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As a response to lift, a complex flow pattern is shed from the wings of an aircraft that evolves into a 
pair of counter-rotating vortices. Due to the rolling momentum that the vortices may induce and the 
forces that they can exert they pose a potential hazard to following air traffic. To avoid dangerous 
incidents fast-time wake vortex models have been developed in the past that predict the vortex 
position and strength dependent on aircraft parameters and ambient conditions. This thesis 
investigates the capability to further enhance wake vortex forecasts by combining various 
independent models in a Multi-Model Ensemble, which has shown to increase the deterministic 
forecast skill and generate reliable probabilistic predictions in other applications. Therefore the fast-
time models of NASA (APA 3.2, APA 3.4, TDP 2.1) and DLR (D2P) are combined by the methods 
Direct Ensemble Averaging, Reliability Ensemble Averaging and Bayesian Model Averaging. The 
ensemble output is validated with wake vortex measurements and compared to the respective best 
model. 
 
 
 
 
 
Wirbelschleppen, Vorhersage, Multi-Model Ensemble, Direct Ensemble Averaging, Reliability 
Ensemble Averaging, Bayesian Model Averaging, Wirbelschleppenmessungen 

(Published in English) 
Stephan KÖRNER 
Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen 

 
Multi-Model Ensemble Wirbelschleppenvorhersagen 
 
Dissertation Rheinisch-Westfälische Technische Hochschule Aachen 

DLR-Forschungsbericht 2017-44, 2017, 155 Seiten, 96 Bilder, 33 Tabellen, 162 Literaturstellen, 
36.00 € zzgl. MwSt. 
 
Als Folge des Auftriebs entsteht hinter den Tragflächen eines Flugzeugs ein komplexes 
Strömungsfeld, welches sich im Weiteren zu einem gegensinnig rotierenden Wirbelpaar formiert. 
Aufgrund des Rollmomentes, welches die Wirbel induzieren können, stellen sie eine potentielle 
Gefahr für den nachfolgenden Luftverkehr dar. Um gefährliche Zwischenfälle zu vermeiden, 
wurden in der Vergangenheit Wirbelschleppenmodelle entwickelt, welche in Abhängigkeit der 
meteorologischen Bedingungen und der Flugzeugparameter die Position und Stärke der Wirbel 
vorhersagen können. Diese Arbeit untersucht, ob die Vorhersage durch Kombination 
verschiedener unabhängiger Modelle in einem Multi-Model Ensemble weiter verbessert werden 
kann. Dieser Ansatz konnte bei anderen Anwendungen die Genauigkeit der deterministischen 
Vorhersagen erhöhen und verlässliche probabilististische Vorhersagen generieren. Dazu werden 
Modelle der NASA (APA 3.2, APA 3.4, TDP 2.1) und des DLR (D2P) mit den Methoden 
Direct Ensemble Averaging, Reliability Ensemble Averaging und Bayesian Model Averaging 
kombiniert. Die Ensemble-Vorhersagen werden anhand von Wirbelschleppenmessungen validiert 
und dem jeweils besten Modell gegenübergestellt.  
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Abstract

As a response to lift, a complex flow pattern is shed from the wings of an aircraft that evolves
into a pair of counter-rotating vortices. Their behavior is strongly influenced by the atmosphere
and further underlies a complex interaction with the ground. Due to the rolling momentum
that the vortices may induce and the forces that they can exert they pose a potential hazard to
following air traffic, especially along the glide path and in ground proximity. To avoid dangerous
incidents, separation regulations based on aircraft mass exist that is currently under revision in
the context of RECAT. However, air traffic is expected to further increase in the future, making
wake vortex encounters more likely. For this reason fast-time wake vortex models have been
developed in the past that predict the vortex position and strength dependent on the aircraft
parameters and the ambient conditions in order to avoid dangerous situations. Furthermore,
they may reduce flight delays at congested airports as they allow adapting overly conservative
separations tactically under certain conditions. However, forecasts include uncertainties that
originate from inaccurate and highly variable initial and ambient conditions as well as from
inadequate understanding and simplification of the underlying physics. As a consequence,
deterministic forecasts are to be complemented by probabilistic envelopes.

In the field of meteorology such envelopes are frequently computed by combining the fore-
casts of multiple independent models to quantify the model uncertainty. This approach, also
known as Multi-Model Ensemble (MME), has not only shown to increase the reliability of the
probabilistic forecast but also to enhance its deterministic skill. For this reason the capability
of the MME approach to improve both deterministic and probabilistic wake vortex forecasts
is assessed and existing approaches are further developed in this thesis. Three of the ensem-
ble members have been provided in the frame of a NASA-DLR cooperation. The employed
models comprise APA 3.2, APA 3.4 and TDP 2.1 (NASA) and are combined with the DLR
model D2P. Several MME approaches are examined, comprising the Direct Ensemble Average,
the Reliability Ensemble Averaging (REA) and the Bayesian Model Average (BMA), where
the BMA outperforms the other ensemble methods. It is found that the model deviations
from observations increase with time and that only a temporal treatment of model uncertainty
enables reliable probabilistic envelopes at any vortex age.

Data collected during campaigns at the airports of Munich, Frankfurt, special airport Oberp-
faffenhofen, Memphis and Dallas serve to train and to evaluate the ensemble predictions. This
research concludes that a well balanced MME based on the BMA may indeed outperform the
best individual model predictions in a deterministic manner by up to 3.3%. Additionally, it is
demonstrated that the BMA approach is also beneficial to probabilistic forecasts where the
agreement between selected and observed probability level deviates by less than 4%. This
demonstrates that the forecast uncertainty can be adequately predicted.

Moreover, this thesis aims at a further analysis of wake vortex physics, at confirming findings
from Large-Eddy Simulations and at further improving the forecast of the DLR model D2P.

vii



viii ABSTRACT

For this purpose newly captured wake vortex measurements that comprise a variety of vortex
generation altitudes are evaluated. Evidence is found that the vortex-ground interaction already
starts at higher altitudes than expected. It is also demonstrated that vortex decay is accelerated
for vortices generated at low altitudes. Eventually, it is shown that the decay of the lee vortex
is enhanced by increasing crosswind.



Kurzfassung

Als Folge des Auftriebs entsteht hinter den Tragflächen eines Flugzeugs ein komplexes Strö-
mungsfeld, welches sich zu einem gegensinnig rotierenden Wirbelpaar entwickelt. Das Verhal-
ten der beiden Wirbel hängt stark von den atmosphärischen Bedingungen ab und ist zusätzlich
durch eine komplexe Interaktion mit dem Boden geprägt. Aufgrund des Rollmomentes, welches
die Wirbel induzieren können, stellen sie besonders im Gleitpfad und in Bodennähe eine po-
tentielle Gefahr für den nachfolgenden Luftverkehr dar. Um gefährliche Zwischenfälle zu ver-
meiden wurden Standards für die Staffelungen an Flughäfen eingeführt, welche momentan
im Rahmen von RECAT überarbeitet werden. Allerdings wird erwartet, dass der weltweite
Flugverkehr weiter steigen und damit die Wahrscheinlichkeit von Wirbelschleppeneinflügen
erhöht wird. Deshalb wurden in der Vergangenheit Wirbelschleppenmodelle entwickelt, welche
in Abhängigkeit der meteorologischen Bedingungen und der Flugzeugparameter die Position
und Stärke der Wirbel vorhersagen können. Ihre Prognosen können sowohl zu einer erhöhten
Sicherheit als auch zu geringeren Verspätungen auf überfüllten Flughäfen beitragen, indem sie
unter bestimmten Bedingungen eine Anpassung nicht ausreichender oder übermäßig konserva-
tiver Staffelungsabstände ermöglichen. Die Vorhersagen beinhalten allerdings Unsicherheiten,
welche sowohl von nicht ausreichendem Verständnis der Physik als auch von stark schwank-
enden Anfangs- und Umgebungsbedingungen stammen. Aus diesem Grund ist es sinnvoll
deterministische Prognosen mit probabilistischen Einhüllenden zu ergänzen.

Für deren Berechnung werden in der Meteorologie oft die Vorhersagen verschiedener un-
abhängiger Einzelmodelle kombiniert um so die Modellunsicherheit zu quantifizieren. Dieser
Ansatz wird auch als Multi-Model Ensemble (MME) bezeichnet. Er hat bewiesen, dass er
sowohl die Verlässlichkeit der probabilistischen Vorhersagen als auch die Genauigkeit der de-
terministischen Prognosen steigern kann.

Aus diesem Grund wird in dieser Dissertation untersucht, ob die deterministischen und prob-
abilistischen Prognosen durch speziell angepasste MME-Ansätze verbessert werden können.
Die im Rahmen einer Kooperation zwischen NASA und DLR zur Verfügung gestellten drei
Amerikanischen Wirbelschleppenmodelle APA 3.2, APA 3.4 und TDP 2.1 werden dafür mit
dem DLR Modell D2P kombiniert. Als verschiedene Ansätze werden der Direct Ensemble
Average (DEA), das Reliability Ensemble Averaging (REA) und das Bayesian Model Average
(BMA) untersucht. Als am geeignetsten stellt sich dabei der BMA-Ansatz heraus. Es zeigt
sich, dass die Abweichungen der Modellvorhersagen von den Beobachtungen mit dem Wirbe-
lalter zunehmen, sodass nur eine zeitabhängige Ensemble-Parametrisierung für durchgehend
alle Wirbelalter verlässliche Prognosen liefert.

