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Abstract

Dynamic behavior of complex physical systems is of-
ten nonlinear and includes multiple temporal scales.
Stnguler perturbation methods decouple the fast and
slow behavior and by assuming that the fast behavior
is at a quasi steady state, the slow behavior of the sys-
temn can be analyzed. The decoupling reduces the com-
plex system of ordinary differential equations (ODEs)
to simpler ODEs that allow fixed time step integra-
tion methods, and, therefore, are suitable for real-time
applications. This model reduction may cause discon-
tiruous jumps in the initial values of model variables.
This paper applies and extends singular perturbation
methods to compute discontinuous state changes for
piecewise continuous, hybrid, models when the model
configuration changes. Computing the explicit state
change allows the use of hybrid automata as modeling
framework when augmented with execution semantics
for state vector updates around discontinuities.

1 Introduction

The pressure to achieve optimal performance and meet
rigorous safety standards in industrial processes, air-
craft, and nuclear plauts, necessitates more detailed
modeling and analysis of these systems. Complex sys-
tems exhibit nonlinearities attributed to small parame-
ters that manifest as behaviors on very fast time scales
that complicate this task. In case of numerical simu-
lation, sophisticated algorithms vary their time step to
accomnodate multi time scale behaviors, but the vari-
able step size makes it hard to bound their runtime
computational complexity. This makes them unsuit-
able for real-time applications. As an alternative, hy-
brid inodeling methodologies represent system behavior
as piecewise continuous modes interspersed with dis-
crete transitions. This facilitates the use of fixed time
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step integration methods to numerically simulate the
contimious dynamics, whereas the fast dynamics are
replaced by instantaneous changes, allowing real-time
simulation.

The primary flight control system of aircraft (illustrated
in Fig. 1) demonstrates the paradigm for hybrid, i.e.,
mixed continuous/discrete, modeling of embedded con-
trol systems. At the lowest level in the control hier-
archy, continuous PID control moves the rudder, el-
evators, and ailerons to desired set positions. On a
higher level, digital control may mandate mode changes
at different, stages of a flight plan (e.g., take-off, cruise,
go-around) and detection of failures may lead to dis-
crete changes in system configuration. Furthermore,
abstracting fast, nonlinear transients may produce dis-
continuous variable changes.

Figure 1: Primary aerodynamic control surfaces.

The singuler perturbation approach [4] abstracts de-
tailed continuous behavior represented as a system
of complex nonlinear ordinary differential equations,
cODE, into piecewise simpler sODEs. Our goal is to
extend and generalize this approach to apply to hybrid
systems that include one or a number of, possibly con-
secutive, discrete mode changes. We have shown [6, 8)
that small time constant effects cannot always be re-
moved (parameter abstractions) in analyzing dynamic
system behavior. Abstracting fast transients may re-
quire explicit additional jump constraints for the sys-
tem state vector variable values when configuration
changes occur (time scale abstraction).

This paper presents the effects of abstracting fast con-
tinuous transients exhibited by complex systems into



discontinuous changes of the continuous state vector.
It demonstrates a systematic methodology for gener-
ating the simpler ODE models from the more complex
ODE models of system behavior. The simpler piecewise
ODE models are then compiled into hybrid eutomata [1]
with extended execution semantics to facilitate eflicient
real-time applications.

2 Hybrid Dynamic Systems

Hybrid dynamic systems combine discrete state changes
with continuous behavior evolution [1, 5, 8]. Differential
equations form a common representation of continuous
system behavior. The system is described by a state
vector, x. Behavior over time is specified by a field f.
Interaction with the environment is specified by input
and output signals, » and y. The dynamics of system
behavior is expressed as a set of ODEs, & = f(,u) and
algebraic relations y = h(x).

Discrete behavior can be modeled by a state machine
representation, consisting of a set of discrete modes,
. Mode changes caused by events, o, are specified
by the state transition function ¢, le., a1 = ¢(og).
A transition may produce additional discrete events,
causing further transitions.

A mode change from o; to ey, may result in a field
definition change from f,, to fu,,,, and a discontinu-
ous change in the state vector governed by an algebraic
function g, z+ = gai*'(z). Discrete mode changes are
caused by an event generation function, -y, associated

with the current active mode, ay, va,(z) <0 — o;.

