can cause confusion
among the respondents [29]], an all-positive version of the
questionnaire was used (see Table[). The questionnaire also
had a field for providing general comments on the system.

3 RESULTS
3.1 Usability

The ‘all-positive” SUS is a Likert scale based questionnaire
where the responses are in the integer range of 1 — 5 (i.e.,
from strongly disagree to strongly agree [29]). The SUS ques-
tions, and the mean and standard deviation of the responses
from all participants, are shown in Table[2] All responses are
more than ‘neutral’ (i.e. response value of 3), especially for
questions on simplicity (q.2) and intuitiveness (q.8) of the
system. The SUS score per participant is calculated by first,
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Fig. 1: The annotation Ul embedded in a video.

scaling the responses to range 0 — 4, and then multiplying
the sum of the scaled responses to all questions by 2.5. The
resulting score thus lies in a range of 0 — 100. The mean of
all per participant scores gives the average SUS score (i.e.,
80.17+9.95) for the annotation system.

TABLE 2: The System Usability Scale (SUS) questions and
the average responses.

Question Response
I think that I would like to use this system frequently. 3.53+0.97
I found the system to be simple. 4.47+0.57
I thought the system was easy to use. 4.10£0.80
1 think that I could use this system without the support of a technical person. 4.23+0.86
I found the various functions in this system were well integrated. 4.27+0.70
I thought there was a lot of consistency in this system. 4.50+0.73
I would imagine that most people would learn to use this system very quickly. ~ 4.37+0.85
1 found the system very intuitive. 4.30+£0.75
I felt very confident using the system. 4.00+1.05
I could use the system without having to learn anything new. 4.30+0.84

Discussion. The responses to the individual questions
on the questionnaire (see Table[Z) show that the participants
generally ‘agree’ to all questions. Also, the average SUS
score of the system (80.17) is considered as an ‘excellent’
score for system usability [29]. These results indicate that
the participants had positive experience while annotating
and found it to be simple, consistent and intuitive. Several
participants informally reported that the joystick, adds an
element of “gamification” (i.e., excitement) to the annotation
procedure, and that they would prefer it to a computer-
mouse due to its ergonomic properties.

3.2 Consistency of Mean Valence-Arousal Ratings

The mean valence-arousal (V-A) ratings, by each participant
for each of the 8 videos, are shown as scatter plots in Figure
(left). In these plots, a clear trend is visible — the ratings
pertaining to 2 videos of the same emotion type tend to clus-
ter in the same regions of the Ul For example, scary-1 and
scary-2 videos tend to be in the upper-left quadrant. Also,
videos pertaining to different emotion type (e.g., amusing
and boring) tend to cluster in different regions of the UL

To formally test the differences among the rating pat-
terns, the mean ratings were analysed using Multivari-
ate Repeated-Measures ANOVA (aka RM MANOVA) for
which the videos were the within-subjects factor and the
mean V-A ratings were the dependent variables (DVs). The
main effect of videos on the ratings was highly signifi-
cant (F'(14,406) = 40.9; p < .001; Pillia’s trace = 1.17;

3

7712, = .58). Subsequently, two univariate RM-ANOVAs to
individually test the effect of the within-subjects factor on
valence and arousal ratings were performed. Since the data
lacked sphericity, Greenhouse-Geisser estimates (¢ = .59
for valence and ¢ = .56 for arousal, respectively) were
used to adjust the degrees of freedom for the univari-
ate RM-ANOVAs (the corrected degrees of freedom are:
df = e(k — 1) and dferror = €(k — 1)(n — 1)). The RM
ANOVAs using Greenhouse-Geisser estimates for valence
(F(4.13,119.89) = 34.63; p < .001; 7712, = .54) and arousal
(F(4.09,118.68) = 88.34; p < .001; 12 = .75) were also
highly significant (p < .001). Thus, the MANOVA and the
ANOVAs establish that rating patterns differ across 8 videos
in the experiment. To precisely determine which ratings
were differing/similar from each other, post-hoc Bonferroni
pairwise comparisons of the V-A ratings were performed.
The results of these comparisons are presented in form of
symmetric matrix plots in Figure 2l (center and right).