Um das Ensemble zu trainieren und zu testen werden Wirbelmessungen von den Flughäfen
München, Frankfurt, Oberpfaffenhofen, Memphis und Dallas genutzt. Die Untersuchungen
zeigen, dass ein gut ausbalanciertes BMA-Ensemble tatsächlich im Schnitt um 3.3% bessere de-
terministische Vorhersagen als das beste Einzelmodell treffen kann. Außerdem wird aufgezeigt,
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x KURZFASSUNG

dass durch den BMA Ansatz probabilistische Vorhersagen erzeugt werden können, deren Ein-
treten zu weniger als 4% vom beobachteten Wirbelverhalten abweicht.

Des Weiteren beschäftigt sich diese Thesis mit der Analyse der Wirbelphysik anhand neu aus-
gewerteter Daten, mit deren Vergleich mit Large-Eddy Simulationen und mit der Verbesserung
der Vorhersagen des DLR Modells D2P. Dazu werden die gemessenen Landungen in ver-
schiedene Wirbelgenerierungshöhen eingeteilt. Daraus ergeben sich Hinweise, dass die Inter-
aktion der Wirbel mit dem Boden bereits in größeren Höhen als bisher vermutet beginnt.
Außerdem wird gezeigt, dass der Wirbelzerfall niedrig erzeugter Wirbel schneller erfolgt als bei
höher erzeugten. Zudem wird bestätigt, dass der Lee-Wirbel einen schnelleren Zerfall als der
Luv-Wirbel aufweist.
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Nomenclature

A event A
AD2P tuning constant in D2P
AO area of vortex oval
b vortex spacing, m
Bi bias
B event B
C turbulence proportionality constant
C1 constant in APA model to describe vortex decay
Cumin minimum speed coefficient
dA surface segment
ds curve segment
Di absolute distance to ensemble mean

f̃ ensemble forecast
f+ upper ensemble uncertainty limit
f− lower ensemble uncertainty limit
fi forecast of ith model
FL lifting force, N
g gravitational acceleration, m/s2

gi(y|fi) probability density function of forecast
I Impulse
K parameter in APA model to describe vortex spacing
l0 integral length scale of the turbulence, m
L likelihood function
m weighting factor for RB,i

Mi statistical model
Mc parameter in APA model to describe vortex decay
n weighting factor for RD,i

N Brunt-Väisälä frequency, 1/s
nv natural variability
p(y) probability of forecast y
pobs observed coverage
pnom nominal forecast probability
P (A) probability that A occurs
P (A|B) probability that A occurs, given B
P (B) probability that B occurs
q turbulence velocity, m/s
r radius, m

xv



xvi Nomenclature

rc vortex core radius, m
rl lower radius
ru upper radius
R mean radius
RB,i reliability factor (considering model bias)
RD,i reliability factor (considering model convergence)
Ri total reliability factor
si,p relative skill measure
si relative skill measure, averaged over all parameters
sl load factor
t vortex age, s
tg time at which vortices reach minimum height, s
Tc time at which a catastrophic demise event occurs, s
T1 age of the vortices at t = 0 s in D2P, s
T2 time at which rapid decay starts in D2P, s
u headwind, m/s
uac aircraft airspeed, m/s
udDES descent speed increment, m/s
ustall stall speed, m/s
v crosswind, m/s
V flow velocity, m/s
V∞ undisturbed flow velocity
Vθ tangential velocity, m/s
w vortex descent speed, m/s
wi weight
y lateral position of vortex core, m
yT training data
z vertical position of vortex core, m

ẑ
(j)
i,t unobserved quantity

Greek letters
α constant in APA model to describe vortex spacing
β vortex core diffusion parameter
Γ circulation, m2/s
dΓD decay contribution from turbulence diffusion in TDP, m2/s
dΓL decay contribution from linking instability in TDP, m2/s
dΓS decay contribution from stratification in TDP, m2/s

δ̃f ensemble forecast uncertainty
ε eddy dissipation rate, m2/s3

θ potential temperature, K
µ distribution mean
µ̃ distribution mean in preconditioning step
ν kinematic viscosity, m2/s
ν1 effective viscosity, m2/s
ν2 effective viscosity in rapid decay phase, m2/s
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ρ fluid density, kg/m3

ρ̃ collective reliability
σ standard deviation
σ̃ standard deviation in preconditioning step
σobs variability observed in measurements
σerr LiDAR measurement error
σnv natural variability of vortices
ω vorticity, 1/s

Subscript
e ensemble approach number
i model number
I number of models
n number of observations
o observation
p parameter
t∗ vortex-age dependent treatment
0 initial value

Superscript
(j) iteration number
∗ normalized quantity
’ fluctuation velocity

Abbreviations
APA AVOSS Prediction Algorithm
AVOSS Aircraft Vortex Spacing System
AWIATOR Aircraft Wing with Advanced Technology Operation
BMA Bayesian Model Averaging
CAT Clear Air Turbulence
DEA Direct Ensemble Average
DFS Deutsche Flugsicherung
DLR Deutsches Zentrum für Luft- und Raumfahrt
D2P Deterministic Two-Phase wake vortex model
EDR Eddy Dissipation Rate
EM Expectation-Maximization
FAA Federal Aviation Administration
HH heavy leader, heavy follower
HM heavy leader, medium follower
ICE Initial Condition Ensemble
IFR Instrument Flight Rules
IGE In-Ground-Effect
LES Large Eddy Simulation
LiDAR Light Detection and Ranging
LOS Line Of Sight
MCS Monte Carlo Simulation
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MLW Maximum Landing Weight
MME Multi-Model Ensemble
NASA National Aeronautics and Space Administration
NATS National Air Traffic Services
NGE Near-Ground-Effect
OEW Operational Empty Weight
OGE Out-of-Ground-Effect
PDF Probability Density Function
PPE Perturbed Physics Ensemble
prt port
P2P Probabilistic Two-Phase wake vortex model
RANS Reynolds-Averaged-Navier-Stokes
RASS Radio Acoustic Sounding System
RCR Roll Control Ratio
REA Reliability Ensemble Average
RMSE Root Mean Square Error
RS Radar Separation
SHAPe Simplified Hazard Area Prediction
SoDAR Sonic Detection And Ranging
stb starboard
TASS Terminal Area Simulation System
TBO Trajectory Based Operations
TBS Time Based Separation
TDP TASS Driven Algorithms for Wake Prediction
TKE Turbulent Kinetic Energy
USA Ultrasonic Anemometer
UTC Coordinated Universal Time
VFR Visual Flight Rules
WEAA Wake Encounter Avoidance and Advisory
WSVBS Wirbelschleppen Vorhersage- und Beobachtungssystem

(Wake Vortex Prediction and Monitoring System)
WVAS Wake Vortex Advisory System



1. Introduction

1.1 Motivation

Steadily increasing air traffic is a challenge for air traffic controllers, airports, air carriers, and
pilots. Safe operations may be threatened by wake vortices [1] which can be encountered en-
route, during departures and arrivals, and particularly in ground proximity, limiting the capacity
of runways and posing a potential risk to aircraft. Generated at the wings of aircraft as a
response to lift wake turbulence may induce a hazardous rolling momentum or vertical force
to any follower. Dangerous situations can occur when wake vortices hover in the glide path
corridor, drift to parallel runways and live longer than expected. Especially at low altitudes
during final approach, where the pilots do not have much time to take countermeasures to
a vortex-induced rolling momentum, it is crucial to ensure that the vortices of the preceding
aircraft have been transported out of the glide path or have decayed to an appropriate strength.
Both decay and transport are affected by atmospheric parameters, such as wind conditions,
thermal stratification, shear layers, and turbulence. As global air traffic is estimated to double
in the next 15 years [2] with regional growth rates over 4% (see Table 1.1) the risk to encounter
wake vortices both in terminal area but also in-flight [3] is increased.

As regulatory wake vortex separation distances are one of the bottlenecks of airport capacity,
the air-traffic organizations decided to recategorize the separation standards. So far four
wake categories, depending on the mass of an aircraft, have been distinguished in the ICAO
standards. In the RECAT-EU project it is now split into six clusters, depending on both mass
and wing span. Increasing the number of categories allows to decrease the aircraft separations
while maintaining the existing safety standards. A similar recategorization has already been
implemented by the FAA in the USA at the airports of Memphis, Louisville, Cincinnati and
Atlanta with further airports to follow [4]. This progression emphasizes the need for more
precise tools to adjust aircraft separation tactically in order to avoid airport congestion.