3 Abstracting Fast Transients

Continuous behavior in physical systems can occur on
a hierarchy of temporal and spatial scales. To simplify
system models, small' parameters are abstracted away
but this may cause discontinuous changes in system be-
havior. These discontinuous changes are present as fast
continuous transients in the more detailed models. In
this section, we formalize the derivation of simplified
models generated by parameter and time scale abstrac-
tions and derive explicit discontinuous state changes to
facilitate the use of the simpler models in a hybrid au-
tomata framework.

3.1 Parameter Abstraction

Parameter abstractions eliminate small parameters in
a system model. A singular perturbation representa-
tion formulates the system behavior model into a cODE
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where € is a small parameter that embodies small and
large parameter values that cause fast transients. The
function f models the slower dominant system behav-
ior. Setting € to 0 reduces the second equation to an
algebraic form. Assuming that g{z, z,0,t) = 0 has dis-
tinct real roots, the fast behaviors corresponding to z
can be solved for algebraically, and substituted in f.
This results in a reduced-order quasi steady state model
that embodies an sODE.

We apply this approach to the collision between two
bodies shown in Fig 2. A first order approximation of
the collision process includes two parameters: (i) C,
that models the elastic interaction between the bodies,
and (ii) R, that models the dissipative effects. If the
momentum, p;, of the bodies, m;, and the displacement,
q, of the spring that models the elasticity parameter C,
are chosen as state variables, the dynamic behavior of
the system is described by the following ODE:
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Figure 2: Collision of a body my and a body ma.

This singular system of equations can be reduced by
applying the transformation v = £ — 22 resulting in
a second order ODE

HERS R IH!
(3)

If the R and C parameters are removed from the model,
a simpler system of equations results, but the state vari-
ables may exhibit explicit discontinuous jumps. The
hybrid automata model requires explicit definition of
these jumps, and necessitates their computation from
the detailed continuous transients.

To apply singular perturbations, we assume ' to be
small and R to be large and take % to be the small ¢
parameter. Therefore,

H)-[ )

q
(4)
where v contains the fast behavior. Substituting £ =0
results in » = 0. Transforming this back to the original
state variables yields %—% = 0,i.e., v;—ve = 0. This
Is the equivalent of a perfect non elastic collision [6].



3.2 Time Scale Abstraction

Instead of eliminating the fast transient due to dissipa-
tive effects, if we were to reduce the effect of elasticity to
occur at a point in time, we get a time scale abstraction.
Consider the system of colliding bodies again (Fig. 2)
with detailed behavior given by Eq. (3). If C is taken
to be the small ¢ parameter, this gives

(][ ][]
(5)

For ¢ = 0, this yields ¢ = 0, and, therefore, § = 0
which requires v == 0. When € becomes small but not
(), the solution of the system in Eq. (3) has eigenvalues
with imaginary components and the resultant dynamic
behavior for the transient is:

v(t) = v(0)e~F Fa+ T o \/_ _ RZ(~ N __)2)t)_

(6)
This shows that v = 0 is the steady state solution. How-
ever, in case of colliding bodies this behavior transient
is aborted long bhefore steady state is attained, because
the v and ¢ values generated by the transient cause the
two bodies to disconnect.

This is illustrated by the case of two point masses that
collide when z; > 72, where z; and z; are the positions
of body m; and mg, respectively. The bodies discon-
nect when the force between them becomes negative,
ie., Fia < (. At this point, the state variable values
{i.e., the two body velocities) constitute the final,
posteriori, values around the discontinuous jump cor-
responding to the collision. Since Fis = -g— < 0 at the
disconnect point, this implies ¢ < 0 since ' > 0. The
time point at which the disconnect occurs is computed

to be
T

tg = ~— . (7)
&R +a3)
At 4, v has changed from v(U) to v{tz) = Av(0) with
{cos(m) = —1), therefore,
A= —e Flartagts (8)

As the C parameter becomes very small, t; does too,
and in the Hmit, »{¢t;}) — v(0)*. The discontinuous
change in v can then be represented by an algebraic
equation v(0)* = Au(0). Transforming this back to the

