
Journal Européen des systèmes automatisés

Object-Oriented and Hybrid Modeling
in Modelica

Hilding Elmqvist * — Sven Erik Mattsson* — Martin Otter **

* Dynasim AB
Research Park Ideon, SE-223 70 Lund, Sweden

Elmqvist@Dynasim.se
SvenErik@Dynasim.se

** German Aerospace Center, Institute of Robotics and Mechatronics
D-82230 Wessling, Germany

Martin.Otter@DLR.de

ABSTRACT. Modelica is an object-oriented language for modeling of large and heterogeneous
physical systems. Typical applications include mechatronic models in robotics, automotive
and aerospace applications involving mechanical, electrical, hydraulic and control subsystems,
process oriented applications and generation and distribution of electric power. The unique
features of Modelica to model combined continuous time and discrete event systems are dis-
cussed. A hybrid Modelica model is described by a set of synchronous differential, algebraic
and discrete equations leading to deterministic behaviour and automatic synchronization of the
continuous time and discrete event parts of a model.

RÉSUMÉ. Modelica est un langage orienté objet pour la modélisation des grands systèmes
physiques hétérogènes. Il peut être utilisépour des systèmes mécatroniques comportant des
sous systèmes mécaniques, électriques ou hydralique et un système de commande dans des
domaines tels que la robotique, l’aéronautique ou l’automobile mais également pour les pro-
cessus industriels ou la génération et la distribution de l’énergie électrique. Dans cet article,
on s’intéresse principalement aux mécanismes permettant de mixer des modèles continus et à
événements discrets et on montre comment, dans Modelica, un modèle hybride est spécifié par
un ensemble synchrone d’équations différentielles, algébriques et discrètes. Ceci conduit à un
compartment déterministe et à une synchronisation automatique des parties continues et des
parties événementielles.

KEYWORDS: Modelica, modeling language, object-orientation, hierarchical systems, hybrid
modeling

MOTS-CLÉS :Modelica, langage de modélisation, orientation objet, systèmes hiérarchiques,mod-
élisation hybride

APII – JESA. Volume 35 - nÆ 1/2001, pages 1 à X

2 APII – JESA. Volume 35 - nÆ 1/2001

1. Introduction

Modeling and simulation are becoming more important since engineers need to
analyze increasingly complex systems composed of components from different do-
mains. Examples are mechatronic systems within automotive, aerospace and robotics
applications. Such systems are composed of components from domains like electri-
cal, mechanical, hydraulical, control, etc. Current tools are generally weak in treating
multi-domain models because thegeneraltools are block-oriented and thus demand a
huge amount of manual rewriting to get the equations into explicit form. Thedomain-
specifictools, such as circuit simulators or multibody programs, cannot handle com-
ponents of other domains in a reasonable way.

There is too large a gap between the user’s problem and the model description that
the simulation program understands. Modeling should be much closer to the way an
engineer builds a real system, first trying to find standard components like motors,
pumps and valves from manufacturers’ catalogues with appropriate specifications and
interfaces. Only if there does not exist a particular subsystem, the engineer would
actually construct it.

In Modelica, differential, algebraic and discrete equations are used for modeling
of the physical phenomena. No particular variable needs to be solved for manually. A
Modelica tool will have enough information to decide that automatically. Modelica is
designed such that available, specialized algorithms can be utilized to enable handling
of large models having more than hundred thousand equations.

Reuse is a key issue for handling complexity. There have been several attempts to
define object-oriented languages for physical modeling. However, the ability to reuse
and exchange models relies on a standardized format. It was thus important to bring
this expertise together to unify concepts and notations. A design group was formed
in September 1996 and one year later, the first version of the Modelica1 language was
available (www.Modelica.org) [MOD 00]. Modelica is intended to serve as a standard
format so that models arising in different domains can be exchanged between tools
and users. It has been designed by the developers of the object-oriented modeling
languages Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+, Smile und a number
of modeling practitioners in different domains. After 23 three-day meetings, during
a 4-year period, version 1.4 of the language specification was finished in December
2000. Tools and free model libraries are now available, such as libraries for 1-dim. and
3-dim. mechanical systems, electric and electronic components, hydraulic systems,
electric power systems, 1-dim. heat flow, control blocks.

2. Composition Diagrams

Modelica supports both high level modeling by composition and detailed library
component modeling by equations. Models of standard components are typically

1. ModelicaTM is a trade mark of the Modelica Association

Hybrid Modeling in Modelica 3

motor
controller

PI
n=100

Jl=10

wl

wr

Figure 1. Composition diagram of a motor drive.

available in model libraries. Using a graphical model editor, a model can be defined
by drawing a composition diagram by positioning icons that represent the models of
the components, drawing connections and giving parameter values in dialogue boxes.
Constructs for including graphical annotations in Modelica make icons and composi-
tion diagrams portable.

An example of a composition diagram of a simple motor drive system as presented
in the modeling and simulation tool Dymola [DYM] is shown in Fig. 1. The system
can be broken up into a set of connected components: an electrical motor, a gearbox,
a load and a control system. The Modelica model is (excluding graphical annotations)

model MotorDrive
PI controller;
Motor motor;
Gearbox gearbox(n=100);
Shaft Jl(J=10);
Tachometer wl;

equation
connect (controller.outPort, motor.inPort);
connect (motor.flange_b, gearbox.flange_a);
connect (gearbox.flange_b, Jl.flange_a);
connect (Jl.flange_b, wl.flange_a);
connect (controller.inPort, wl.w);

end MotorDrive;

It is a composite model which specifies the topology of the system to be modeled
in terms of components and connections between the components. The statement
“Gearbox gearbox(n=100); ” declares a componentgearbox of model classGear-

box and sets the value of the gear ratio,n, to 100.

