

NEWS FROM SWIM IN SPACE

Frank Morlang

German Aerospace Center DLR, Lilienthalplatz 7, 38108 Braunschweig, Germany, frank.morlang@dlr.de

ABSTRACT

All the future air traffic participants are requested to act
as system wide information management (SWIM)
communicating sub-systems by the future Single
European Sky Air Traffic Management Research
(SESAR) SWIM "Intranet for ATM" concept. Against
the background of the global character of future
commercial space transportation (CST) operations and
the associated SWIM harmonization need referring the
U.S. Next Generation Air Transportation System
(NextGen) and SESAR, a first solution based on the
already harmonized data format standards Aeronautical
Information Exchange Model (AIXM) and Flight
Information Exchange Model (FIXM) had been realised
in the Tool Command Language (Tcl). The new
version’s improved performance by the usage of a C
code runtime embedding module, a data representation
proposal for vehicle specific hazard area information as
well as the way for flexible extensions and
enhancements in the future by a fundament for mixed
language programming additions are presented.

1. INTRODUCTION

The SWIM ideology can be abstracted as the enabler of
data delivery at the right time to the right people in
terms of quality information that is commonly
understood, achieved with the help of open standards
based on service oriented architecture (SOA). Facing
the integration challenge of space traffic in the current
Air Traffic Management (ATM) needs SWIM
compliancy of future commercial space transportation
(CST) vehicles having “landing like an aircraft at an
airport” characteristics.

2. THE SOLUTION ENHANCEMENT

2.1. Performance Improvement

A greater than 30% performance (Fig. 1 and Fig. 2)
improvement was successfully realised by replacing the
CalculateHeading and CalculateHazardZone Tcl
procedures by C code, benefiting from the "Compiled
Runtime In Tcl" (CriTcl) package [1][2]. It is a self-
contained package to build C code into an extension on
the fly, making it possible to wrap C code into cached
chunks which compile into a Tcl extension. This allows
the usage of embedded C code like callable Tcl
procedures.

Figure 1. Pure Tcl performance

Figure 2. Performance with CriTcl

The principle is exemplarily shown in Fig. 3 to Fig. 5 by
means of the CalculateHeading procedure. An
equivalent in C only needs integration in the Tcl source
code and can be easily switched to this alternative by
commenting out the invocation of the original Tcl
procedure. While the C function compiling needs a few
seconds when running the first time, starting without
code modifications does not need that time, just loading
of the corresponding shared library, which was
generated and cached during the compilation process, is
requested. An also cached MD5 checksum of the source
code is used to identify if recompiling is needed, which
results in an almost instantaneous start behaviour of
subsequent runs.

Figure 3. CalculateHeading procedure in Tcl

Figure 4. CalculateHeading procedure in C using

CriTcl

Figure 5. Simple switching from Tcl to C in the Tcl main

file

Although the Simplified Wrapper and Interface
Generator (SWIG), driven by its high level of
automation, was taken into consideration as a tool to
glue Tcl and C [3], CriTcl was chosen, because it is a
loadable package for Tcl itself, thus fitting better in the
Tcl extension structure and making the whole solution
easier to deploy.

2.2. Data Representation

The paper proposes vehicle specific hazard area
information to be stored and managed as a
representation of data with the extensible markup
language (XML) according to Fig. 6 and Fig. 7.
Although this representation has a data-centric
character, which is usually associated with XML-
enabled databases [4], a native XML database (NXD)
called BaseX1, using XML documents as the
fundamental unit of storage, was chosen because of the
following reasons:

• Planned service output enrichment of the
SpacecraftReentryHazardAreaServer might
turn the data representation to a document-
centric character, usually associated with NXD
[4].

1 www.basex.org

• It provides handling of multi user write and
simultaneous read operations based on a
client/server architecture with future usage
potential towards database splits, where a
server dedicated to a subset of clients will only
store data related to these clients.

• It offers a wide range of interfaces.

Figure 6. Hazard area description example in xml

Figure 7. Hazard areas’ representation of two

spacecrafts

A first database connection test setup was successfully
realised, benefiting from the “BaseXClient-Tcl”
package of Danilo Chang2, which uses the BaseX server
protocol to communicate with the database server.

2 https://github.com/ray2501/BaseXClient-Tcl

2.3. Flexibility For The Future

Scalability

Although the prototype’s single system performance is
sufficient for most small and medium sized cases (Fig.
8), considerations were taken how to make the solution
scale better. A first version of a SWIM asset connector
proxy was developed that works on top of the prototype
solution servers (Fig. 9).

