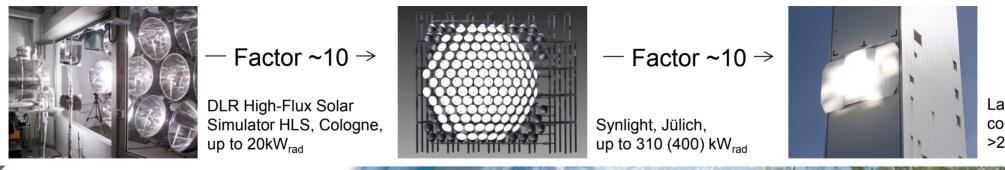
Synlight A New Facility for Large-Scale Testing in CSP and Solar Chemistry

Kai Wieghardt, Dmitrij Laaber, Volkmar Dohmen, Patrick Hilger, Daniel Korber, Karl-Heinz Funken, Bernhard Hoffschmidt

Wissen für Morgen

23rd SolarPACES Conference September 26-29, 2017 Santiago de Chile

Synlight Large-Scale High-Flux Solar Simulator (HFSS)


Purpose:

Generation of precisely adjustable and consistent sunlight in a new magnitude for research and industry

Application: Testing and qualification of

- Solar thermochemical reactors and processes
- CSP receivers and components
- Components exposed to high solar / UV radiation (UV-ageing, desert conditions, aerospace components)
- Applications with extremely high temperatures, e.g. from material sciences

Bridging solar laboratory scale with large demo and commercial plants for **faster technology developments** and a **reduction of scaling risks**

Large demonstrators and commercial applications >2000kW_{rad}

synl'ght

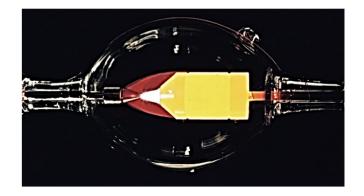
DLR

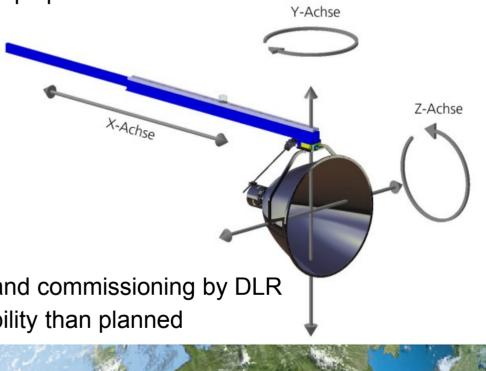
Synlight Technology and Project

Benefit from long-term experience in HFSS design and operation

- Contribution to design of PSI's 50kW_{rad} HFSS (K.-H. Funken, 2003/04)
- Design and successful operation of own 20kW_{rad} HFSS (started 2007)

Xenon lamps as light source


- Punctual light, very close to solar spectrum in visible and UV region
- Current use of 7kW_{el} lamps (lowest costs of light), up to 10kW_{el} lamps possible
- Ellipsoid-shaped reflectors with 8m focal length


Modular HFSS design

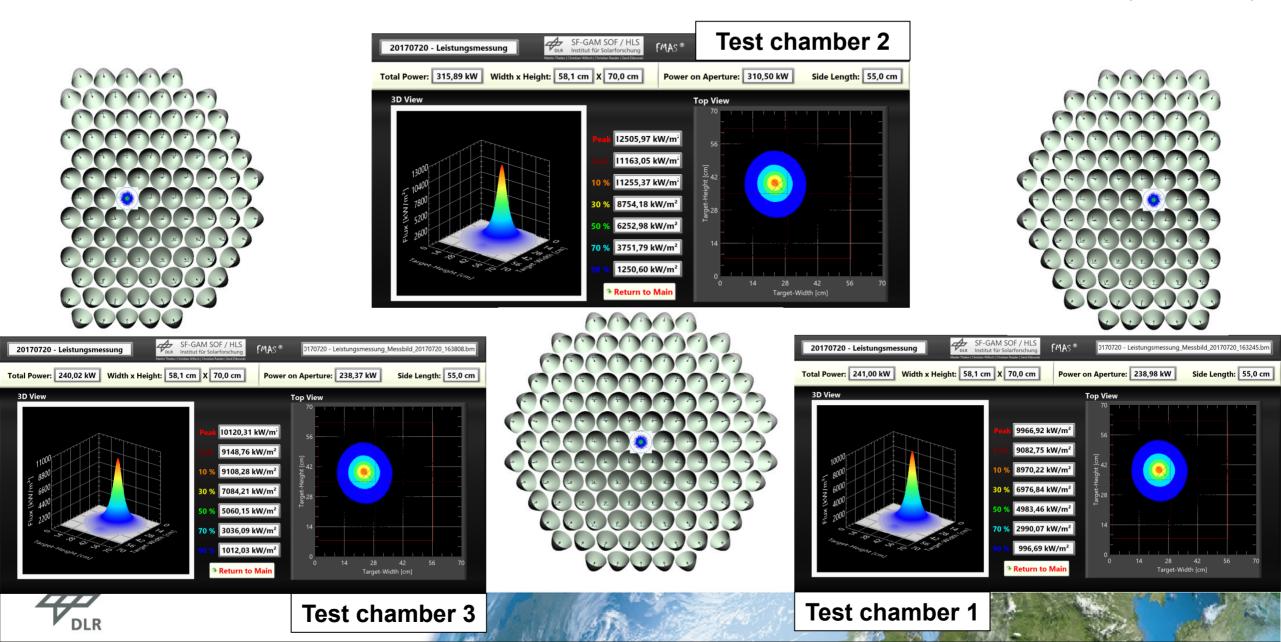
- 149 equal radiator modules in a flat honeycomb-shaped array
- Each module individually moveable in 3 axis, computer-controlled
- Module design for compact arrangement