Large-Eddy Simulations (LES) [5–8], wind tunnel [9, 10] and water-towing laboratory ex-
periments [11, 12] may contribute to a better understanding of the underlying physics and
destruction mechanisms of wake vortices. Nevertheless, to increase the safety at airports and
in-flight as well as to enable a tactical adaption of the separations, fast-time forecasts are
required.

Various fast-time wake vortex models have been developed in the past to achieve a tactical
capacity and safety gain [13–20]. These are simplified models, which are often trained with
measurement data or LES output in order to calibrate the model forecasts.

Depending on the ambient conditions, the forecast quality of the wake vortex models varies
due to different underlying physics and due to the diverse data that the models have been
trained with. The evaluation of wake vortex forecasts, based on observations by LiDAR (Light
Detection And Ranging), reveals significant uncertainty in the output of deterministic fore-

1
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casts. Firstly, the stochastic and intermittent behavior of the atmospheric turbulence renders
the required input parameters uncertain. Secondly, the turbulent vortex decay and interaction
with the ground, during which three-dimensional structures can be generated that cannot be
resolved by the models, gives raise to the so-called natural variability of wake vortex behavior.
To cover these uncertainties, deterministic forecasts are not sufficient. For this purpose proba-
bilistic predictions, providing uncertainty envelopes for various uncertainty levels, are required
in practice.

Several studies, many of them conducted in the field of meteorology, demonstrated that in
such situations the combination of various independent models may be beneficial to increase
the prediction skill. This approach is known as Multi-Model Ensemble (MME). It is not only
advantageous for the deterministic forecast skill, but it also enables the estimation of proba-
bilistic envelopes for the forecasted parameters. The rationale of the MME is to incorporate
the model uncertainty in the projections, based on the spread of prognoses between the models.

For this reason the models D2P [15, 16, 18], APA 3.2, APA 3.4 [14], and TDP 2.1 [17, 21]
have been provided in the context of a NASA-DLR cooperation to investigate the capabilities
of a MME to improve the deterministic wake vortex forecast and provide robust probabilistic
projections. However, the temporal forecast horizon of weather forecasts, where the MME is
common, is on the order of days, while it is on the order of a few minutes for wake vortex
forecasts. The success of applying this approach to wake vortex projections for this reason is
not self-evident. Therefore, the ensemble skill is to be compared to the performance of its
individual members.

To ensure that the results are statistically significant, a sufficiently large amount of wake
vortex field measurements is required. For this purpose the WakeMUC campaign [22] is eval-
uated and used for the development of the MME. Additionally, data from field experiments at
Frankfurt (WakeFRA) [23], special airport Oberpfaffenhofen (WakeOP) [22], Dallas (DFW97)
and Memphis (MEM95) [24] airport are employed. Eventually, it shall be assessed whether
the MME approach bears the chance of covering rare but dangerous wake vortex cases under
the assumption that the ensemble members are experts on different fields.

Table 1.1.: Estimated average annual growth of air traffic (number of direct flights) between
the years 2012 and 2035 [25].

region annual growth [%]
North-Atlantic 1.0
Mid-Atlantic 1.9
South-Atlantic 2.1
Europe 1.3
North-Africa 3.8
Southern Africa 3.4
Middle-East 3.6
Asia/Pacific 4.1
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1.2 State of the Art

1.2.1 Separation standards

Today aircraft separation regulations follow the ICAO rules which are based on the weight ratio
of the leading and following aircraft. Three weight classes exist: Heavy, Medium and Light.
Additionally, special separation must be followed for the Airbus A380. The corresponding
separation standards in nautical miles are listed in Table 1.2. If no wake vortex separation
is required, radar separation of either 3 NM, or 2.5 NM is applied [1]. The reduced radar
separation may only be applied if a radar with appropriate range resolution is available, if
the runway occupancy time does not exceed 50 s, if braking action is reported as good, if
weather and runway conditions are appropriate and if the approach speeds are monitored by
the controller [26].

Table 1.2.: ICAO aircraft separation in nautical miles (NM) during approach and departure
[27]. RS denotes the radar separation which is either 3 NM or 2.5 NM. The
weights correspond to the maximum take-off masses.

Leading aircraft
Following aircraft A380-800 Heavy Medium Light
A380-800 (ca. 560.000 kg) RS RS RS RS
Heavy (≥ 136.000 kg) 6 4 RS RS
Medium (≥ 7.000 kg, < 136.000 kg) 7 5 RS RS
Light (< 7.000 kg) 8 6 5 RS

As these standards are empirical and believed to be over-conservative [1] a recategorization
has been elaborated to increase the runway throughput by more precise separations while the
safety levels are maintained [27]. Therefore, the Heavy and Medium categories are split into
Upper and Lower within the context of RECAT-EU. Additionally, the category Super Heavy is
introduced, which contains the A380 and the AN-124 aircraft. Furthermore, the weight classes
were revised, but in contrast to the ICAO standards the categorization of single aircraft types
does not solely depend on the maximum take-off weight but also on the wingspan (Table 1.3).
Table 1.4 shows the consequential new separation distances. It is estimated that these new
standards may achieve throughput benefits of up to 5% during traffic peaks [27]. The first
airports at which these six new categories have been applied (since 22nd of March 2016) were
LFPG/Paris Charles de Gaulle and LFPB/Paris Le Bourget [28].

Besides, NATS implemented Time-Based-Separation (TBS) at the London Heathrow air-
port [30]. Strong headwinds lead to decreased speed over ground and increased temporal
separations, such that airport capacity is reduced. TBS ensures that the time between the
landings, rather than the distance, stays constant to maintain the capacity. NATS found that
headwind accelerates vortex dissipation so that the safety levels can be maintained likewise [31].
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Table 1.3.: RECAT-EU subcategorization [27].

category MTOW subcategory wingspan
Heavy ≥ 100.000 kg Super > 72 m

Upper > 60 m, < 72 m
Lower/Upper > 52 m, < 60 m

Lower < 52 m
Medium > 15.000 kg, < 100.000 kg Upper > 32 m

Lower < 32 m
Light ≤ 15.000 kg – –

Table 1.4.: RECAT-EU aircraft separation scheme for approach and departure with distances
in nautical miles (NM) [27, 29]. RS denotes the radar separation which is either 3
NM or 2.5 NM.

Leading aircraft
A B C D E F

Super Upper Lower Upper Lower
Following aircraft Heavy Heavy Heavy Medium Medium Light

A Super Heavy 3 RS RS RS RS RS
B Upper Heavy 4 3 RS RS RS RS
C Lower Heavy 5 4 3 RS RS RS
D Upper Medium 5 4 3 RS RS RS
E Lower Medium 6 5 4 RS RS RS
F Light 8 7 6 5 4 3

1.2.2 Wake vortex alleviation

Independent of the current separations standards, various measures have been assessed to
further reduce the likelihood of wake vortex encounters. One of them is the reduction of the
vortex strength. This is especially interesting for aircraft manufacturers who want to design
heavy aircraft without increasing the separations required at airports [1].

Gerz et al. [1] distinguish two basic strategies. The first aims at producing less harmful
vortices. Therefore, Stumpf [6] accomplished LES simulations to investigate a vortex-topology
that results in reduced rolling moments. He employs a sequence of numerical simulations
that includes the modification of the aircraft geometry such that the vortex-induced rolling
momentum can be reduced down to roughly 50% within a distance of 2.89 NM for an Airbus
A340.

Another strategy rests upon the acceleration of vortex decay by introducing disturbances.
Constructive measures serving those purposes could be active control surfaces on the wing
or passive wake generators. A ground based strategy of wake vortex mitigation has been
investigated by Holzäpfel et al. [32]. They performed LES simulations [7] and accomplished
field measurements [32] that confirmed that so-called plate lines may reduce the longevity of
wake vortices. The plates, being installed at the beginning of the runway, trigger disturbances
that travel along the vortex and accelerate its decay. Nevertheless, the alleviation of wake
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vortices is far from being resolved despite extensive research [1], which justifies the existence
of fast-time wake vortex forecasts.

1.2.3 Wake vortex prediction

The DLR fast-time wake vortex model D2P and the models operated by NASA, namely APA
3.2, APA 3.4 and TDP 2.1, provide predictions of vortex position and strength. They are
introduced in more detail in the course of this work as they form the basis of the ensemble. With
exception of D2P all of these models offer deterministic forecasts exclusively. By contrast, D2P
is the deterministic version of P2P, which generates probabilistic envelopes from a combination
of analytical considerations and fits to observations. Other approaches seek to utilize the
model sensitivity by performing Monte Carlo Simulations (MCS), in which either the initial
conditions or physical model parameters are varied in order to model the forecast uncertainty.
The probabilistic wake vortex model (PVM) [33], developed by the Université catholique de
Louvain (UCL), combines both. By employing boot-strap methods DeVisscher et al. claim to
achieve short simulation times that are even applicable to real-time operational systems. Its
deterministic core is formed by the Deterministic Vortex Model (DVM) [19]. It models the
vortex-ground interaction very detailed by regarding the vortex induced vorticity at relatively
small scales.