Discussion. For the video stimuli, the mean ratings
should ideally emulate the expected V-A attributes listed in
Table[Tl To this end, the plots in Figure Rlshow that this was
generally the case. In particular, they show that the video
ratings tend to form clusters together that are distinct from
ratings for other video-types, thus exhibiting agreement in
the subjective ratings. They also show that in most cases
the experimental manipulation of the participants” emotion
state was successful in a supposed manner. However, in
some cases, as is often reported in literature [2], [3], it was
not the case. For example, videos of same emotion type are
expected to have same V-A attributes — this is not valid for
relaxed videos, as the arousal ratings here are statistically
significantly different from each other. Similarly, videos
pertaining to different emotions should have different V-A
attributes i.e., the valence/arousal can be alike, but both the
attributes shouldn’t be similar. However, for amusing-2 and
relaxed-2, and boring-2 and relaxed-1, this was not the case.
The V-A ratings were here not significantly different from
each other. We believe, that this unexpected divergence of
ratings can be ascribed to misestimation of V-A attributes,
rather than to errors in the annotation process.

Though this analysis provides insights into the consis-
tency of ratings, it is however limited, as it doesn’t account
for the continuous nature of annotations. This topic is fur-
ther investigated in the next subsection (see B.3).

3.3 Consistency of Continuous V-A Ratings

In this subsection, sequence dissimilarity (hereafter referred
to as ‘distance’) analysis is used as the continuous analogous
to mean ratings analysis presented in the last subsection
(see B2). To this end, first the high-frequency artifacts in
the annotations were removed using a 1-D Savitzky-Golay
filter with a time window of 1s and a polynomial of degree
3. Then, the 30 subjective annotation trajectories for each
video are combined into their respective Characteristic Tra-
jectory (CT). Combining multiple annotations is a common
challenge in the field of CA analysis [17]. Approaches to
this problem range from the trivial, where the simple point-
by-point mean [12]/median [20] is calculated, to the fairly
sophisticated, where inter-annotator and reaction delays are
also addressed to obtain ground truth for audiovisual fea-
tures [15], [19], [30]. Therefore for analysing of consistency
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Scatterplot of mean ratings for different videos
amusing 2

amusing 1

Arousal

$ 244
Valence

Signifcance Leves: [Nt Sgcan{T]sntcanBligny Sicant

signifcance Leves: [t igtcan{T]sincanl gy Sencant

Fig. 2: Scatter plot with data ellipses for each video (left). Pairwise comparisons of the average valence (center) and arousal
(right) ratings across videos, with colors depicting different significance levels (p > .05, not significant; .001 < p < .05,

significant; p < .001, highly significant).

in annotations acquired from our framework, an interme-
diate approach we used. This approach, specifically Robust
Local Polynomial Regression (RLPR), does not address de-
lays, but is robust against highly diverging annotations that
unduly influence the shape of resulting CT [31]. In RLPR,
first a linear regression model is fit to the data to calculate
its residuals €; [31]]. The ‘robust’ weights r; for RLPR are
then calculated applying Tukey’s bi-weight function B to

these residuals: )
€

r; = Bl — , 1

' (6(]0.5) @

where o5 is the median of |¢;|. This approach makes
RPLR more robust to outliers than weighted least squares
regression [31]]. For calculating CTs, RLPR with a 2nd degree
polynomial and a span of 3 seconds was used. The resulting
CTs are shown in Figure 3] where, as expected, they span
the same quadrants as their mean ratings.

Videos

i H & 7 8 s
Valence

Fig. 3: Characteristic trajectories for each video.

Grid-based discretisation, with a grid resolution based
on the UI design (9x9 tiles), was then used to convert the 2D
CTs to 1D discrete sequences. The motivation for the same
was that sequence analysis methods can detect similar, but
not necessarily concurrent [32], patterns in the sequences.
Thus, common patterns between CTs, irrespective of their
position in a given CT, can be identified and used to de-
termine the distances between the videos. To quantify these
distances, we defined two metrics: the Unique States (dys)
and Longest Common Sub-Sequence (drcss) distance [33].