+
original state variables yields —11— —2— = ME- - &),
Written in terms of the body \elocmes

v —vf = Avy — ), (9
this is the well known Newton’s collision rule [2], where
A is called the coeflicient of restitution that describes
the amount of kinetic energy loss in the collision. If
R =01in Eq. (8), A = ~1 and this describes a perfect

elastic collision with no loss of energy. Note that C can-
not be taken to equal 0, as this would remove all elastic-
ity and the corresponding ideal rigid body collision has
no mechanism for storing kinetic energy as potential
energy and returning it as kinetic energy. Therefore,
this immediately causes v = 0. Consequently, behavior
does not converge uniformly as ¢ — 0.

4 The Elevator System

The elevator control subsystem in Fig. 1 consists of two
mechanical elevators that are positioned by two electro-
hydraulic actuators each [3, 9]. When a failure occurs,
redundancy management may switch actuators to en-
sure maximum control.

Figure 3 shows the operation of one actnator. The con-
tinuous PID control mechanism for elevator position-
ing is implemented by a servo valve. The output of the
servo valve controls the direction and speed of travel
of the piston in the cylinder. A spool valve mechanism
controls whether the actuator is ective or passive. The
piston in the positioning cylinder and connected eleva-
tor flap constitute the load and excessive pressures are
prevented by a pressure rehief valve.
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Figure 3: Hydraulics of one actuator.

4,1 The Components

The servo valve consists of a cylinder that connects its
supply and return side with its loading side. A piston
inside the cylinder controls the amount of oil low from
supply to loading. The amount of oil flowing in, ¢,, has
to equal the amount of oil flowing out ¢. This oil flow
is determined by the pressure drop, p, — py, across the
orifice that is opened by an amount z, the PID control

variable,
{ qs i (ps —p1)$ (10)
s =

Like a serve valve, a typical spool valve {Fig. 4) con-
sists of a piston that woves in a cylinder. A number
of cylinder ports connect the supply and return part
of the hydraulic system with the load. When the ac-
tuator is active, the spool valve is in its supply mode,



a2, shown in Fig. 4(a), and the control signal gener-
ated by the servo valve is transferred to the cylinder
that positions the elevator. In this mode, the pressure
on the supply side of the valve, p,, equals the pressure
on the load side, p;. Also, the oil flow from the supply,
ge, equals the oil flow to the load, ;. When the actu-
ator is passive, the spool valve is in its loading mode,
wg, shown in Fig. 4(c), and control signals cannot be
transferred to the cylinder. However, oil flow between
the chambers is possible through a loading passageway
with fluid flow resistance R;. When moving between
supply and loading, the spool valve passes through the
closed configuration, &, where oil flow is blocked, as
shown in Fig. 4(b). This is captured by the following
equations:

Ps =D q =10
Gin : ay
? {‘hzq.l ! {Qszo gs =0

(11)
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Figure 4: A typical spool valve.

A pressure relief valve connected to the positioning
cylinder as a safety device is normally closed {ap), but
it may open () when the pressure in the elevator po-
sitioning cylinder, i.e., the input pressure to the relief
valve, p,, exceeds a threshold value, p;;,. When open,
it allows an oil flow, g,, through a fluid path with re-
sistance Rj:

G : { g =0 xy : { Pr= a- Ry (12)

4.2 Modeling the Elevator Dynamics

The dynamics of the elevator are studied in terms of the
movement of the piston in the positioning cylinder. The
behavior can be derived by composing models of the
gervo valve, spool valve, relief valve, and the positioning
cylinder. This results in a second order systern with
two state variables: (i) p., the pressure of the oil in the
cylinder, and (ii) v, the elevator velocity.