Another wake vortex model, currently under development at North West Research Associates
(NWRA), is the Vortex algorithm Including Parametrized Entrainment Results (VIPER) and
includes entrainment and detrainment physics [34]. In this manner they attempt to treat the
conservation laws for mass, momentum and angular momentum properly. Further models,
such as the STL (based on the APA model) and the Linear Circulation Decay Model (LIN)
exist [34].

The applicability of wake vortex forecasts has been assessed at Dallas Ft. Worth Inter-
national Airport during July 2000 where NASA applied its Aircraft Vortex Spacing System
(AVOSS) [14,35,36] to a single runway. The AVOSS generates wake vortex predictions on the
basis of wind, turbulence, temperature profiles and glide path adherence statistics in order to
calculate dynamic aircraft separations. For verification, wake vortex sensors monitored whether
the vortices behaved as predicted [36]. The increase in mean runway capacity was estimated
to be 6%, corresponding to a capacity gain of 2 aircraft per hour at a potential arrival rate of
31 aircraft per hour for a single runway with default spacing [35, 36].

A similar approach, the wake vortex prediction and monitoring system WSVBS (see Figure
1.1) by DLR, has been validated with two parallel runways at Frankfurt airport [37]. It employs
predictions of the probabilistic two phase wake vortex model (P2P) by DLR for multiple gates
along the glide path. The meteorological conditions are captured with a SoDAR/RASS system
and an ultra sonic anemometer (USA) in the vicinity of the threshold. The rest of the glide
slope is covered by numerical weather predictions. In a first step P2P predicts vortex position
and strength based on the meteorological conditions as well as on the glide path adherence
statistics (FLIP) [37] in each gate. In addition, a safety area of elliptical shape is generated by
expanding the upper and lower bounds of the position and strength of the vortices predicted by
P2P to ensure undisturbed flight according to the Simplified Hazard Area Prediction (SHAPe)
method. SHAPe predicts the safety critical areas, based on the required roll control power
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of the follower aircraft to counteract the wake vortices [38]. In a next step safe temporal
aircraft separations are determined, which are subsequently translated into dynamic separations
with support of the DLR arrival manager (AMAN) [37]. To guarantee safe operations a
LiDAR system, that is able to capture the position and strenghts of the vortices, monitors the
correctness of the wake vortex predictions at the lower altitudes of the glide path [37].
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meteo measurements
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3 gates, 0.3 - 1 NM

numerical weather prediction

NOWVIV
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P2P
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for 8 a/c parameter classes (heavy)
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temporal a/c separations

for 6 a/c-class combinations

procedures

AMAN

STG, MSR, MSL, ICAO

wake-vortex monitoring

LIDAR

3 planes, 0.3 - 1 NM

conflict detection

issue warning / adapt predictions

glide path adherence statistics

FLIP

standard deviations in 13 gates

Figure 1.1.: Flowchart for WSVBS [37] (reprinted with permission of Frank Holzäpfel).

The assessment of the WSVBS during a period of 66 days between 18/12/06 and 28/02/07
at Frankfurt airport demonstrated that aircraft separations could have been reduced in 75%
of the landings compared to the ICAO standards [39]. Gerz et al. [39] showed that dynamical
separations may reduce the delays while the ICAO standards accumulate delayed flights that
can only be resolved in the late evening hours [39]. For this reason they consider the improved
capacity as tactical in the sense that punctuality can be increased under favorable weather
conditions .

In this context the Wake Vortex Scenarios Simulation (WakeScene) [40] package is to be
mentioned. It offers a freely selectable perspective view of trajectories of vortex generating
aircraft together with the positions of the port and starboard vortex in vertical gates along the
flight track [40]. The wake vortex behavior is predicted by D2P in terms of circulation, position,
core radius and attitude of the vortex axis [40] in dependency of the aircraft and meteorological
parameters. To define a hazard area two options exist. Either a circle of 50 m radius around the
vortex position is generated, or the simplified area hazard prediction (SHAPe) is applied [40].
The package is capable of performing Monte Carlo simulations as well as dedicated parameter
variations [40]. Thereby, WakeScene allows to assess the probability of wake encounters for
different air traffic scenarios and can be applied for sensitivity analysis, optimization of air
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traffic control procedures, assessment of new wake vortex advisory systems or to elaborate a
novel aircraft separation matrix [40]. A similar package, the Wake4D platform [33], has been
developed by the Université catholique de Louvain (UCL). It is based on the earlier mentioned
DVM and PVM and allows to analyze approach and departure patterns in a similar manner.

Although the pilots certainly have enough time to regain control of the aircraft at high
altitudes in-flight, structural damage or personal injuries cannot be ruled out. En-route, aircraft
are restricted to certain flight altitudes, called Flight Levels (FL) that are given in hft (hundred
feet). Under Instrument Flight Rules (IFR) the vertical spacing between these levels amounts
to 1000 ft, starting with FL 40 [41]. According to the semi-circular flight rule, odd thousands
are reserved for aircraft with headings from 0◦ to 179◦ while even thousands are reserved for
aircraft with headings from 180◦ to 359◦ [41].

Although wake vortices generated en-route naturally descend towards lower flight levels, the
risk of encountering wake vortices appears low at first glance, given the vertical spacing of
the flight levels. Wake vortices usually descend by at most 900 ft [42] which is due to their
limited lifetime as a consequence of natural decay, caused by viscosity and decay enhancing
effects such as turbulence and baroclinic vorticity. Nevertheless, 73 wake-turbulence incidents
have been reported at upper levels (defined as flight levels above 270 hft in Europe) between
July 2009 and July 2012 [43]. Schumann and Sharman [43] found based on simulations that
most encounters occur on nearly parallel flight routes during descent ( 46%). Only 0.4% of
the encounters are observed when both aircraft are flying at constant altitudes [43]. However,
future plans such as the Trajectory Based Operations (TBO) incorporate the compression of
the air space [44], rendering encounters more likely.

To reduce the risk of wake vortex encounters in-flight, the Wake Encounter Avoidance
and Advisory system (WEAA) [45] aims at visualizing the predicted wake vortex position of
surrounding aircraft on the navigation display in order to warn the pilots in case of conflict with
the planned flight track. The predictions are performed by an airborne version of P2P which
employs offline Monte Carlo simulations to accomplish the probabilistic envelopes from which
a volume is derived where the vortices are likely to be encountered. With the meteorological
data being crucial to wake vortex forecasts substantial effort is undertaken to derive wind
speed, temperature and turbulence from various sources and interpolate them to the flight
track of the vortex generating aircraft [45]. During test flights the DLR research aircraft
Falcon served as wake-vortex generator, while the DLR A320 ATRA intentionally encountered
the vortices at the positions predicted by the WEAA system [45]. Depending on the source of
the meteorological input, hit rates between 65% and 90% were achieved.

1.2.4 Wake vortex detection

A future possibility to avoid wake vortex encounters might be to scan the intended flight track
in front of the aircraft by means of an airborne LiDAR [46]. Originally intended to enable
the avoidance of Clear Air Turbulence (CAT), the system developed in the DELICAT project
measures density fluctuations with a UV LiDAR to quantify vertical velocities. Mounted to
a Cessna Citation from the Dutch Aerospace Lab NLR the system had its maiden flight in
2013 during a flight campaign to measure natural CAT events. Although the test of the
instrumentation was successful with all systems performing well, it turned out to be difficult
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to localize major CAT events despite available forecasts [47]. For this reason further validation
flights proved to be necessary before it can be applied to detect wake vortices in the future.

1.2.5 Encounter severity analysis

The severity of a wake vortex encounter and the aircraft reaction depend on the vortex strength,
on the size of the following aircraft as well as on the distance to the vortex core and the
encounter angle. Luckner et al. [48] distinguish between the following aircraft reactions that
may be superimposed:

• Roll motions (A)

• Vertical motions (up (B) and down (C))

• Yawing motions (D).

Figure 1.2 illustrates the regions where these aircraft reactions occur, given parallel flight
routes of the leading and following aircraft.

Figure 1.2.: Dominant wake encounter reactions (black). In the background the stream lines
of the vortex pair seen from a static viewpoint are illustrated (see Lamb [49]). For
a quantitative analysis see Luckner et al. [48].

The larger the encounter angle Ψ between aircraft trajectory and vortex (see Figure 1.3)
the less rolling momentum is experienced by the aircraft. Instead more and more vertical
forces act upon the aircraft [48]. To further assess the aircraft reaction Bieniek and Luckner
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[50] performed flight simulations with different encounter angles for encounters with straight
and wavy vortices as well as with vortex rings, based on analytical wake vortex models. In
a simulator study airline pilots flew manual landing approaches during which straight and
wavy vortex encounters were simulated [50]. Due to the varying effective encounter angles
(which depends on where the aircraft penetrates the deformed vortex) the pilot hazard ratings
exhibited a large spread [50]. Vortex rings, generating lower bank angles, were rated less
hazardous than both wavy and straight vortices, while wavy vortices generated the largest
bank angles [50].