A unique sequence S is determined by extracting only
the distinct elements of any given sequence S. Thus, S

contains all the unique tiles (see Figure [3) that a trajectory
traversed. The dys between any two unique sequences
(S1, S2) is then calculated as:
G C(51, S
dus($i,8) =1 - CEL5) @)
|151] 52|

where |S;| is the length (ie., total no. of elements) of
the unique-states sequence S; and C(S51, SQN) is nuglber of
common elements in the unique sequences S; and S5.

Unlike dys, drcss is calculated over the complete
length of the sequences. The LCSS for any two sequences
(S, S2) is a sequence (S{%°%) containing all elements that
occur in the same order, but are not necessarily contigu-
ous [33]]. The d;,css between Sy, S, is calculated as:

L(51,52)
VISt][S2]’

where L(S1,52), |S1] and |S2| are the lengths of SL9, S,
and Sy , respectively. The resulting pairwise distances dys,
drcss for all sequences are shown in form of symmetric
matrix plots in Figures Hland 5 respectively.

drcss(S1,92) =1— 3)

amusing 1amusing 2 boring 1 boring 2 rolaved 1 relaxed 2 scary 1 scary 2
Videos.

amusing 1amusing 2 boring 1 boring 2 relared 1 relaxed 2 scary 1 scary 2
Videos.

Distance

Distance
[3 000 025 050 075

0 02 04 0s 08

Fig. 4: Distance Matrix plot
for dUS.

Fig. 5: Distance Matrix plot
for d LCSS-

Discussion. As previously mentioned in the discussion
of Section the videos’ ratings are deemed to be con-
sistent if they emulate the expected V-A attributes listed
in Table[Il Thus, ratings of videos from the same/different
emotion label should be accordingly close/aside from each
other. As can be observed in Figures and B the aforemen-
tioned conditions are generally valid in most cases, barring
a few exceptions.

An interesting dy g result is that besides being similar to
each other, the amusing sequences are also relatively close to
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the relaxed-2 sequence (dys(amusing-1, relaxed-2) = 0.37,
dy s (amusing-2, relaxed-2) = 0.42). Similarly, based on their
drcss distance, amusing-2 and relaxed-2 (drcss = 0.27)
are most similar to each other. A similar result was observed
in Section[3.2] where V-A ratings for amusing-2 and relaxed-
2 were not significantly different. The d;css between any
two given sequences is generally greater than their cor-
responding dys distance. This can be attributed to the
fact that unlike dy g, dpcss distances also account for the
temporal ordering of the elements/states in the sequences.
Thus, for example, dr.css = 0.73 and dys = 0.12 for the
scary videos. The difference in temporal ordering of events
in scary videos is also evident from Figure B] where the
”swirls” in CT of scary-1 show that the tension builds and
drops several times, and for scary-2 video the tension grad-
ually build-ups throughout the video. By accounting for the
time-varying nature of emotion annotations, this analysis
augments the ratings’ consistency analysis presented in
Section 3.2

3.4 Change-Point Analysis (CPA)

As the emotional content in a dynamic stimulus (e.g., video)
varies, we anticipate that the CA pertaining to that stimulus,
also change in tandem. Thus, major change-points in CA
would signify emotionally relevant moments/points that
can be used to identify and isolate emotionally salient seg-
ments in the stimuli [17]. Based on this premise, CPA (i.e., a
method that detects distributional shifts in time series [34])
was used to determine the change-points in the valence and
arousal time-series from the CT of the stimuli.