A component model may be a composite model to support hierarchical modeling.
The composition diagram of the model classMotor is shown in Fig. 2.

V
s

emf

La=0.05

Ra=0.5

Jm=1.0E-3

Figure 2. Composition diagram of model class Motor.

4 APII – JESA. Volume 35 - nÆ 1/2001

3. Variables, connectors and connections

Physical modeling deals with the specification of relations between physical quan-
tities. For the drive system, quantities such as angle and torque are of interest. Their
types are declared in Modelica as

type Angle = Real(quantity = "Angle", unit = "rad",
displayUnit = "deg");

type Torque = Real(quantity = "Torque", unit = "N.m");

whereReal is a predefined type, which has a set of attributes such as name of quan-
tity, unit of measure, default display unit for input and output, minimum, maximum,
nominal and initial value. TheModelica Standard Library, which is an intrinsic part
of Modelica includes about 450 of such type definitions.

Connections specify interactions between components and are represented graph-
ically as lines betweenconnectors. A connector should contain all quantities needed
to describe the interaction. Voltage and current are needed for electrical components.
Angle and torque are needed for drive train elements.

connector Pin connector Flange
Voltage v; Angle phi;
flow Current i; flow Torque tau;

end Pin; end Flange;

A connection,connect (Pin1, Pin2) , with Pin1 andPin2 of connector classPin ,
connects the two pins such that they form one node. This implies two equations,
Pin1.v = Pin2.v andPin1.i + Pin2.i = 0 . The first equation indicates that
the voltages on both branches connected together are the same, and the second cor-
responds to Kirchhoff’s current law stating that the current sums to zero at a node.
Similar laws apply to flow rates in piping networks and to forces in mechanical sys-
tems. The sum-to-zero equations are generated when the prefixflow is used in the
declarations. The Modelica Standard Library includes also connector definitions.

4. Partial models and inheritance

An important feature in order to build reusable descriptions is to define and reuse
partial models. A common property of many electrical components is that they have
two pins. Thus it is useful to define an interface model classOnePort , that has two
pins,p andn, and a quantity,v, that defines the voltage drop across the component.

partial model OnePort
Pin p, n;
Voltage v;

equation
v = p.v - n.v;
0 = p.i + n.i;

end OnePort;

Hybrid Modeling in Modelica 5

The equations define common relations between quantities of a simple electrical com-
ponent. The keywordpartial indicates that the model is incomplete and cannot be
instantiated. To be useful, a constitutive equation must be added. A model for a resis-
tor extendsOnePort by adding Ohm’s law to define the behavior.

model Resistor "Ideal resistor"
extends TwoPin;
parameter Resistance R;

equation
R*p.i = v;

end Resistor;

A string between the name of a class and its body is treated as a comment attribute.
Tools may display this documentation in special ways. The keywordparameter

specifies that the quantity is constant during a simulation experiment, but can change
values between experiments.

For the mechanical parts, it is also useful to define a partial model with two flange
connectors (der (w) means the time derivative ofw)

partial model TwoFlanges
Flange a, b;

end TwoFlanges;

model Inertia "1-dim. rotational inertia"
extends TwoFlanges;
parameter Inertia J = 1;
Angle phi;
AngularVelocity w;

equation
phi = a.phi; phi = b.phi;
J* der (w) = a.tau + b.tau; der (phi) = w;

end Inertia;

5. Synchronous Equations

After the presentation of the fundamental structuring mechanisms in Modelica and
the means to describe continuous models, attention is now given to discrete modeling
features. In Modelica the central property is the usage ofsynchronousdifferential, al-
gebraic and discrete equations. The idea of using the synchronous data flow principle
in the context of hybrid systems was introduced in [ELM 93]. For purediscrete event
systems, the same principle is utilized in synchronous languages [HAL 93] such as
SattLine [ELM 92], Lustre [HAL 91] and Signal [GAU 94], in order to arrive at safe
implementations of realtime systems and for verification purposes.

A typical example of a hybrid model is given in Fig. 3 where a continuous plant

_xp = f (xp; u) [1]

y = g(xp) [2]

6 APII – JESA. Volume 35 - nÆ 1/2001

is controlled by a digital linear controller

xc(ti) = Axc(ti � Ts) + B (r(ti)� y(ti)) [3]

u(ti) = Cxc(ti � Ts) + D (r(ti) � y(ti)) [4]

using a zero-order hold to hold the control variableu between sample instants (i.e.,
u(t) = u(ti) for ti � t < ti + Ts), whereTs is the sample interval,xp(t) is the state
vector of the continuous plant,y(t) is the vector of measurement signals,xc(ti) is
the state vector of the digital controller andr(ti) is the reference input. In Modelica,
the complete system can be easily described by connecting appropriate blocks. How-
ever, for simplicity of the discussion, here an overall description of the system is given
in one model where the discrete equations of the controller are within thewhen clause.

model SampledSystem
parameter Real Ts=0.1 "sample period";
parameter Real A[:, size(A,1)], B[size(A,1), :],

C[:, size(A,2)], D[size(C,1), size(B,2)];
constant Integer nx = 5;
input Real r[size(B,2)] "reference";
output Real y[size(B,2)] "measurement";

Real u [size(C,1)] "control";
Real xc[size(A,1)] "disc. state";
Real xp[nx] "plant state";

equation
der (xp) = f(xp, u); // plant

y = g(xp);
when sample (0,Ts) then // controller

xc = A* pre (xc) + B*(r-y);
u = C*pre (xc) + D*(r-y);

end when ;
end SampledSystem;

During continuous integration the equations within thewhen clause are de-activated.
When the condition of thewhen clausebecomestrue an event is triggered, the integra-
tion is halted and the equations within thewhen clause are active at this event instant.
The operatorsample (. . .) triggers events at sample instants with sample timeTs and
returnstrue at these event instants. At other time instants it returnsfalse. The values
of variables are kept until they are explicitly changed. For example,u is computed
only at sample instants. Still,u is available at all time instants and consists of the
value calculated at the last event instant.

yur
plantcontroller

Ts

Ts

-

Figure 3. Sampled data system.