As no final conclusions could be drawn from this study, further effort has been undertaken
to understand whether deformed or straight vortices are more hazardous. Therefore Vechtel
[51] performed encounter simulations of the DLR ATRA aircraft on the basis of an idealized
analytical model for straight and LES fields for deformed vortices. His simulations revealed
that the encounters with deformed vortices are weaker and that the maximum aircraft response
is smaller compared to encounters with straight vortices on average. Furthermore, it was found
that wavy vortices lead to fewer strong encounters than straight vortices.

Figure 1.3.: Wake encounter angle Ψ. With increasing Ψ weaker rolling momentum and
stronger vertical forces are experienced by the following aircraft.

1.2.6 Ensemble forecasts

Already back in the times when weather predictions were less machine-aided than today, even
skilled forecasters reached different results. Today a variety of models exist which are based on
different physical aspects and deliver a variety of forecasts. The information on which model
to trust can be based on validation by means of measurements. However, in an early study
Sanders [52] showed that the mean of multiple forecasters, which he called consensus, is more
skillful than that of the most skillful individual. This was confirmed in later studies [53–55] that
evaluated the same method for an enlarged set of climatological measurements and for further
locations. Eventually, studies were conducted that attempted to quantify the uncertainty
of climate change forecasts by connecting the model agreement (or ensemble spread) with
prediction reliability [56–59].

Having been most common in climate modeling [57] and weather forecasting, the ensemble
approach was soon transferred to further fields of application, such as medicine [60], biology
[61] or agriculture [62]. Ever since the ensemble approach became popular it has been argued
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where its success originates from [63] and whether it can indeed outperform single model
forecasts [64]. The conclusions obtained from these discussions suggest that the ensemble
success is conditional on the coverage of the solution space by the ensemble members.

Various ensemble types have been developed, each covering different uncertainty types. Ini-
tial Condition Ensembles (ICE) [65–67] assume that the initial conditions are imprecise. For
this reason they average forecasts obtained from perturbed starting values. Likewise Perturbed
Physics Ensembles (PPE) [68] accomplish various simulations based on different model pa-
rameters under the conjecture that they are uncertain. Finally, the Multi-Model Ensemble
(MME) [64, 68] involves various independent models to allow for the model uncertainty. Kr-
ishnamurti et al. [69] demonstrated that appropriate prior weighting of the models may reach
higher skill than forecasts based on simple averaging. Evaluating the ensemble performance
in a probabilistic manner, Palmer et al. [70] point out that the MME achieves significantly
higher skill and higher reliability than a single model ensemble that is achieved by perturbed
initial conditions.

Different methods to generate a MME, such as the Direct Ensemble Average (DEA), the
Reliability Ensemble Averaging (REA) [58] and the Bayesian Model Averaging (BMA) [71]
demonstrated added-value for weather and climate forecasts. Further approaches incorporate
neuronal networks [72] or Bayesian hierarchical models [73]. Today, met offices around the
world [74–76] routinely provide ensemble forecasts that are based on Monte Carlo Simulations,
Multi-Model Ensembles or a combination of both.

1.3 Context and Goals of this Thesis

At present, no multi-model ensemble capability exists for wake vortex predictions. The forecast
uncertainties are derived from static and dynamic uncertainty allowances and training with
measurement data [15,16,18], or estimated from perturbed initial conditions [33,77] and from
perturbed physics [33]. However, they do not incorporate model uncertainty yet. In this thesis
the latter is addressed by combining the forecasts of structurally independent wake vortex
models in order to increase the forecast skill and reliability. Achieving consistently credible
and robust probabilistic envelopes that incorporate the uncertainty of the NASA and DLR
models offers further prospect to increase the acceptance of wake vortex forecasts. Therefore,
various MME approaches are investigated, adapted and eventually applied to the available
wake vortex models. Furthermore, the development of model uncertainty is assessed and
utilized to accurately compute probabilistic envelopes that are reliable independently of the
vortex age. In this manner the probabilistic coverage of rare but dangerous cases, that occur
when vortices remain in the glide path, is believed to be enhanced.

Besides, the latest LiDAR wake vortex measurements enable an increased understanding of
vortex physics and offer the opportunity to further develop D2P. In particular the effects of
cross- and headwind as well as the impact of the initial altitude on vortex transport and decay
are investigated. The goals can be summarized as follows:

• Deeper understanding of wake vortex physics based on the latest measurement cam-
paigns.

• Increased deterministic wake vortex forecast skill.
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• High reliability and accuracy of the probabilistic forecasts.

• Enhanced coverage of rare but dangerous cases.

1.4 Overview

In Chapter 2 the fundamental theory behind the generation and evolution of wake vortices
is discussed. This includes formulations already found more than one century ago, simplified
vortex models, and results from the latest Large-Eddy Simulations (LES).

In Chapter 3 the measurement equipment and the captured wake vortex data, used for
development and evaluation of the MME, are introduced. In addition an evaluation of the
field measurement campaigns is presented to further elucidate the influence of atmospheric
parameters on wake vortex behavior based on a just recently made available sufficiently large
dataset.

In a next step the models that have been exchanged within the context of a cooperation
between NASA and DLR are described in Chapter 4. To emphasize their differences a sensitivity
analysis, premised on various meteorological conditions as input, is presented.

The basic concept of the Multi-Model Ensemble technique and its success factors are in-
troduced in Chapter 5. Furthermore, different potentially promising methods to generate an
ensemble are described.

In Chapter 6 at first the evaluation of the LiDAR measurements is illustrated. In the
second part, the results achieved by the introduced ensemble approaches are presented. Their
performance is evaluated in a deterministic and probabilistic manner and compared to the
respectively best performing member for both the DLR and NASA measurements.

Finally, these results are discussed in Chapter 7, followed by the conclusions drawn from the
findings and the outlook in Chapter 8.





2. Wake Vortex Principles

2.1 Helmholtz Theorems

A vortex is defined as a concentric distribution of vorticity [78], with the latter being formulated
as

ω = ∇× u. (2.1)

In the following a vortex line denotes the curve in a fluid that is tangent to the local vorticity
vector [78]. Furthermore, a vortex tube describes a tubular surface that encloses various vortex
lines in a flow with nontrivial vorticity [78]. More than one century ago Hermann von Helmholtz
formulated theorems describing the nature of vortices in inviscid flow [78].

1. Vortex lines move with the fluid.

2. The strength of a vortex tube is constant along its length.

3. A vortex tube cannot end within the fluid. It must either end at a solid boundary or
form a closed loop.

4. The strength of a vortex filament remains constant in time.

The first theorem can be easily observed in LiDAR measurements where vortices are trans-
ported with the velocity of the wind if they are out of reach of the ground. The third theorem
can frequently be observed when wake vortices, visualized by the contrails of aircraft, form
vortex rings which prevents them from having free ends [79]. In ground proximity they may
link with the ground instead of forming closed rings [80]. The second and the fourth theorem,
however, cannot be observed in measurements, as inviscid flow does only exist in theory. Vis-
cous effects introduce temporal decay due to friction, resulting in circulation gradients along
the vortex line.

2.2 Vortex System of a Wing

The generation of lift can be explained by several complementary theories. A very common
one is the lifting line theory, introduced by Prandtl [81] and Lanchester [82] at the beginning
of the 20th century, when wake vortices did not cause capacity issues yet. They associated
the lift along a wing of finite span with the circulation around the airfoil which is also termed
bound vortex (Figure 2.1). As a consequence of its decreasing strength towards the wing tips
vorticity is shed off and finally merges into the tip vortices. According to the third Helmholtz

13
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Figure 2.1.: Vortices generated by a moving wing with upward directed lift, viewed from above.
cf. [78].

law a vortex cannot end within the fluid, which is why both vortices are connected by the
starting vortex. Figure 2.2 shows that the flow only leaves the trailing edge smoothly in the
presence of the bound vortex, such that vertical impulse and thus lift is generated.

The strength of the bound vortex is characterized by the circulation Γ that is defined by the
integral of the tangential velocity vθ along a closed curve s. According to the Stokes theorem
it can be equally expressed by the integral of vorticity ω over the surface A [83].

Γ =

˛
C

Vθds =

ˆ
A

ωdA (2.2)

The resulting lifting force FL can be directly connected with the strength Γ of the bound
vortex according to the Kutta-Joukowski theorem for either one vortex filament or the whole
wing by [78]

dFL = ρV∞Γ(y)dy and FL =

ˆ B/2

−B/2
ρV∞Γ(y)dy, (2.3)

where y denotes the span-wise direction, B the wingspan, ρ the fluid density and V∞ the
undisturbed flow velocity. The decreasing strength of the bound vortex towards the wing tips
leads to vortex filaments detaching from the trailing edge and forming a vortex sheet [78].
The stronger the gradient of the bound vortex strength, the stronger the circulation of the
trailing vortex filament that is shed off [78]. Eventually, further downstream the vortex sheet
rolls up from each half of the wing to form two counter-rotating vortices [78].