To undertake CPA, the non-parametric E-Divisive with
Medians (EDM) [35] algorithm was used. The EDM identifies
change-points by detecting divergence in the mean of a
time-series, but can also detect changes in distribution [35].
Given a time series, Z1,Z>,...,Z,, a change-point T is
the point that splits the time series into two segments:
XT = {Zl, 227 ey ZT} and YT(IQ) = {ZT+17 Z7'+27 ey ZK}
Subject to the conditions 1 < § < 7and 7+ § < k < n, the
estimated change-point location, 7, is calculated as:

(7, k) = argmax Q(X-, Y (k); a, ), )

T,K

where « is the indexing parameter used to scale the distance
between the distributions and § is the reduced number
of observations taken from head and tail of distributions
for X and Y, respectively [35]. Also, Q(X,,Y;(k);a,0)
is the scaled sample divergence measure that serves as
the test statistic for permutation tests (presented later in
this Section). The statistic Q(X,,Y;(k);,§) is based on
robust sample divergence measure, £(X., Y- (k);,0), and
is calculated as:
~ TK ~

(X, Y (K);a, ) = E(X, Y (k);,0).  (B)

T+ K

The measure &(X,, Y, (k); a, 0 ) is robust against anomalies
as it is calculated using medians instead of sample means:

E(Xn, Yim; a, 8) = 2m%y — m¥%% —m$y,  (6)

5

a,6 a,0 a,d s
where my’y, and my’y, and m'yy- are the within-sample and

between-sample distances, respectively. These are calculated
as follows:

a,d

mysy = median{|z; —z;|*:1<i<j<¢§ or i+1=j},
m%’f, median{|z; —y;|*:n—-5+1<i<n,1<j<d6}.
7)

While large values of the test statistic Q(XT7 Y:(k); @, 0)
correspond to a significant change in distribution [35], we
wish to precisely determine the statistical significance of
the estimated change-point 7. For this, knowledge of the
underlying distribution is required, but is not available in
this scenario. Therefore, the significance of 7 is determined
through permutation tests. Under the null hypothesis that
a change-point does not exist, the permutation test is per-
formed as follows: First, the observations in the time-series
are permuted to obtain a new time-series. Then, a new
change-point is estimated from the permuted time-series by
applying the aforementioned estimation procedure. After R
random permutations, the corresponding test statistic o)
is used to calculate the approximate p-value as follows:
p = #{r: Q" > Q}/(R + 1). For the EDM algorithm,
R = 199 and the significance level of 0.05 is used to
determine the significance of the change-point.

The procedure above determines the location estimate
and statistical significance of a single change-point. This
procedure can be iteratively applied to determine multiple
change-points (refer [34]), as was done in our case.

TABLE 3: Change-points for each video.

Valence Arousal
Video CPs range CPs range
amusing-1 3 1.96 4 0.92
amusing-2 1 2.47 2 0.56
boring-1 5 0.36 2 1.55
boring-2 11 0.12 2 1.02
relaxed-1 3 1.16 1 1.56
relaxed-2 4 1.00 4 0.58
scary-1 3 2.54 4 3.58
scary-2 1 2.92 2 3.30

Table Bl lists the number of resulting change-points and
the range, for the characteristic V-A time-series (deduced
from CTs). As is evident, these values vary across videos.
A qualitative analysis of the detected change-points reveals
that they can be almost exactly mapped to emotional events
in the videos. For example, Figure [6] shows the change-
points for scary-1 (numbered and marked with a green
vertical line in the Figure) and the segments created by
these change-points (shaded pink/blue in the Figure). A
manual evaluation of correspondence between the change-
points (CP) and the emotional content of the scary-1 video
reveals:

o arousal CP#1 at 47secs: gradual rise in arousal; the pro-
tagonist starts to realise that something is wrong.

o valence CP#1 at 57s: drop in valence; the ghost appears
for the first time.

o valence CP#2, arousal CP#2 at 89s: drop in arousal, rise
in valence; the ghost disappears from the frame.

o valence CP#3, arousal CP#3 at 116s: rise in arousal, drop
in valence; the ghost unexpectedly re-appears.

o arousal CP#4 at 122s: gradual drop in arousal; the pro-
tagonist has successfully avoided the ghost.
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Segments A and B in the scary-1 time-series highlight the
emotionally salient sectors for this video. Segment A is char-
acterised by a drop in valence and an increase in arousal,
while segment B is characterised by an opposite change in
V-A levels.

Segment-A Segment-B

Valence

b0
Time(s)

Segment-A Segment-8

Timels)

Fig. 6: Time-series (top: valence, bottom: arousal) with
change-points and segments for Scary-1.