Hybrid Modeling in Modelica 7

At a sampling instantti, the controller needs the values of the discrete statexc
for the timeti and the previous sample instantti � Ts, which is determined by using
the pre operator. Formally, theleft limit x(t�) of a variablex at a time instantt is
characterized bypre (x) , whereasx itself characterizes theright limit x(t+). Since
xc is only discontinuous at sample instants, the left limitxc(t

�

i
) at sample instantti

is identical to the right limitxc(t+i � Ts) at the previous sample instant and therefore
pre (xc) characterizes this value.

The synchronous principlebasically states that at every time instant, theactive
equations expressrelationsbetween variables which have to befulfilled concurrently.
As a consequence, during continuous integration the equations of the plant have to
be fulfilled, whereas at sample instants the equations of the plant and of the digital
controller holdconcurrently. In order to efficiently solve such types of models, all
equations aresortedby block-lower-triangular partitioning, the standard algorithm of
object-oriented modeling for continuous systems (now applied to a mixture of con-
tinuous and discrete equations), under the assumption that all equations are active. In
other words, the order of the equations is determined by data flow analysis resulting in
an automatic synchronization of continuous and discrete equations. For the example
above, sorting results in an ordered set of assignment statements:

// "known" variables: r, xp, pre (xc)
y := g(xp);
when sample (0,Ts) then

xc := A* pre (xc) + B*(r-y);
u := C* pre (xc) + D*(r-y);

end when ;
der (xp) := f(xp, u);

Note, that the evaluation order of the equations is correct both when the controller
equations are active (at sample instants) and when they are not active.

The synchronous principle has several consequences: First, the evaluation of the
discrete equations is performed in zero (simulated) time. In other words, time is ab-
stracted from the computations and communications [GAU 94]. If needed, it is pos-
sible to model the computing time byexplicitlydelaying the assignment of variables.
Second, in order that the unknown variables can beuniquelycomputed it is necessary
that the number of active equations and the number of unknown variables in the active
equations at every time instant are identical. This requirement is violated in

equation // incorrect model fragment!
when h1 > 3 then

close = true;
end when ;

equation
when h2 < 1 then

close = false;
end when ;

If by accident or by purpose the relationsh1 > 3 andh2 < 1 becometrue at the same
event instant, we have two conflicting equations forclose and it is not defined which

8 APII – JESA. Volume 35 - nÆ 1/2001

equation should be used. In general, it is not possible to detect by source inspection
whether conditions becometrue at the same event instant or not. Therefore, in Mod-
elica the assumption is used thatall equationsin a model may potentially be active
at the same time instant during simulation. Due to this assumption, the total number
of (continuous and discrete) equations shall be identical to the number of unknown
variables. It is often possible to rewrite the model above by placing the when clauses
in analgorithm section and changing the equations into assignments

algorithm
when h1 > 3 then

close := true;
end when ;
when h2 < 1 then

close := false;
end when ;

The algorithm section groups the twowhen clauses to be evaluated sequentially in the
order of appearance and the second one gets higher priority. All assignment state-
ments within thesamealgorithm section are treated as a set ofn equations, wheren
is the number of different left hand side variables (e.g., the model fragment above cor-
responds to one equation). Analgorithm section is sorted as a whole together with
the rest of the system. Another assignment toclose somewhere else in the model
would still yield an error.

Handling hybrid systems in this way has the advantage that thesynchronization
between the continuous time and discrete event parts isautomaticand leads to a de-
terministic behaviourwithout conflicts. Note, that some discrete event formalisms,
such as state transition diagrams or prioritized Petri nets, can be formulated in Mod-
elica in a component-oriented way, using synchronous equations, see [MOS 98] and
Section 8. The disadvantage is that the types of systems which can be modeled is
restricted. For example, general Petri nets cannot be described because such systems
have non-deterministic behaviour.

6. Relation triggered events

During continuous integration it is advantageous that the model equations remain
continuous and differentiable, since the numerical integration methods are based on
this assumption. This requirement is often violated by if-clauses. For example the
simple block of Fig. 4 with inputu and outputy may be described by

model TwoPoint
parameter Real y0=1;
input Real u;
output Real y;

equation
y = if u > 0 then y0 else -y0;

end TwoPoint;

Hybrid Modeling in Modelica 9

u

y0

-y0

continuation of branch
for switching point detection

y

u y

Figure 4. Discontinuous component.

At point u=0 this equation is discontinuous, if theif expression would be takenlit-
erally. A discontinuity or a non-differentiable point can occur if a relation, such as
x1 > x2 changes its value, because the branch of an if statement may be changed.
Such a situation can be handled in a numerical sound way by detecting the switching
point within a prescribed accuracy, halting the integration, selecting the corresponding
new branch, and restarting the integration, i.e., by triggering astate event.