The resulting flow resistance is also referred to as induced drag [78]. Prandtl [81] concluded
that the induced drag of a wing of infinite span would account to zero. Furthermore, he found
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Figure 2.2.: Formation of the bound vortex around an airfoil cf. [85].

that finite wings with elliptical distributions of lift show the best ratio of lift and drag. Thus
elliptical lift distributions are often the basis of theoretical considerations. In reality, the lift
distribution of modern aircraft together with the generation of vorticity is more complex. The
reasons for this are the fuselage and attached parts, such as engine nacelles or flaps, which
generate further vortical structures [84], or structural considerations to increase lift close to
the wing roots in order to optimize the wing’s weight. After the vorticity sheet has rolled up,
a pair of counter-rotating vortices is formed. The properties of the vortex pair as well as the
processes of vortex evolution and decay are discussed in more detail in the following.

2.3 Wake Vortex Properties

2.3.1 Basic quantities

Under the assumption that all forces acting on the aircraft are in equilibrium (L = Mg), the
initial circulation of the fully developed vortices is described by

Γ0 =
Mg

ρslBV
, (2.4)

where M indicates aircraft mass, g gravitational acceleration, ρ air density, sl the spanwise
load factor, B wingspan, and V velocity [1]. The load factor sl depends on the circulation
distribution of the wing and can be computed by [1]

sl =
2

B

ˆ B/2

0

Γ(y)

Γ0

dy. (2.5)

For elliptically loaded wings this yields sl = π/4, but it is often observed that also wings with
other distributions than that have very similar load factors [1]. The initial separation b0 turns
out to equal slB and is thus for elliptical circulation distributions π/4B [1].



16 CHAPTER 2. WAKE VORTEX PRINCIPLES

Figure 2.3.: Spanwise vertical velocity for a counter-rotating pair of Lamb-Oseen vortices sepa-
rated by b. The bold line indicates the resulting vertical velocities of the descending
vortex oval [86].

When two vortices exist their velocity fields overlap which results in a mutually induced
downwards directed velocity (see Figure 2.3). Given that both vortices decay at the same
rate and that the vortices can be approximated by a potential vortex at the radius r = b, the
descend speed w of the vortex pair can be expressed by

w =
Γ

2πb
, (2.6)

where b denotes the current vortex spacing [1]. To compare the behavior of vortices generated
by aircraft of different sizes, the reference time scale t0 is introduced [1]. It describes the time
during which the vortex pair descends one initial vortex spacing b0.

t0 = 2π
b2

0

Γ0

=
b0

w0

(2.7)

2.3.2 Non-dimensional quantities

To compare the vortex behavior for aircraft of various sizes, dimensionless parameters are
employed. It is found that vortex transport scales with the initial vortex spacing b0, while
the vortex strength is normalized by the initial circulation Γ0. Time is normalized by t0 and
henceforth termed vortex age t∗.

z∗ =
z

b0

, y∗ =
y

b0

, Γ∗ =
Γ

Γ0

, t∗ =
t

t0
(2.8)

The impact of the meteorological conditions on wake vortex behavior also depends on the
aircraft and wake vortex properties, such that wind speed u and v, the Brunt-Väisälä frequency
N (see Equation (2.18)) and the Eddy Dissipation Rate (EDR) ε are treated non-dimensionally
likewise.
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u∗ =
u

w0

, v∗ =
v

w0

, N∗ = N · t0 , ε∗ =
3
√
εb0

w0

(2.9)

2.4 Idealized Two-Dimensional Vortices

To study the behavior of wake vortices, both measurements and numerical simulations are
accomplished. In many cases the latter are initialized using vortex models. Vortex mod-
els enable analytical solutions of wake vortex transport and decay. The comparison of the
tangential velocity profiles obtained from numerical simulations and analytical models shows
that depending on the vortex age the identity of the best fitting model changes [87]. While
the Lamb-Oseen model shows excellent accordance with the simulations for t∗ = 0.4, the
Rosenhead-Burnham-Hallock model offers better agreement for later vortex ages. The vortex
core radius r0, constituting the radius at which the maximum tangential velocity is observed,
has been found to vary significantly [88] and has not yet been conclusively investigated. Mea-
surements [88] suggest that it may be as small as 1% of the wingspan between 0 and 3.5t0
on average. In other studies the relation rc/b0 = 0.0625 is applied [89, 90]. For a more
comprehensive study of existing vortex models it can be referred to Gerz et al. [1].

2.4.1 Decaying potential vortex

To describe the behavior and interaction of vortices the formulation of the velocity field of
a single vortex is required. Therefore, the tangential steady-state velocity distribution of a
potential vortex (rot(~v) = 0) which is initiated by a rotating cylinder [78] is introduced as

Vθ(r) =
Γ

2πr
. (2.10)

In a viscous flow with kinematic viscosity ν the fluid will slow down due to viscous diffusion.
To derive the temporal development of the velocity field of a line vortex the incompressible
Navier-Stokes equation, neglecting the source term, serves as a basis [78].

∂V

∂t
= ν∇2V (2.11)

With appropriate initial and boundary conditions the solution [78] can then be formulated with

Vθ(r, t) =
Γ

2πr

[
1− exp

(
−r2

4νt

)]
. (2.12)

The temporal evolution of the circulation distribution [78], derived from
¸
V (r, t)ds =

2π́

0

Vθrdθ,

can be expressed by

Γ(r, t) = Γ0

[
1− exp

(
−r2

4νt

)]
(2.13)
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2.4.2 Lamb-Oseen model

The Lamb-Oseen model is also an exact solution for the temporal development of a two-
dimensional tangential velocity field of a potential vortex. However, in contrast to the above
presented solution it incorporates the temporal development of the vortex core due to viscous
diffusion [10] with

r2
c (t) = r2

c,init + 4βν(t− tinit) and
dr2

c

dt
= 4βν. (2.14)

Equation (2.12) and Equation (2.13) can thus be formulated by [10]

Vθ(r, t) =
Γ

2πr

[
1− exp

(
−β r2

rc(t)2

)]
and (2.15)

Γ(r, t) = Γ0

[
1− exp

(
−β r2

rc(t)2

)]
. (2.16)

With the condition dVθ/dr = 0 for r = rc this yields β = 1.25643 [10].

2.4.3 Rosenhead-Burnham-Hallock vortex model

In comparison to the Lamb-Oseen vortex, the Rosenhead-Burnham-Hallock vortex exhibits
smaller velocities at the core radius. It is described by [89]

Vθ(r, t) =
Γ0

2πr

r2

r2 + rc(t)2
. (2.17)

Figure 2.4 shows that both the Lamb-Oseen and the Rosenhead-Burnham-Hallock vortex blend
to a potential vortex for radii larger than rc.

2.5 Wake Vortex Evolution Stages

The evolution of wake vortices from formation to decay can be characterized depending on
the distance to the vortex generating aircraft (Figure 2.5). Depending on the lift configuration
and the ambient conditions the extension of the regions may vary. In the first stage vorticity
generated by the aircraft is shed off and merges. The extended near field is characterized by
the roll-up and merging of the vorticity which finally results in two coherent counter-rotating
vortices. In the following mid and far field the behavior of the vortices is affected by mutual
velocity induction and the interaction with the environment while the vortex strength does
not considerably decrease [10]. Finally, the vortices start to decay at an increased rate in the
decay region [10]. The processes within those stages are discussed in the following sections.
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Figure 2.5.: Wake vortex evolution stages. cf. [10].
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2.6 Wake Vortex Formation

2.6.1 Vortex roll-up

Within the near field the vorticity sheet is shed off the wing and the main vortex structures are
formed. In high-lift configuration the generation of major vortices occurs at the wing tips and
at the outer edges of the flaps. Measurements [10] and LES simulations [91, 92] imply that
also the engine nacelles and the junction between wing and fuselage contribute to the complex
vortex pattern behind the aircraft. Depending on the aircraft type, the sense of rotation of the
wing tip vortex (WTV), the outboard nacelle vortex (ONV), the outboard flap vortex (OFV),
the inboard engine nacelle vortex (INV) and the wing-fuselage vortex (WFV) may vary. For
the wind tunnel model employed in the experimental study of Breitsamter [10] (half model of
a four-engine transport aircraft and twin aisle configuration) all vortices but the wing-fuselage
vortex have the same sense of rotation as the wing tip vortex, which is caused by the change of
circulation gradient at the junction. Figure 2.6 shows the vortex roll-up achieved by a coupled
RANS/LES simulation for the long-range aircraft model used in the European research project
Aircraft Wing with Advanced Technology Operation (AWIATOR) with four engines and in
high-lift configuration [8].