Cebe = gin + gr — ge

ge = Apv,

13
ApFe :pc+Rc(Qin+Qr_qe) ( )
Ml = F,

. models the elasticity effects and R, models the dissi-
pative effects of the oil in the positioning cylinder. The
variables ;. and ¢, represent the inflow of oil into the

ag : { pr=qh

cylinder from the servo and relief valves, respectively,
and ¢, represents the oil flow due to movement of the
piston. The value of ¢, is a function of A, the area of
the piston and v,., the elevator velocity. The force ex-
erted on the piston is a function of p.; and the product
of internal dissipation of the oil, R,, and the overall flow
rate. Newton’s Second Law relates the elevator veloc-
ity to the force exerted on the piston. In state equation
form Eq. (13) is:
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When a sudden pressure drop is detected in the hy-
draulics supply system of an elevator actuator, redun-
dancy control moves the spool valve of this actuator
from supply to loading and the spool valve of another
actuator from loading to supply to take over comtrol.
When the spool valve of an actuator moves to its closed
mode, oil flow into and out of the positioning cylinder
is blocked. This implies that the cylinder piston that
controls the elevator position cannot move, and the el-
evator stops moving as well. In more detail, the inter-
nal dissipation and small elasticity parameters of the
oil cause the elevator velocity to change continuously
during the transition. The continuous transient behav-
ior between supply and closed is shown in Fig. 3(a).
How quickly the system reaches 0 velocity iu the closed
mode depends on the elasticity and internal dissipation
parameters of the cil. Typically, soon after the closed
mode, the spool valve starts opening and goes into the
loading mode. The effect on the elevator velocity for the
detailed continuous behavior wheu switching from sup-
ply to loading is shown in Fig. 5(b). A detailed analysis
is presented in [7].
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Figure 5: Continuous transients.

The details of the continuous transients are not of much
interest for analysis of the control behavior. Model sim-
plification by parameter and time scale abstractions re-
sults in removal of small elasticity and large dissipative
effects. At the same time, the fast continuous transients
that affect the elevator velocity, v, need to be pre-
served and captured by discontinuous changes. These



discontinuities indicate that state variable dependen-
cies arise between the model component ODEs. This
requires model manipulations to generate a global ODE
or methods to handle the resulting high index differen-
tial and algebraic equations (DAE).

We systematically derive the simpler models for the hy-
brid automata and the transition conditions using the
methods based on singular perturbation described in
Section 3 and replace the detailed continuous transients
defined by Eq. (14) by an equation that captures the
fast continuous change as an instantaneous discontin-
1nous jump. We analyze the transient about the point
where the spool valve closes, and the relief valve is also
closed, i.e., gin = ¢r = 0.

In case of real eigenvalues, the elevator dynamics can

be computed to be (D = %; - )

ve(t) = e T (k3D 4 ke BVDN - (15)

where k; and k; are constants that depend on v,.(0)
and p.(0). Like before, the restitution coefficient for
the oil, affected by the spool valve closing, i.e., Ay, can
be computed by determining the value of £; at the point
when the ports are opened again. If z is the displace-
ment of the piston in the spool valve, the piston may
first block the ports when £ = 0 and open thein again
when ¢ > z;p, where z;y, is a parameter depending on
the particular type of spool valve. The value of ¢; is
then determined by z4, and the speed with which the
piston is moved by an external control signal. The cor-
responding time interval during which the oil flow into
the cylinder is 0 results in an elevator velocity change
as a function of v.(0) and p.(0).

In case of complex eigenvalues, the elevator dynamic
behavior is governed by

ve(t) = e~ T klcos( (V=D)t) + kasin(= (vV=D)t))

(16)
where k; and k; are constants depending on v, (0) and
Pe(0). Again, the change of elevator velocity at ¢y can
be computed as a function of v.(0) and p.(0). In this
case, the elevator velocity may reverse much like the
velacity of a bouncing ball reverses.

l\JIr—t

4.3 A Scenario

Figure 6 defines the individual hybrid automata for
the spool valve, the positioning cylinder, and the re-
lief valve. When the spool valve goes from supply mode
(o2) to closed mode (ay), causing g, and, therefore,
gin, in the positioning cylinder to change discontinu-
ously, the fast transient that affects v, can be simplified
by parameter and time scale abstraction, and v, goes

through an instantaneous change in velocity given by
v, T = AU,

To compute the reduced continuous behavior model,

the oil is assumned to be incompressible, the correspond-
ing simplified ODE for elevator velocity in the position-
ing cylinder is calculated by setting C. = 0:

0=qin+¢- — G

9e = At 17
ApFe = Pe ( )
mev, = F,

This sQDE is first order, whereas the ¢cODE was second
order.