In general, it is not possible to determine by source inspection whether a spe-
cific relation will lead to a discontinuity or not. Therefore, in Modelica it is by de-
fault assumed that every relation potentially will introduce a discontinuity or a non-
differentiable point in the model. Consequently, relationsautomaticallytrigger state
events (or time events for relations depending only on time) at the time instants where
their value is changed. This means, e.g., that modelTwoPoint is treated in a nu-
merical sound way (theif conditionu > 0 is not taken literally but triggers a state
event).

Modelica has several operators for hybrid systems, such asnoEvent (. . .) to treat
relations literally,reinit (x, value) to reinitialize a continuous state with a new value
at an event instant,initial () to inquire the first andterminal () to inquire the last
evaluation of the model during a simulation run.

7. Variable structure systems

If a physical component is modeled detailed enough, there are usually no discon-
tinuities in the system. When neglecting some “fast” dynamics, in order to reduce
simulation time and identification effort, discontinuities appear in a physical model.
As a typical example, in Fig. 5 a diode is shown, wherei is the current through the
diode andu is the voltage drop between the pins of the diode. The diode characteristic
is shown in the left part of Fig. 5. If the detailed switching behaviour is neglectable
with regards to other modeling effects, it is often sufficient to use the ideal diode char-
acteristic shown in the right part of Fig. 5, which typically gives a simulation speedup
of 1 to 2 order of magnitudes.

10 APII – JESA. Volume 35 - nÆ 1/2001

i

u

i

u

i

u

detailed diode
model

ideal diode
model

Figure 5. Detailed and ideal diode characteristic.

It is straightforward to model the detailed diode characteristic in the left part of
Fig. 5, because the currenti has just to be given as (analytic or tabulated) function of
the voltage dropu. It is more difficult to model the ideal diode characteristic in the
right part of Fig. 5, because the current atu = 0 is no longer a function ofu, i.e., a
mathematical description in the formi = i(u) is no longer possible. This problem can
be solved by introducing a curve parameters and describing the curve asi = i(s) and
u = u(s). This description form is more general and allows us to describe an ideal
diodeuniquelyin a declarativeway, see Fig. 6.

i1 i2

v1 v2u

u

i1

s=0

s
s

0 = i1 + i2
u = v1 � v2

off = s < 0
u = if off then s else0
i1 = if off then 0 elses

Figure 6. Ideal diode model

In order to understand the consequences of parameterized curve descriptions, the
ideal diode is used in the simple rectifier circuit of Fig. 7. Collecting the equations of
all components and connections, as well as sorting and simplifying the set of equations
under the assumption that the input voltagev0(t) of the voltage source is a known
time function and that an ODE formulation is used, i.e. that the states (here:v2) are
assumed to be known and the derivatives should be computed, leads to

Hybrid Modeling in Modelica 11

i1 i2

v1
v2

v0

v=0

R1

R2C

ideal diode

i0

Figure 7. Simple rectifier circuit.

off = s < 0
u = v1 � v2
u = if off then s else0
i0 = if off then 0 elses

R1 � i0 = v0(t)� v1

i2 := v2=R2

i1 := i0 � i2
dv2

dt
:= i1=C

[5]

The first 5 equations are coupled and build a system of equations in the 5 unknowns
off, s, u, v1 andi0. The remaining assignment statements are used to compute the state
derivative _v2. During continuous integration the Boolean variables, i.e., off, are fixed
and the Boolean equations are not evaluated. In this situation, the first equation is not
touched and the next 4 equations form alinear system of equations in the 4 unknowns
s; u; v1; i0 which can be solved by Gaussian elimination. An event occurs if one of
the relations (here:s < 0) changes its value.

At an event instant, the first 5 equations are a mixed system of discrete and con-
tinuous equations which cannot be solved by, say, Gaussian elemination, since there
are both Real andBooleanunknowns. However, appropriate algorithms can be con-
structed: (1) Make anassumptionabout the values of therelationsin the system of
equations. (2) Compute the discrete variables. (3) Compute the continuous variables
by Gaussian elimination (discrete variables are fixed). (4) Compute the relations based
on the solution of (2) and (3). If the relation values agree with the assumptions in (1),
the iteration is finished and the mixed set of equations is solved. Otherwise, new
assumptions on the relations are necessary, and the iteration continues. Useful as-
sumptions on relation values are for example: (a) Use the relation values computed in
the last iteration and perform a fixed point iteration (the convergence can be enhanced
by some algorithmic improvements). (b) Try all possible combinations of the values
of the relations systematically (= exhaustive search). In the above example, both ap-
proaches can be simply applied, because there are only two possible values (s < 0 is

12 APII – JESA. Volume 35 - nÆ 1/2001

falseor true). However, ifn switches are coupled, there aren relations and therefore
2n possible combinations which have to be checked in the worst case. More informa-
tion about code generation for Modelica hybrid simulation can be found in [MAT 99].
Modeling ideal friction in Modelica is described in [OTT 99] and [MAT 99].

The technique of parameterized curve descriptions was introduced in [CLA 95]
and a series of related papers. However, no proposal was given how to actually im-
plement such models in a numerically sound way. In Modelica the (new) solution
method follows logically because the equation based system naturally leads to a sys-
tem of mixed continuous/discrete equations which have to be solved at event instants.