(a) t∗ = 0.0000 (b) t∗ = 0.0155

Figure 2.6.: Qualitative roll-up and merging of the vorticity generated at the wing tip (WTV),
the outboard nacelle (ONV), outboard flap (OFV), the inboard engine nacelle
(INV) and the wing-fuselage (WFV) for the long-range aircraft AWIATOR model.
Gray contours represent clockwise and black represent counter-clockwise rotations.
cf. [8]

2.6.2 Vortex merging

The extended near field is characterized by the merging of the co-rotating vortices displayed in
Figure 2.7 and extends downstream over a distance of roughly 10 wingspans [10]. The merging
of co-rotating vortices can be divided into three stages according to Meunier et al. [12]. Initially
the vortices are axisymmetric. When the core size increases due to viscosity, the vortices start
to influence each other and their shape becomes elliptic. The second stage begins when the
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core size reaches a critical value in relation to the separation distance. Both vortices can still
be distinguished in this phase. Meunier et al. [12] argue that the merging itself is a convective
process as it is independent of the Reynolds number. In a third stage the spirals are increasingly
entangled until an axisymmetrical vortex has developed. Also counter-rotating vortices may
merge, triggered by instabilities which have been studied by Laporte et al. [93].

(a) t∗ = 0.02 (b) t∗ = 0.43

Figure 2.7.: Qualitative development of the vorticity magnitude in the extended near field. In
(b) the flap and wing tip vortices have already merged. cf. [8]

2.7 Wake Vortex Descent

2.7.1 Out-of-ground effect

The fully developed vortices induce each other a mutual descend velocity according to the law
of Biot-Savart. As long the vortices are not tilted the horizontal velocities of both vortices
compensate one another, so that no change in lateral separation occurs without the influence
of the ground. Meanwhile, both vortices are advected with crosswind speed [78] according to
the 1st Helmholtz theorem. If the vortices are generated in ground proximity, their behavior
is more complex and further discussed in Section 2.7.2.

Stratification The descent speed w of the vortices given in Section 2.3.1 is valid for an
unstratified atmosphere under the absence of shear. Investigations showed that buoyancy
effects caused by thermal stratification may slow down or even reverse the descent [94].
During its descent the air descending with the vortex pair is compressed due to increasing
ambient pressure at lower altitudes [94]. Under the assumption that this process is
adiabatic this results in a warming of the fluid. In a stably stratified environment a
density difference between the in- and outside of the vortex oval is generated which
results in a buoyancy force [94]. To describe the resulting oscillation the Brunt-Väisälä
frequency N is employed. N describes the oscillation frequency of a fluid parcel that is
displaced from its equilibrium [95].
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N =

√
g

θ

dθ

dz
(2.18)

Crosswind shear Beside the stratification, it was found that also vertical crosswind shear
gradients may affect wake vortex descent substantially. Both experiments [96] and sim-
ulations [97, 98] as well as analytical considerations [99] demonstrate that a positive
shear gradient accelerates the descent of the luff vortex, whereas a negative shear gradi-
ent has the same effect on the lee vortex. Due to the different descent rates the vortex
pair may tilt, additionally affecting the lateral transport.

2.7.2 In- and near-ground effect

The risk to encounter wake vortices is increased at low flight altitudes during approach and
landing. 78% of the reported wake vortex incidents in the United States between 1983 and
2000 occurred below 200 feet [100]. This can be referred to both the fact that all approaching
aircraft follow each other on the same path, namely the glide slope, and to the interaction
of vortices with the ground. For these reasons wake vortex behavior in vicinity of the ground
deserves special discussion.

Figure 2.8 displays the principle of wake vortex behavior for an A320 aircraft in the glide
slope from roll-up to decay, starting at an initial altitude of z0 = 2b0. After the two counter-
rotating vortices have evolved they induce each other a descend velocity and start to separate
while being advected by crosswind. Holzäpfel and Steen found in measurements at Frankfurt
airport that the minimum height amounts on average to 0.53b0 for the luff and 0.62b0 for the
lee vortex [18]. Similar behavior is found by Stephan et al. [101] in LES.

Increasing separation When the vortices have approached the ground close enough for invis-
cid phenomena to play a role, they start to separate. This can be modeled by introducing
so-called image vortices that satisfy the slip boundary condition on the wall [102]. They
are computed by mirroring the real vortices at the ground, such that they have the same
strength but opposite vorticity. As the vortex separation and advection superimpose,
they may compensate one another at crosswind speeds of approximately v∗ = 0.5 [18].
This results in potentially dangerous situations when the vortices hover in the glide path
after rebound.

Rebound Harvey and Perry [103] found that the vortex trajectory near ground did not co-
incide with what would have been expected according to inviscid theory. Instead of
leveling out, the vortices rose again. They explained this phenomenon by secondary vor-
tices that circulate the main (primary) vortices and exhibit vorticity of opposite sense,
resulting in an upward directed mutual velocity induction. Their theory was supported
by simulations that indeed showed eruptions of secondary vorticity structures from the
boundary layer, induced by the primary vortices [101, 102, 104, 105]. The coherent de-
tachment of redistributed vorticity is supported for the downwind (lee) vortex, where
the sign of crosswind shear and vorticity is the same, and attenuated for the upwind
(luff) where they have opposite signs [102]. This leads to a more pronounced rebound
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Figure 2.8.: Principle of evolution and descent of the most dominant vortices in ground prox-
imity, displayed within a plane perpendicular to the flight path. The evolution is
based on LES simulations of Misaka et al. [8] while the trajectory is derived from
a D2P forecast with a crosswind speed of 0.43 m/s at flight altitude 2b0 of an
A320 aircraft in the glide slope.

of the lee vortex [102] and furthermore shortens its lifespan due to an increased level
of turbulence [101, 106]. Analytical considerations of Doligalski [107] imply that vortex
rebound is suppressed if the crosswind speed exceeds 4w0, which has also been observed
in DNS [102] and LES [22]. The maximum descent height of the lee vortex, however,
increases continuously with increasing crosswind speed [22].

2.8 Wake Vortex Decay

2.8.1 Out-of-ground effect

The decay in the mid and far field is mainly driven by dissipative effects. The tangential
velocities in the core start to continuously decrease due to internal diffusion (or growth of core
radius) [108], whereas the circulation at larger radii is barely reduced [106]. In the following
decay phase the dissolution is accelerated, which is caused by instabilities that are promoted
by the atmosphere. The most prominent factor triggering decay is coherent secondary vorticity
that can be caused by turbulence, shear or stratification. Interacting with the primary vortices,
the secondary vortices consume energy and cause deformations [106]. These and further
instability mechanisms are discussed in the following.

Turbulence Turbulence may be introduced by the flow around the aircraft (e.g. vorticity
behind exposed parts such as engine nacelles or landing gear and the fuselage), by the
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engine jets or by the environment. Besides, the interaction between both vortices that
is connected with vortex spacing has large impact on vortex longevity, with a reduction
of normalized vortex spacing of two accelerating decay by a factor of four [106]. In
turn, increasing the core radii shortens the lifetime only slightly [106]. Turbulence is
characterized by the Turbulent Kinetic Energy (TKE) or the Eddy Dissipation Rate
(EDR, ε). The first is defined as

TKE =
1

2
(u′2 + v′2 + w′2), (2.19)

where u′, v′ and w′ denote the fluctuation velocities in the three directions in space
respectively. EDR is the rate at which TKE is dissipated by breaking the eddies in
smaller and smaller eddies [109]. It is given in m2/s3 by

ε =
C · TKE3/2

l0
, (2.20)

with C denoting the proportionality constant of order one and l0 denoting the integral
length scale of the turbulence [109].

Crow instability This phenomenon, theoretically described by Crow in 1970 [110], is a sinu-
soidal instability that eventually results in the formation of vortex rings and is frequently
observed in contrails. The time when the linking occurs is a function of turbulence [111].
Hennemann et al. [79] performed LES simulations, investigating the descent and decay
of such deformed vortices. Their results reveal that a third decay stage exists in which
the vortex rings mainly undergo diffusion. Hence, they may have substantial lifetimes
while descending at reduced rates. Furthermore, simulations and observations reveal
that the vortex rings may split and subsequently link again [112].

Baroclinic vorticity While the vortex oval descends in a stably stratified environment, it
produces baroclinic vorticity [108, 113, 114] that contributes to the dissolution of vortex
coherence and accelerates the decay of the primary vortices. It is generated by baroclinic
torque at the border of the adiabatically heated vortex oval that is itself caused by the
non-alignment of the density and pressure gradient between vortex oval and environment.
This results in forces with different points of origin that act in opposite directions.

Vortex bursting and stretching This phenomenon, also occasionally visualized by contrails
in funnel or pancake-shaped manner, is characterized by regions in the vortex that
contract while others expand [115]. The LES studies of Misaka et al. [112] suggest
that this is due to secondary vortical structures that travel along the vortex axis but do
almost not affect circulation.

2.8.2 In- and near-ground effect

Additional to the above mentioned mechanisms, the vortex-ground interaction may trigger
further decay phenomena. Concerning decay, the LES results of Proctor et al. suggest that
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the onset of rapid decay in ground proximity starts with a time offset of 0.25t0 after the
vortices have reached the lowest point at t∗g [80] and start to increasingly interact with the
ground. Destruction mechanisms that potentially occur by the interaction with the ground are
as follows.