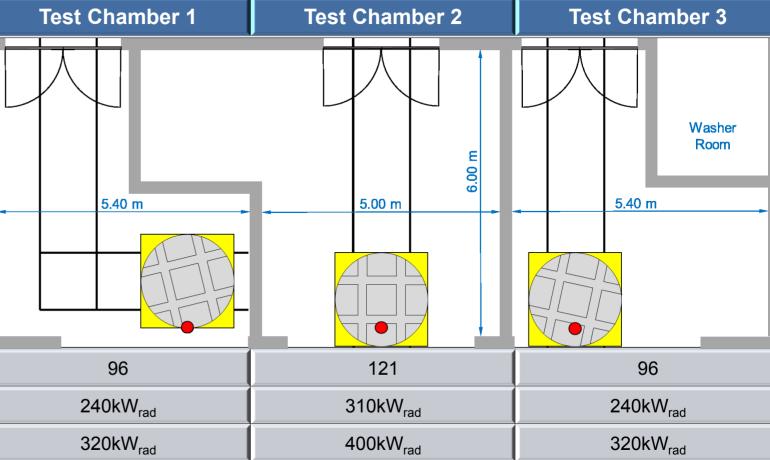
Project 2014 – 2017


- Concept, engineering, prototype testing, procurement, assembly and commissioning by DLR
- Project within time and budget. Facility with more power and flexibility than planned



Synlight Building


- Three test chambers, sharing the facility resources. Fast and computerized re-direction of the modules
- Independent operation / preparation works in the test chambers due to light & fire proof roller shutters (4m x 4m)
- Test chambers with different dimensions and equipment. All with air cooling, 400V AC power and water suppliers
- Three separate control rooms, connected by Ethernet LAN with corresponding test chambers
- Camera monitoring no humans exposed to light radiation
- Workshop for test preparation. Own machinery (milling, turning, welding, ...) in neighboring building
- Trolleys for transport and positioning of test objects
- Conference room



Validation of Radiation Powers and Peak-Fluxes in the Test Chambers (06/2017)

Technical Profile

# of Xenon lamps to be focused on reference points	96	121	96			
Max. solar radiation power with 7kW _{el} standard lamps	240kW _{rad} 310kW _{rad}		240kW _{rad}			
Expected max. radiation power with 10kW _{el} lamps	320kW _{rad}	400kW _{rad}	320kW _{rad}			
Peak flux with 7kW _{el} standard lamps	10.0MW/m ²	12.5MW/m ²	10.0MW/m ²			
Maximum aperture size of a test object	4m x 4m*					
Maximum weight of a test object	>4t*	>6t*	>4t*			
Test chamber dimension	25m² x 4.5m	38m² x 4.5m	26m² x 4.5m			
Standard equipment in each test chamber	AC power up to 400V/63A, Ethernet 1Gbit/s, ventilation air flow 5m³/s, water 100L/min					
Special equipment	Lamps w. high UV proportion Solar chemical applications w. connection to washer room					
DLR	* Test objects up to 2.5t and 2m x 2m x 2m can be transported and positioned on manually moveable trolleys					