Discussion. From Table [3 it is evident that the number
of change-points for any given video is usually not the
same for valence and arousal time-series. This is expected,
as the variance in V-A time-series is not the same for most
videos. Also, the number of detected change-points is not
directly proportional to the range of the time-series.For
example, the range in valence for boring-2 is relatively
small in comparison to scary-2, yet the number of change-
points detected is significantly higher than for scary-2. With
11 change-points in valence, the results for boring-2 do
not directly correspond to emotional events in the video,
as slight changes in the time-series are also accounted as
change-points. However, for videos with relatively large
range in time-series, the change-points generally correspond
to emotional events (e.g., amusing-1, scary-1&2, etc.). This
pattern is evident in the qualitative analysis of scary-1 video,
where 3 change-points (1, 2, 3 for both valence and arousal
time-series) temporally correspond to each other and also
map to events in the video.

3.5 Classification of Ratings

Lastly, in order to assess the usability of CA as ground
truth given the visual stimuli (i.e., the videos), we tried to
classify features extracted from CA itself, according to the
emotional content of each video, irrespective of the subjects.
This approach is based on the premise, that reasonably low
classification error rates indicate coherence and replicability
in the participants” annotation behaviour. For this analysis,
first all CA were segmented into non-overlapping chumnks of
5 seconds each and the mean V-A values for each chunk
were extracted. Then, these chunks were labelled according
to the emotional label for the given video. For example,
amusing-1&2 were labelled as amusing. Lastly, these chunks
were split into training and test sets. The training set con-
sisted of labelled data from 25 randomly chosen participants
(i-e., 6275 chunks) and the test set consisted of the data from
the remaining 5 participants (i.e., 2874 chunks).

An initial visual analysis of the distribution of the chunks
in the V-A plane revealed that the problem was highly
non-linearly-separable. Hence, a Support Vector Machine
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Classifier (SVC), with a Radial Basis Function (RBF) kernel,
was used for classification [36]. SVCs are often used in
the machine learning community because of their efficacy
in addressing non-linearly-separable problems. The optimal
hyper parameters of the SVC (C and ) were found via grid
search [36], within ranges of v = 1022 and C = 10°+2,
and in steps of 0.25. The resulting optimal model (with
C = 3.16 and v = 0.56) had 4473 support vectors, evenly
distributed among the four classes (from 956 for scary
to 1264 for relaxed videos). Most of the support vectors
were concentrated around the center of the V-A plane i.e.,
the return point induced by the spring-based joystick. The
overall classification rate obtained was 51.76% (see Table[d).

As a further, more refined investigation, we then iden-
tified chunks which corresponded to emotionally salient
change-points (see 3.4). First, we used CPA [34] to identify
such change-point chunks, which resulted in 871 and 167
chunks for the training and test sets, respectively. Then,
another SVC was trained and tested. The optimal model
(with C = 56.23 and ~ = 1.78) had 718 support vectors and
the classification rate obtained by this model was 60.22%
(see Table[).

TABLE 4: Classification rates [%] per emotional video type,
for all-chunks and change-point chunks.

Amusing Boring Relaxed
74.65 32.36 13.45
80.77 38.46 30.00

Scary  Overall
86.57 51.76
91.67 60.22

All-chunks
CP chunks

Discussion. Table 4 shows that even though the overall
classification rates are above the 25% chance level, they
are still far from the optimal value. The high concentration
of support vectors around the center of the Ul makes the
classification problem particularly hard. The single-class
classification rates vary, with correct classification of chunks
for amusing and scary videos being easier than that for
chunks of boring and relaxed videos. This result can be
attributed to the similarity in both, the V-A attributes (see
Table [[) and the participants’ annotations (see Sections
and B.3), of boring and relaxed states. The table also shows
that classification rates for change-point chunks are always
better than their corresponding all-chunks rates. The reason
for the same being that unlike the all-chunks scenario, most
change-point classification support vectors are not located
around the center of the Ul Even though the overall clas-
sification rates range from 50%—60%, the high classification
rates for amusing and scary videos indicate the existence of
cohesive ratting patterns among the participants.