In the past, ideal switching elements have been handled by (a) using variable
structure equations which are controlled bystate transition diagramsto describe the
switching behaviour, see e.g. [BAR 92, ELM 93, MOS 96], or by (b) using acomple-
mentarity formulation, see e.g. [LÖT 82, PFE 96, SCH 98]. The approach (a) has the
disadvantage that the continuous part is described in a declarative way but not the part
describing the switching behaviour. As a result, e.g., algorithms with better conver-
gence properties for the determination of a consistent switching structure cannot be
used. Furthermore, this involves a global iteration overall model equations whereas
parameterized curve descriptions lead to local iterations over the equations of the in-
volved elements. The approach (b) seems to be difficult to use in an object-oriented
modeling language and seems to be applicable only in special cases (e.g. it seems not
possible to describe ideal thyristors).

Mixed systems of equations do not only occur if parameterized curve descriptions
are used, but also in other cases, e.g. whenever an if-statement is part of an algebraic
loop and the expression of the if-statement is a function of the unknown variables of
the algebraic loop. Consider the part of a drive train in Fig. 8. A simple way to model
the losses in a gear due to friction between the gear teeth is by taking into account the
gear efficiency according to:

�2 = �� � i � �1 [6]

where�1 is the input torque of the gear,i is the gear ratio,�2 is the load torque and��
is the gear efficiency

�� =

8<
:

� for �1 � !1 > 0
1=� for �1 � !1 < 0

undefined for �1 � !1 = 0
0 < � � 1

[7]

Jmtau_m gearEfficiency

gear

Jl

Figure 8. Drive train with gear losses.

Hybrid Modeling in Modelica 13

that is, depending on the energy flow (�1 �!1) the input torque�1 is either multiplied by
� or by1=�. If the energy flow vanishes, the tooth in contact changes from front flank
to trailing flank contact or vice versa. In this short phase no torque is transmitted, i.e.,
backlash is present. For simplicity, this transition phase may be neglected. Using such
a very simplified model of the gear losses leads to the following sorted and simplified
set of equations of the drive train in Fig. 8:

b = �1 � _'l > 0

�2 = (if b then � else1=�) � �1

Jm � i � �'l = �m � �1

Jl � �'l = i � �2

whereJm is the inertia of the motor,Jl is the inertia of the load,'l is the absolute
angle of the load inertia and�m(t) is the motor torque calculated elsewhere (i.e.,�m
is a known quantity here). These are 4 coupled equations in the 3 Real unknowns�'l,
�1, �2 and 1 Boolean unknownb. The same techniques as before can be used to solve
this system of equations at event instants.

8. Petri net modeling in Modelica

As was pointed out at the end of Section 5 some discrete event formalisms, such as
state transition diagrams or prioritized Petri nets, can be formulated in Modelica in a
component-oriented way based solely on a few model classes. This has the advantage
that the synchronization between such a formalism and the continuous time part of
a model is performed automatically and that no special graphical editor or external
program is needed to define a discrete event model. In this section it is described at
hand of a special type of Petri net, in which way Modelica can be utilized for such an
approach.

Full realizations of more complex discrete-event formalisms, such asstate charts
[HAR 87] or sequential function charts[Int 93], cannot be conveniently done in a
component-oriented way in Modelica. Reasons are that a special graphical layout
may be needed which is not available in Modelica and/or that the basic structuring
mechanism of Modelica — a hierarchy of encapsulated components — is not sufficient
(e.g., the deep history connector of a state chart depends on the global structure of
the statechart). In such cases, the discrete-event formalism has to be provided in an
external program which is interfaced to Modelica based on the well-defined external
function interface of Modelica. Alternatively, a dedicated graphical editor for the
discrete-event formalism may be provided, from which appropriate Modelica code is
generated [REM 00]. This has the advantage that the event handling of Modelica can
be accessed easily.

14 APII – JESA. Volume 35 - nÆ 1/2001

8.1. Petri Net Semantics

The basic elements of a Petri net are places and transitions with directed connec-
tions between them. Places and transitions appear alternatingly, and, therefore, a Petri
net is a directed bipartite graph. We will considerNormal Petri Nets, i.e., the case
when each place contains zero or one token. Tokens are moved when transitions fire
according to the following rules: If (i) all of the transition’s input places have a token,
(ii) none of the output places have a token, (iii) all tokens from the input places are
removed and a token is added to each output place.

Note, that thefinite state machineformalism is a subset of Petri nets where only
transitions with one input and one output are allowed. In addition, there is a global
constraint that only one initial token is present.

To illustrate the use of Petri nets, consider two reactors that are both repeatedly
run through a heating/reaction phase followed by a cooling phase. During the reaction
phase a shared resource, for example, a container for a chemical, needs to be utilized
exclusively. The mutual exclusion for sharing of the common resource as well as the
sequencing of the phases is handled by the Petri net in Fig. 9.

Consider, the transitionXcold which will fire providedx<0.1 andXcooling is
active, i.e., has a token andResource has a token. There is a similar condition for
the transitionYcold to fire. If the conditions onx andy are fulfilled, either of the
transitionsXcold and Ycold could fire. If Xcold fires, tokens are removed from
Xcooling andResource and a token is placed inXheating . SinceResource does
not have a token any longer,Ycold cannot fire.

X
cooling

X
heating

R
es

ou
rc

e

X
cold

x <
 0.1

X
hot

x >
 0.9

Y
cooling

Y
heating

Y
cold

y < 0.2

Y
hot

y > 0.8

Figure 9. Petri net example.

Hybrid Modeling in Modelica 15

We will considerprioritized Petri netsfor which a deterministic choice is made
when there are several possible transitions to fire. In this case theResource place
will give the priority depending on how the connections to transitions are made.

An implementation in Modelica has model classesPlace andTransition . In-
formation about status and firing is communicated through connections. Both places
and transitions have input and output arrays of connectors. APlace has a boolean
variabletoken and equations to determine if it has a token or not. It will send infor-
mation to all its output transitions whether it has anavailable token or not. Its input
transitions will receive information if the place isoccupied or not.