Figure 8. Performance with CriTcl for larger numbers

of connected clients

Figure 9. Proxy application that works on top of servers

A single interface is exposed and points clients to the
appropriate servers by sending the requests to target
servers and passing the results back to the callers. The
realisation benefits from a remote communication
facility application programming interface (API) for Tcl
called “comm”, part of the standard collection of utility
modules for Tcl called “Tcllib”. This API provides an
inter-interpreter remote execution facility with control
over the remote execution path. If needed, the SWIM
asset connector proxy is able to remotely start a new
server instance as well as to automatically actualise a
list of channel connections. Asynchronous result
generation is implemented by the technique of having a
remotely invoked command indicate that it will not
deliver an immediate, synchronous result. Thus the
proxy can continue processing further requests with no
blocking and no nesting of event loops. The code
realisation consists of the two procedures shown in Fig.
10. The forward procedure takes the next target server

as the first argument and the other arguments are
processed as commands to be passed to that target
server, setting up the asynchronous return command to
be used in the forwardReturner procedure, where the
result is just passed back to the caller of the forward
procedure.

Figure 10. Realisation of asynchronous operations

invocation

Mixed language programming

The way for flexible extensions and enhancements in
the future is paved by the fact that the prototype solution
bases on a solid, mature and evolving cross-platform
fundament for mixed language programming additions
because of the following reasons:

• Tcl’s cross-platform high-level API permits
written code working on a wide range of Unix /
Linux platforms, Macintosh and Windows.

• According to its roots in 1988 (version 1.0) and

the fact that new features are still being added
under active development (latest release:
version 8.6.6 as of July 27th, 2016), Tcl/Tk
benefits from both, being mature and evolving.

• Interfacing with other programming languages
is possible by taking advantage of the fact that
Tcl interfaces natively with the C language on
the one hand and has associated bridging
extension modules on the other hand, e.g.
loading a Java interpreter into an existing Tcl
process for using functionality implemented in
Java [5].

3. OUTLOOK

Currently, the SpacecraftReentryHazardAreaServer
solution consumes the aircraft state data within the
Flight Object FIXM message and publishes the hazard
area as temporary flight restriction (TFR) airspace
output using AIXM version 5.1 for consumption and
display by other interested parties. Enrichment of this
output is planned in terms of delivering air traffic
information about flights that will interfere with the
hazard area and might need special attention.
Realisation is foreseen to benefit from using the
FlightXML 2.0 API for fetching relevant information
from Flight Aware’s hyperfeed [6].

4. SUMMARY

The paper presents the improved performance by the
usage of a C code runtime embedding module of the
SpacecraftReentryHazardAreaServer’s new version. A
data representation proposal of vehicle specific hazard
area information based on a native XML database is
introduced and justified. Flexibility for the future is
addressed by a SWIM asset connector proxy realisation
working on top of servers for facing possible future
scalability needs. An outlook is given to enrich the
service output with hazard area surrounding air traffic
information.

9. REFERENCES

1. Landers, S. & Wippler, J-C. (2002). CriTcl -

Beyond Stubs and Compilers. In Proc. 9th.
Annual Tcl/Tk Conference, Tcl Community
Association, Vancouver, Canada.

2. Kupries, A. (2016). C Runtime In Tcl. In
Proc.23rd. Annual Tcl/Tk Conference, Tcl
Community Association, Texas, USA.

3. Beazley, David M. (1998). Tcl and SWIG
as a C/C++ Development Tool,
http://www.swig.org/doc.html

4. Pavlovic-Lazetic, G. (2007). Native XML
databases vs. relational databases in dealing
with XML documents. Kragujevac Journal of
Mathematics. 30(2007), 181-199.

5. B. Johnson, T. Pointdexter and D. Bodoh.
2011. JTcl and Swank: What's new with Tcl
and Tk on the JVM. Proc. of 18th Annual
Tcl/Tk Conference. (Oct. 2011),
http://www.tclcommunityassociation.org/wub/
proceedings/Proceedings-2011.html

6. Conn, Z. (2016). Hyperfeed: FlightAware’s
parallel flight tracking engine. In Proc.23rd.
Annual Tcl/Tk Conference, Tcl Community
Association, Texas, USA.

	1. INTRODUCTION
	The SWIM ideology can be abstracted as the enabler of data delivery at the right time to the right people in terms of quality information that is commonly understood, achieved with the help of open standards based on service oriented architecture (SOA...
	2. THE SOLUTION ENHANCEMENT
	2.1. Performance Improvement
	2.2. Data Representation
	2.3. Flexibility For The Future
	Scalability
	Mixed language programming

	3. OUTLOOK
	4. SUMMARY