Worldwide existing High-Flux Solar Simulators

≥10kW_{rad} point-focus. Data from latest publications and to the best of our knowledge

High-Flux Solar Simulator		Started	Solar Power [kW]	Electric Power [kW]	Lamps	Peak Flux [MW/m²]	SB Temp.** [°C]
DLR, Synlight, Jülich		2017	310 (400)* 240 (320)* 240 (320)*	149 x 7 (149 x 10)	Xe	12.5 10.0 10.0	3580 3370 3370
Paul Scherrer Institute, Villigen / Zürich		2005	50	10 x 15	Xe	11.0	3460
Niigata University, Beam-down HFSS		2013	30	19 x 7	Xe	3.2	2470
KTH Stockholm, Fresnel lens HFSS		2014	20	12 x 7	Xe	6.7	3020
CERTH, Thessaloniki		2013	20	11 x 6	Xe	4.8	2760
DLR, HLS, Cologne		2007	20	10 x 6	Xe	4.2	2660
North China Electric Power University, Beijing		2016	20	7 x 10	Xe	4.0	2630
EPFL Lausanne, LRESE	Same	2015	15	18 x 2.5	Xe	21.7	4150
Australian National Univ., Canberra	design	2015	15	18 x 2.5	Xe	9.5	3320
University of Minnesota, Minneapolis		2010	15	7 x 6.5	Xe	7.3	3100
Georgia Tech, Atlanta	Same	2011	14	7 x 6	Xe	6.8	3030
University of Florida, Gainesville	design	2011	14	7 x 6	Xe	5.0	2790
IMDEA, Móstoles / Madrid 20		2013	14	7 x 6	Xe	3.6	2550
Swinburne University, Melbourne		2015	12	7 x 6	MH	0.9	1740
University of Colorado, Boulder		2016	10	18 x 2.5	Xe	*	*

DLR

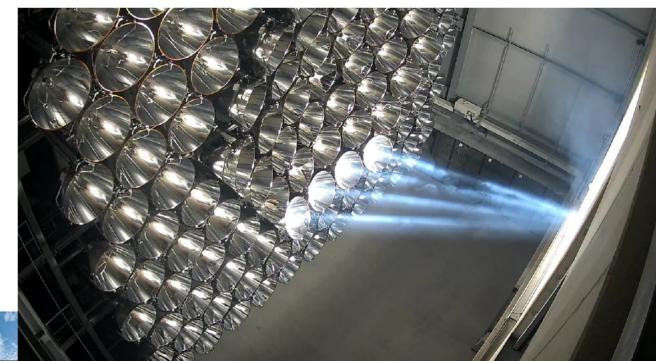
* Design values, not yet been demonstrated / published

** Max. total temperature on ideal black body acc. to Stefan-Boltzmann law

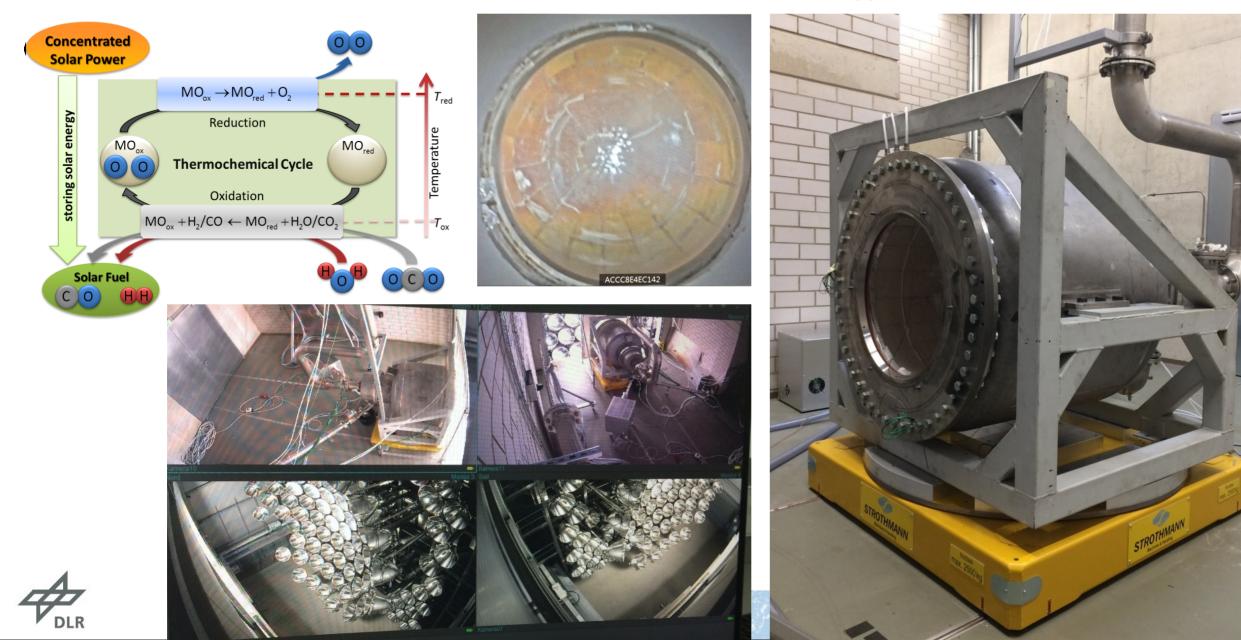
DLR.de • Slide 10 > Synlight - A New Facility for Large-Scale Testing in CSP and Solar Chemistry, SolarPACES2017 > \