A condition for aTransition to fire can, as discussed above, be written as fol-
lows, using functions operating on vectors of Booleans:

fire = condition and AllTrue(inp.available) and
not AnyTrue(out.occupied);

The fire condition is sent as aset condition to all output places and as areset con-
dition to all input places. APlace changes its status as

token = AnyTrue(inp.set) or
(pre (token) and not AnyTrue(out.reset));

The reporting of the state aboutaccessible token to output transitions takes care
of giving priority to transitions. The first transition gets information if the place has a
token

out[1].available = pre (token);

The token is hidden to the second transition if the first transition decides to fire and
sends a reset condition:

out[2].available = out[1].available and not out[1].reset;

The general case can be written in Modelica as
for i in 1:nReset loop

out[i].available =
if i==1 then pre (token)
else out[i-1].available and not out[i-1].reset;

end for ;

A Place needs to signal if it can accept a token by telling if it has a token or is
about to receive one via transitions with higher priority. This is described as

for i in 1:nSet loop
inp[i].occupied =

if i==1 then pre (token)
else inp[i-1].occupied or inp[i-1].set;

end for ;

A more detailed analysis of this approach to describe Petri Nets is given in [MOS 98].

8.2. Modelica Petri Net Library

The above discussion will now be formalised in the form of a Petri Net library.

16 APII – JESA. Volume 35 - nÆ 1/2001

The connectors needed to carry out the signaling discussed above are

connector Reset "From Place to Transition"
Boolean available "State of connected place";
Boolean reset "True, if transition fires";

end Reset;

connector Set "From Transition to Place"
Boolean occupied "State of connected place";
Boolean set "True, if transition fires";

end Set;

ThePlace andTransition models are described as

model Place
parameter Boolean initialToken=false;
parameter Integer nSet=1, nReset=1;
Set inp[nSet]; // array of connectors
Reset out[nReset];
Boolean token(start=initialToken);

equation
// New token state for next iteration
token = AnyTrue(inp.set) or

(pre (token) and not AnyTrue(out.reset));
// Report state to output transitions
for i in 1:nReset loop

out[i].available = if i == 1 then pre(token)
else out[i - 1].available and not out[i - 1].reset;

end for ;
// Report state to input transitions
for i in 1:nSet loop

inp[i].occupied = if i == 1 then pre(token)
else inp[i - 1].occupied or inp[i - 1].set;

end for ;
end Place;

model Transition
input Boolean condition;
parameter String condLabel;
parameter Integer nReset=1, nSet=1;
Reset inp[nReset];
Set out[nSet];

protected
Boolean fire;

equation
fire = condition and AllTrue(inp.available) and

not AnyTrue(out.occupied);
inp.reset = fill(fire, nReset);
out.set = fill(fire, nSet);

end Transition;

The following utility functions are utilized

Hybrid Modeling in Modelica 17

function AnyTrue "Logical OR of vector"
output Boolean result;
input Boolean b[:];

algorithm
result := false;
for i in 1: size (b, 1) loop

result := result or b[i];
end for ;

end AnyTrue;

function AllTrue "Logical AND of vector"
output Boolean result;
input Boolean b[:];

algorithm
result := true;
for i in 1: size (b, 1) loop

result := result and b[i];
end for ;

end AllTrue;

8.3. Example – Common resource

The Petri net in Fig. 9 can be modeled in Modelica as2

model ResourceHandling
"Petri net for exclusive access of a common resource"
NormalPetriNet.Place

Xcooling(initialToken=true), Xheating,
Ycooling(initialToken=true), Yheating,
Resource(nSet=2, nReset=2, initialToken=true);

NormalPetriNet.Transition
Xcold(nReset=2, condLabel="x<0.1"),
Xhot(nSet=2, condLabel="x>0.9"),
Ycold(nReset=2, condLabel="y<0.2"),
Yhot(nSet=2, condLabel="y>0.8");

equation
connect (Xcold.out[1], Xheating.inp[1]);
connect (Xheating.out[1], Xhot.inp[1]);
connect (Xhot.out[1], Xcooling.inp[1]);
connect (Ycold.out[1], Yheating.inp[1]);
connect (Yheating.out[1], Yhot.inp[1]);
connect (Yhot.out[1], Ycooling.inp[1]);
connect (Xcold.inp[1], Xcooling.out[1]);
connect (Ycold.inp[1], Ycooling.out[1]);
connect (Ycold.inp[2], Resource.out[2]);
connect (Xhot.out[2], Resource.inp[1]);

2. Dymola [DYM] allows Modelica components and connections of components to be defined
with a graphical editor and the result stored as Modelica code with graphical annotations.

18 APII – JESA. Volume 35 - nÆ 1/2001

connect (Xcold.inp[2], Resource.out[1]);
connect (Yhot.out[2], Resource.inp[2]);

end ResourceHandling;

The continuous parts can, for example, be modeled in Modelica by extending the
model ResourceHandling.

model CommonResource
"Example to demonstrate exclusive access of a common resource"

extends ResourceHandling;
parameter Real a=1, b=0.5, f=2.5, g=1;
Real x, y;

equation
der (x) = -a*x + (if Xheating.token then f else 0);
der (y) = -b*y + (if Yheating.token then g else 0);
Xcold.condition = x < 0.1; Xhot.condition = x > 0.9;
Ycold.condition = y < 0.2; Yhot.condition = y > 0.8;
when x < 0.1 then

reinit (x, 0);
end when ;
when y < 0.2 then

reinit (y, 0);
end when ;

end CommonResource;

The continuous part are just linear models in this case with the energy term depen-
dent on the state of the heating places. The status of the Petri net can be accessed by
using dot notation:Xheating.token , i.e. the energy term can be writtenif heat-
ing.token then f else 0. In a corresponding way, the transition conditions can be
defined as:Xcold.condition = x < 0.1; .