4 CONCLUSION

Emotional memory is short-termed [2]; thus, it is highly
desirable that the human participants report/annotate their
affect state as soon as possible, ideally continuously and
while the emotional stimuli are presented. However, this
annotation exercise must be as unobtrusive as possible, such
that it doesn’t influence the emotions of the participant
annotating her emotional experience.

The joystick-based annotation framework presented in
this work goes in this direction. The use of a joystick is
especially advantageous as: (i) it allows for continuous and
simultaneous acquisition of V-A annotations, (ii) it helps
mitigate the cognitive load of the annotation procedure by
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providing proprioceptive feedback to the annotator; and (iii)
joysticks are generally more ergonomic than computer mice.
Also, unlike other commonly used computer-mouse based
frameworks, the annotator does not need to continuously
press any buttons in our setup. Thus, it seems reasonable
to claim that joystick-based CA framework offers clear
advantages over mouse-based approaches. But, to explic-
itly address this question, a comparative study between
joystick- and mouse-based approaches needs to be under-
taken. Secondly, a comparative study between consequent
(V-A individually) and simultaneous (V-A together) anno-
tation strategies should also be undertaken. Nevertheless,
given that the framework was generally well received (see
Section BJ) and that we received no negative comments
on simultaneous V-A annotation, we can conclude that
our framework is a viable alternative to other approaches
mentioned in Section ]

But, are these emotional experiences consistent with the
intended V-A attributes of the stimuli? And if so, can the
CA be used to detect the differences in emotional expe-
riences evoked by these stimuli? The results presented in
Sections [3.2] and 3.3 provide an affirmative answer to these
questions. Particularly, the analyses of mean (see Figure [2)
and continuous (see Figures @l & B) V-A ratings shows that
the annotations are mostly consistent with the intended V-A
attributes of the stimuli. Section[3.3also presents a robust re-
gression based approach for determining CTs from multiple
subjective annotation trajectories. While this approach does
not addresses the problem of inter-annotator and reaction
delay, it is nonetheless useful in preventing highly diverging
trajectories from unduly influencing the shape of CT.

Similarly, given their continuous nature, can CA be used
to discern when important events occur in the stimuli?
To address this question, we undertook CPA (see Section
B.4) on the CTs. Through this analysis, we showed that in
certain cases, the change-points detected in CTs directly map
onto the most salient moments in the video. For example,
the change-points in scary-1’s CT correspond to the most
scariest moments in that video. Thus, through CPA on CA,
emotionally salient events in the stimuli can be automati-
cally identified and extracted for further analyses.

Lastly, to determine cohesiveness and replicability in
participants’ rating patterns, we used a SVC to classify
the annotation and change-point chunks (see Section [3.5).
Where, correct classification for scary and amusing stimuli
was easier than for boring and relaxing stimuli. Thus, it was
easier to discern cohesiveness and replicability in emotional
experiences, where the participants reacted in line with
intended V-A attributes of the stimuli. Nevertheless, the
results here indicate that for a given stimuli the participants
generally react in the same manner.

The presented approach indeed has some drawbacks.
For example, the — albeit small — cognitive load im-
posed on the participants while annotating. Moreover, it has
emerged during this study that the video stimuli must be
carefully selected in order to elicit the desired affect state.
Particularly, we noticed that the annotations for amusing-
2 video from several participants had unexpectedly large
sections in the negative valence quadrants i.e., it was rated
as not so pleasant. Given its ironical sexual content, this
we speculate, is the reason for the unexpected result. The
future work should also investigate inter-annotator and
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reaction delays. CPA is a promising method for detecting
salient events from CA and could also possibly be used for
addressing delays in annotations.

Nonetheless, given the simplicity and high acceptance
of the proposed framework, and the statistically coherent
results obtained while using it, we plan to use it for several
experimental /practical applications. For example, the anno-
tations acquired from this framework can be used for the de-
velopment and calibration of emotion detection systems that
use, for example, physiological signals to predict a human’s
affect state. These systems can then be used in a multitude
of scenarios (e.g., in cooperative robotics environments). We
also plan to further develop the annotation framework and
make it publicly available.
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