Test Operation

Up to 3 independently operating test campaigns


- Each test chamber with separate control room
- Test campaigns work with allocated modules
- Exclusive data access via Ethernet LAN
- Exclusive camera views on own experiment

Fees: Chamber occupancy + module use + operator Cooperative research for first 5 years of operation



First Test Reactor for Commissioning (100 kW_{rad})

DLR

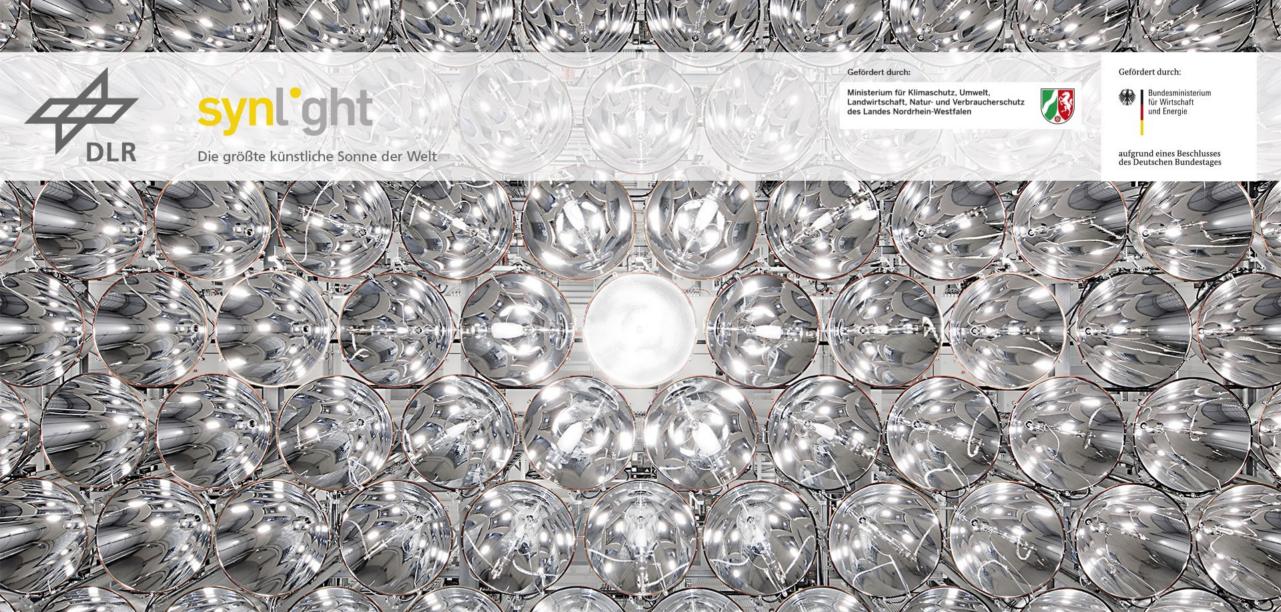
Current Application: Solar Hydrogen Reactor (250 kW_{rad})

Summary

Synlight is a unique new tool, a high-flux solar simulator of a new performance class

The facility was particularly built for solar thermochemical and CSP testing

Up to three test campaigns can run Synlight in parallel with exclusive access to own experiments and test results


Validation showed radiation powers of up to 310 kW at a peak flux of 12.5 MW/m². Upgrades will be possible with larger Xenon lamps

Synlight shall help to push solar technology developments and reduce scaling risks

The new facility is open to the entire global solar research community