When simulating the model for 10 seconds, the plot in Fig. 10 shows that in some
cases two heating phases ofX occur during one cooling phase ofY. However, after
that, theY reactor has to wait for theResource .

0 5 10

0

0.4

0.8

x y

Figure 10.Heating and cooling of X and Y.

Hybrid Modeling in Modelica 19

9. Other synchronous languages

In this section certain aspects of the synchronous languages Lustre [HAL 91] and
Signal [GAU 94] are discussed in order to point out the relationship with the Modelica
hybrid model. It also gives a rationale for the language constructs chosen in Modelica.

Lustre and Signal are both synchronous data flow languages and have the single
assignment principle. As pointed out in [HAL 91]: “... sequencing and synchroniza-
tion constraints arise from data dependencies” However, contrary to Modelica, they
are designed to model discrete systems only.

In Lustre, any variable denotes a flow, i.e, a pair of (i) a possible infinite sequence
of values and (ii) a clock; representing a sequence of times. This is a conceptual model
and any implementation would only store a small window of values and times. The
usual operators operate on variables and expressions sharing the same clock. Temporal
operators are

1. pre(e) gives a sequence obtained by shifting the values of e one “clock step”.

2. -> (followed by) is used to give initial values, e.g., “n = 0 -> pre (n) + 1: ”
gives a counter starting at 0.

3. whensamples an expression according to a slower clock. “ewhen b”, where b
is a boolean expression, returns an expression with the same clock as b and the values
at those times taken from e.

4. current interpolates an expression on the clock immediately faster than its own.
The interpolation is a “zero order hold”.

Signal has corresponding temporal operators:

1. “x $ 1” means x delayed one step, i.e.,pre(x).

2. whenas in Lustre.

3. “x default y” means a merging of the sequences x and y. If at one time no value
of x is present, then the y value is taken.

Both languages have “equation” with just one variable at the left hand side, i.e., causal-
ity is given. However, sorting of the equations is performed. There are thus mecha-
nisms in both languages to describe difference equations using a “delay” operator.
There are sample operators (when). Lustre has an interpolation operator.

9.1. Possible generalizations to hybrid signals

It seems most natural to have a definition for discrete signals for any time, not only
for a sequence of clock times, i.e., to consider them as piecewise constant signals. This
corresponds also to the physical reality of for example a variable in a computer. The
value of it does exist also between the executions of the algorithm since it is stored
in memory. The interpolation operator is then automatically available since a variable
always has a value and can be accessed any time.

20 APII – JESA. Volume 35 - nÆ 1/2001

The sample operator “xwhen b” could naturally be extended to handle the case
where x is a continuous signal. The values of x are sampled at certain time instants
and the result is kept constant in-between. One could define the sampling instants as
“when b changes” but it seems more convenient to use the definition “when b becomes
true”. One could then, for example, writeu when time >= SampleTime to sample
the continuous variableu at Time==SampleTime whereSampleTime could be a
variable that always contains the next time for sampling.

9.2. Possible language constructs for sampled data systems

A linear sampled system can be described as

x(ti+1) = a � x(ti) + d � u(ti) [8]

y(ti) = c � x(ti) + d � u(ti) [9]

or by shifting x one sample interval:

x(ti) = a � x(ti�1) + d � u(ti) [10]

y(ti) = c � x(ti�1) + d � u(ti) [11]

In any case, we can distinguish three kinds of features:

1. Sampling- the inputu might be continuous andu(ti) is the sampled signal.

2. Sample and hold- the output might go to a continuous subsystem. Since the
valuey(ti) is only valid at certain time instants, some kind of interpolation is needed.
Zero-Order Hold is typical, i.e. thaty is piecewise constant.

3. Shift operator- Since a difference equation refers to values of the variables at
several time instants, it is convenient to introduce a shift operator. The forward shift
operator is often denoted byq and defined asq(x(ti)) = x(ti+1). The inverse is called
the backward shift operator and denoted byq�1, see, e.g., [ÅST 96].

A sampled system might be written as
Sample = time >= pre (SampleTime);
SampleTime = (time + DT) when Sample;
x = a* pre (x) + b*(u when Sample);
y = c* pre (x) + d*(u when Sample);

Note that a hold operator was not needed because the equations are always valid and
are giving piecewise constant signals for x and y. It would be possible to introduce
just one operatornew to replacepre andwhen:

Sample = time >= SampleTime;
new(SampleTime, Sample) = time + DT;
new(x, Sample) = a*x + b*u;
new(y, Sample) = c*x + d*u;

We notice that in all cases, we have to repeat the sampling condition in many places.
For this reason, in Modelica a grouping mechanism is used where the sampling con-
dition is only mentioned once:

Hybrid Modeling in Modelica 21

when Time >= pre (SampleTime) then
SampleTime = time + DT;
x = a* pre (x) + b*u;
y = c* pre (x) + d*u;

end when ;

Alternatively, the dualnew operator could be used as:
when time >= SampleTime then

new(SampleTime) = time + DT;
new(x) = a*x + b*u;
y = c*x + d*u;

end when ;

This is similar in spirit to thewith statement for accessing components of a record in,
for example, Pascal. In that case using dot-notation everywhere is avoided.