Figure 6: Individual hybrid automata.

In this model, because the behavior of the spool valve
around x = 0 is abstracted away, the spool valve
switches into its closed mode when the piston in the
valve reaches 0 from the right, z < 0, or from the left,
z > 0. Now, ¢ = 0 and ¢t # g,, causing a discon-
tinuous change in vJ. Immediately after the discon-
tinuous changes are effected, g7 = g4, and the spool
valve switches out of the closed mode. Note that the
abrupt change in velocity from v, to v,™ will cause
a fast pressure buildup. In the reduced order model,
this buildup is governed by a discontinuous change of
ve, and, therefore, v # v,. The m U, = F. equation
causes an impulse force, F,, and corresponding pressure
Pe-

This pressure impulse will always cause the relief valve
to open because of its infinite maguitude, no matter
how small the v; — v, difference. The more detailed
model of the cylinder includes small elasticity and dis-
sipation parameters, and they are employed to compute
a more realistic value of the maximum pressure gener-
ated. This can be included in the reduced order model
by replacing the m. 9, = F, equation with the algebraic
constraint K, (v} —v.) providing the value for F,. K, is
a damping coeflicient that captures the R.C. effect. Us-
ing this first order approximation, the pressure buildup
can be described as pf = A K (ve™ — ve),

If the value of p* exceeds the critical value, ps, this
causes a further discontinuous mode change in the relief
valve, that goes from closed (ap) to open {@;). In this
case, the abrupt change in elevator velocity is governed



by a restitution coefficient, A, defined by the complex
ODE model of the relief valve that can be derived in
a manner similar to the derivation for the spool valve.
The final elevator velocity after the mode transitions is
now given by v.* = A,ve. The simplified ODE model
for v, in the supply mode with relief valve open can be
derived similarly.

5 The Actuator Hybrid Automata

If the relief valve opens, the effect of A; on the elevator
velocity is replaced by A, and, therefore, the change
of velocity as computed by A, has to be reversed. A
hybrid automata that correctly includes this effect is
shown in Fig. 7. The modes are o;;, where the sub-
script ¢, represents the mode of the spool valve (2 -
open, 1 - closed, and 0 - loading), and subscript j rep-
resents the mode of the relief valve (1 - open, and 0 -
closed). The corresponding sODEs are also subscripted
accordingly. Initially, the actuator is in mode . In
the simplified hybrid automata, the detailed continuous
behavicor around z = ( is abstracted away, and the cor-
responding discrete events, {Tlase, Tapools Tloads Treticf }
are generated by monitoring physical variables. The
stroked transitions in Fig. 7 represent transitions where
the event generation function, v, is applied after the
state vector has been updated.

When in asp, closing the spool valve moves the system
nto a9 and causes an instantaneous change in the oil
flow rate to 0. Therefore, g7 # ¢, and a rapid drop
m the elevator velocity, v.t = A,v., occurs before the
valve opens again and goes into the loading mode, cqg.
However, the change in velocity causes a pressure tran-
sient, p* = Ach(Ue+ - 'Ue)a and ifp+ > Pthy Trelicf
is generated causing the relief valve to open, and the
systen goes into mode a1y, with v.™ = Av.. There-
fore, v, = Asv, is not executed and v} not affected by
mode 9. Once the state vector is updated, q,7 = ¢,,
and oy5q4 is generated causing the system to go into
ag1. If grepies did not oceur, v+ = A0, remains valid,
and after the state vector is updated ¢, = g, and the
mode transition to agg occurs based on the event gy,04.

Figure 7: Hybrid automata of an actuator.

6 Conclusions

In this paper we have developed a systematic method-
ology derived from the singular perturbations approach
for generating simpler ODE models for hybrid systems
by applying time scale and parameter abstractions to
complex nonlinear system models that exhibit fast tran-
sient behavior. Compiling the sODEs and transition
conditions into hybrid automata with extended execu-
tion semantics generates runtime models that can be
applied to real-time simulation and analysis of system
behavior.

The apparent drawback of creating piecewise simpler
hybrid models is that the compositionality property is
lost when interactions between the component subsys-
tems have to be analyzed in advance to build the hybrid
antomata.
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