

Only have minute? Then just look at the **bold text**, the figures, the table and the conclusion

Atmospheric Composition Retrieval from Transit Spectra of Terrestrial Exoplanets: A Feasibility Study using Earth Observations S. Städt¹, F. Schreier¹ and Mareike Godolt²

1 - DLR – German Aerospace Center, Remote Sensing Technology Institute, Oberpfaffenhofen, Germany

2 - Center for Astronomy and Astrophysics, University of Technology Berlin, Germany

Introduction

- around 3500 confirmed exoplanets including super Earths
- demand for atmospheric retrievals is rising
- current space missions & telescopes do not have a high resolution and/or the signal/noise ratio is too bad

Main question: Which molecules are detectable in the atmosphere and what is their concentration?

Retrieval

• Forward Model: Generic Atmospheric Radiation Line-By-Line Infrared Code (GARLIC)[3]

Figure 1: Low resolution, noised global spectrum

Data

- Combination of MINPACK[2] python version and GAR-LIC
- Solve nonlinear inverse problem: $\min \|\mathbf{y} \mathbf{F}(\mathbf{x})\|^2$ with ${\bf y}$ as observed spectrum and ${\bf F}({\bf x})$ as simulated spectrum
- Nonlinear Least-squares solver: Levenberg-Marquardt to find best molecular scaling factors

Results

- The optimized spectrum has roughly the same course as the observed spectrum
- The more relevant molecules are included, the lower is the residual norm
- High values of the CFCs are retrieved

Figure 3: Optimized spectrum with retrieved parameters vs. observed spectrum

• Effective height of limb sounding spectra from Earth

Effective height $h(\nu) = \int_{0}^{\infty} (1 - \mathcal{T}(\nu, h_t)) dh_t$

- High resolution spectra are convoluted and noised to simulate the bad quality of an exoplanet spectrum
- Molecular information from HITRAN database[1]

Figure 2: The residual norm in dependency of the number of absorbing molecules with different resolutions.

Molecule	Value	Error
CO2	1.60802	
CCl2F2	4.12623	0.18
CC13F	3.01171	0.443
HNO3	1.85666	0.0812
H2O	1.35896	0.0242
CH4	1.93031	0.0456
N2O	2.85799	
O3	1.10118	0.0171
NO2	0.76425	0.0744

Conclusion

The results show that, the atmospheric retrieval is possible, but

- We do not know which molecules are detectable in the atmosphere of an exoplanet, we only made guesses due to our *a priori* knowledge
- It strongly depends on the S/N ratio and spectral resolution

References

Table 1: Retrieved scaling factors

- [1] L.S. Rothman et. al. The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130(Supplement C):4 50, 2013. ISSN 0022-4073. doi: https://doi.org/10.1016/j.jqsrt.2013.07.002. HITRAN2012 special issue.
- [2] J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow. The MINPACK Project, in Sources and Development of Mathematical Software. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.
- [3] F. Schreier et al. GARLIC a general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation. Journal of Quantitative Spectroscopy and Radiative Transfer, 137:29 – 50, 2014. doi: http://dx.doi.org/10.1016/j.jqsrt.2013.11.018.

Institut Methodik der Fernerkundung DLR Oberpfaffenhofen D-82234 Wessling Internet: www.dlr.de/eoc