The equations in a when-clause can be viewed in two ways: (1) An equation is
always valid and sampling of signals is done when the condition becomes true. (2)
An equation is only valid, i.e., it is activated, when the condition becomes true (in-
stantaneous equation). This corresponds to the reality in a computer control algorithm
where the statements are only executed at certain time instances.

Basically, thepre andnew operator are equivalent and it is always possible to au-
tomatically transform a model written with thepre operator into an equivalent model
using thenew operator. It was decided to introduce thepre operator in Modelica.

10. Conclusions

Modelica is based on synchronous differential, algebraic and discrete equations,
leading to a unified mathematical description of continuous time and discrete event
parts of a model. Ideal switching elements, such as ideal diodes, can be described in
Modelica using the technique of parameterized curves and Modelica tools can sim-
ulate such models in an efficient and reliable way. Normal Petri nets can be imple-
mented by place and transition objects with appropriate communication.

Acknowledgements

The authors would like to thank the other members of the Modelica Association
for inspiring discussions and their contributions to the Modelica design.

11. References

[ÅST 96] ÅSTRÖM K., WITTENMARK B., Computer-Controlled Systems — Theory and De-
sign, Prentice Hall, 3 edition, 1996.

[BAR 92] BARTON P., “The Modelling and Simulation of Combined Discrete/Continuous Pro-
cesses”, PhD thesis, University of London, Imperial College, 1992.

22 APII – JESA. Volume 35 - nÆ 1/2001

[CLA 95] CLAUSS C., HAASE J., KURTH G., SCHWARZ P., “Extended Amittance Descrip-
tion of Nonlinear n-Poles”,Archiv für Elektronik und Übertragungstechnik / International
Journal of Electronics and Communications, vol. 40, 1995, p. 91–97.

[DYM] D YMOLA , “Dynasim AB, Lund, Sweden, Homepage: http://www.dynasim.se/.”.

[ELM 92] ELMQVIST H., “An Object and Data-Flow based Visual Language for Process Con-
trol”, ISA/92-Canada Conference & Exhibit, Toronto, Canada, 1992, Instrument Society
of America.

[ELM 93] ELMQVIST H., CELLIER F., OTTER M., “Object–Oriented Modeling of Hybrid
Systems”,Proceedings ESS’93, European Simulation Symposium, Delft, The Netherlands,
1993, Society for Computer Simulation International, p. xxxi-xli.

[GAU 94] GAUTIER T., GUERNIC P. L., MAFFEISO., “For a New Real-Time Methodology”,
Publication Interne No. 870, Institut de Recherche en Informatique et Systemes Aleatoires,
Campus de Beaulieu, 35042 Rennes Cedex, France, 1994.

[HAL 91] H ALBWACHS N., CASPI P., RAYMOND P., PILAUD D., “The synchronous data
flow programming language LUSTRE”,Proc. of the IEEE, vol. 79, 1991, p. 1305–1321.

[HAL 93] H ALBWACHS N., Synchronous Programming of Reactive Systems, Kluwer, 1993.

[HAR 87] HAREL D., “Statecharts: A Visual Formalism for Complex Systems”,Science of
Computer Programming, vol. 8, 1987, p. 231–274.

[Int 93] INTERNATIONAL ELECTROTECHNICAL COMMISSION, International Standard IEC
1131 Programmable Controllers, Part 3, Programming Languages, IEC, Geneva, 1993.

[LÖT 82] LÖTSTEDT P., “Mechanical systems of rigid bodies subject to unilateral con-
straints”,SIAM J. Appl. Math., vol. 42, 1982, p. 281–296.

[MAT 99] M ATTSSON S. E., OTTER M., ELMQVIST H., “Modelica hybrid modeling and
efficient simulation”, Proceedings of the 38th IEEE Conference on Decision and Control,
Phoenix, Arizona, USA, Dec 1999, p. 3502–3507, Invited session paper.

[MOD 00] MODELICA, “A unified object-oriented language for physical systems model-
ing”, Modelica homepage: http://www.Modelica.org/current/ModelicaSpecification14.pdf,
2000.

[MOS 96] MOSTERMAN P., BISWAS G., “A Formal Hybrid Modeling Scheme for Handling
Discontinuities in Physical System Models”,Proceedings of AAAI-96, Portland, OR, USA,
1996, p. 985–990.

[MOS 98] MOSTERMANP., OTTER M., ELMQVIST H., “Modeling Petri Nets as Local Con-
straint Equations for Hybrid Systems using Modelica”,SCSC’98, Reno, Nevada, USA,
1998, Society for Computer Simulation International, p. 314–319.

[OTT 99] OTTER M., ELMQVIST H., MATTSSON S. E., “Hybrid Modeling in Modelica
Based on the Synchronous Data Flow Principle”,Proceedings of the 1999 IEEE Sym-
posium on Computer-Aided Control System Design, CACSD’99, Hawaii, USA, Aug 1999,
IEEE Control Systems Society.

[PFE 96] PFEIFFERF., GLOCKER C., Multibody Dynamics with Unilateral Contacts, John
Wiley, 1996.

[REM 00] REMELHE M. A. P., “Abbildung von State Charts in einen Modelica Algorithmus”,
report , 2000, Lehrstuhl für Anlagensteuerungstechnik, Universität Dortmund, Germany.

[SCH 98] SCHUHMACHER J. M., VAN DER SCHAFT A. J., “Complementarity Modeling of
Hybrid Systems”,IEEE Transactions on Automatic Control, vol. 43, 1998, p. 483–490.