Secondary vorticity The interaction of the secondary vortices with the primary vortices in-
troduces further turbulence and hence promotes the annihilation of vorticity [101]. This
well-known effect has been described in detail by Holzäpfel et al. [106].

End effects LES show that when the aircraft has touched down, so-called end effects may
occur [7]. Spiral disturbances are caused by a sudden reduction of circulation when
hitting an obstacle or after touch down [7]. These disturbance correspond to a pressure
increase inside the core, travel along the vortex and enhance its decay.

Ground linking According to the 3rd Helmholtz theorem a vortex cannot have free ends.
As a consequence the vortex tube starts to link with the ground [80]. While Proctor
et al. [80] state that the linked vortices rapidly dissipate after linking, the LES results
of Stephan et al. [7] suggest that the ground-linking may stabilize the primary vortices
which prevents them from further dissolving such that a certain level of circulation is
maintained.





3. Field Measurement Data

Simulations and laboratory experiments can give valuable insights in wake vortex behavior,
although they always imply simplifications. Nevertheless, they cannot substitute wake vortex
field measurements as the complex behavior of the atmosphere can only be studied in real
environments. With remote sensing technologies the strength and position of the vortices can
be quantified in the free atmosphere. In addition, the environmental conditions in the course of
the campaign must be captured. Together with the aircraft specifications they are the basis of
wake vortex forecasts. This chapter presents the measurement equipment, the measurement
campaigns and based on them an evaluation of wake vortex behavior.

3.1 Measurement Equipment

3.1.1 LiDAR

The rationale of LiDAR (Light Detection And Ranging) systems is based on the aerosol
backscatter of a laser beam. If the aerosols are in motion, the Doppler shift of frequency
between the emitted and backscattered light can be used to determine their line-of-sight
(LOS) velocity. A plane perpendicular to the flight direction is scanned within a few seconds
to capture the aerosol movement. By evaluating the LOS-velocity spectra, the vortex core po-
sition and the vortex circulation can be derived [116]. The maximum LOS velocity is assumed
to be equal to the tangential velocity Vθ. By averaging both vortex sides, the descent speed
and drifting velocity can be compensated for the evaluation of the circulation [116]. The wake
vortex field-measurements of DLR were accomplished by a 2 µm pulsed laser. The advantage
of using pulsed signals compared to continuous-waves is the increased range of more than
1 km and the determination of the vortex position from the time delay of the backscattered
signal [116]. The sensitivity of the LiDAR is determined by the wave length of the emitted
light [116].

While the circulation of a single vortex converges for large radii (Equation 2.2), the neigh-
boring vortex in a vortex pair affects the circulation evaluation. For this reason Holzäpfel et
al. suggest to average the circulations derived for various radii with an increment of 1 m [83].

Γrl−ru =
1

nr

u∑
i=l

Γ(ri) (3.1)

The upper (ru) and lower (rl) averaging boundaries must be chosen such that neither the
circulation is significantly underestimated nor the influence of the neighboring vortex becomes
too large (see Figure 2.3). However, this method may lead to strongly overestimated initial
circulations as long as the roll-up process is not yet completed. Holzäpfel et al. [83] found that

27
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this can be attributed to the secondary vortices being interpreted as high tangential velocities
on large radii. Depending on the aircraft wingspan and vortex spacing b0, the circulation is
distinguished between Γ5−15m and Γ3−8m in the data captured and evaluated by DLR. The
data provided by NASA always comprises Γ5−15m averages.

In a study of Köpp et al. [117] the accuracy of wake vortices measured by LiDAR was
evaluated utilizing the 2-µm pulsed Doppler LiDAR from DLR and the 10-µm continuous
wave Doppler LiDARs from ONERA and QinetiQ. They found that the errors in terms of
standard deviations were σerr,z = 9 m, σerr,y = 12 m and σerr,Γ = 13 m2/s . Usually the
tracking of the vortices and the calculation of their strength is possible until a normalized
circulation between 0.6 to 0.4 is reached.

3.1.2 Sonic Detection and Ranging (SoDAR), Radio Acoustic
Sounding (RASS) and Ultrasonic Anemometer (USA) System

To capture the atmospheric conditions during the evolution of the wake vortices usually a
remote sensing system is employed that consists of a Sonic Detection and Ranging (SoDAR)
and a Radio Acoustic Sounding System (RASS) [118]. While the SoDAR uses sonic waves
to measure profiles of wind direction and speed, the RASS system sends out radio waves to
capture virtual temperature profiles [119]. The basic principle of both systems is the Doppler
effect.

Optimally it is desired to know the atmospheric conditions directly at the position where the
wake vortices are located. However, in practice this is not applicable as the instrumentation
cannot be installed directly under the glide slope in runway proximity and because aircraft
induced velocities would falsify the measurements, wherefore they must be accomplished at
a certain distance. The accuracies that can be achieved for wind speed measurements are
σws = ±0.5 m/s below 5 m/s, and σws = ±10% between 5 and 35 m/s [120]. The wind
direction can be measured with an accuracy of σwd = ±5◦ [120].

In addition, an ultra-sonic anemometer (USA) is utilized to estimate wind speed and the
turbulence level from the longitudinal velocity spectrum at a height of 10 m.

3.2 Campaigns

This section is commenced by a brief introduction of the campaigns which is followed by a dis-
cussion of the distributions of the initial altitudes, initial vortex separation and meteorological
conditions in Section 3.3. Headwind u is negative, while tailwind is considered to be positive.
Positive crosswinds v occur if they are directed from left to right from the pilot’s perspective
and negative if otherwise.

3.2.1 WakeFRA

WakeFRA has been conducted in 2004 at Frankfurt airport from August to December [18]. 292
landings of heavy aircraft have been captured by LiDAR. Additionally, a METEK SoDAR with
a RASS extension provided 10-minute averaged vertical profiles of the three wind components,
vertical fluctuation velocity, and virtual temperature with a vertical resolution of 20 m. The
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measurements offer high quality and have thus been used to train P2P during its development
in the past. The 2-µm LiDAR was positioned south-east of the runways with a lateral offset
of 373.5 m to runway 25L and 891.5 m to runway 25R such that landings on both could
be captured. The vertical profiles of EDR were also derived from LiDAR with a temporal
averaging of 5 minutes. A detailed description is given by Holzäpfel and Steen [18].

3.2.2 WakeMUC

In 2011 the WakeMUC campaign [22] has been accomplished at Munich airport. Between
11th of March and 12th of May 2011 LiDAR measurements of 779 landings of heavy and
medium type aircraft have been collected on runway 26L [22]. The LiDAR was positioned
at a distance of 850 m northerly of the runway center line. To measure the meteorologic
data, the same system as for WakeFRA has been employed. However, EDR was not measured
by LiDAR which is why only TKE is available. During the 12 measurement days the angle
of the laser beam in reference to an observation direction perpendicular to the aircraft path
has been adjusted multiple times. This way, landings with various vortex generation heights
could be captured [22]. Before utilizing the data for the evaluation of the models, a quality
check reduced the number of landings to 374, whereas the whole set was employed to evaluate
wake vortex physics. As the models rely on EDR rather than on TKE, the relation found by
Donaldson and Bilanin [121] is used.

EDR = ε =

{
1
8

q3

0.65z
for 0 < z < 169 m

1
8

q3

110 m
for z > 169 m

(3.2)

with

q =
√
u′2 + v′2 + w′2 =

√
2 TKE, (3.3)

where u′, v′ and w′ denote the fluctuation velocities in the three directions in space respectively.
Unfortunately, neither aircraft type, initial position nor weight were recorded during the

campaign. As a consequence, initial vortex position and circulation need to be taken from the
initial LiDAR measurements. While the initial aircraft height and lateral position are derived
from linear extrapolation of the first data points, the initial circulation is computed from the
first luff and lee vortex measurement as an average. In addition, the time stamps of the
LiDAR measurements were corrupted and could not be assigned to the time stamps of the
meteorological data. As a consequence, they were corrected by shifting the time stamps by
mapping landings with large measured circulation to landings of heavy aircraft derived from
STANLY Track, a service provided by the DFS to track approaches and departures at various
airports. The time shifts found to derive the correct UTC amount to -51 minutes for cases
before March 30th 2011 and -75 minutes after. Nevertheless, it was not possible to assign the
correct aircraft types by using this method.
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3.2.3 WakeOP

Conducted in 2013 at special airport Oberpfaffenhofen, 74 overflights of the research aircraft
HALO were accomplished in order to demonstrate the capability of the plate lines to enhance
wake vortex decay [22]. In this study only the 31 overflights without plates are utilized. The
ambient conditions were measured at three different heights: by the HALO nose boom at
flight altitude, by the 10 m ultra-sonic anemometer mast and by two wind and temperature
sensors at 2 m height. This offers very accurate wind data very close to where the vortices
have been generated at flight altitude but biased measurements at lower altitudes where the
instruments may have been affected by the aircraft induced flow.

3.2.4 MEM95

In the mid 1990s several wake vortex field measurements were sponsored under the Aircraft
Vortex Spacing System (AVOSS) project [122]. One of them was the MEM95 dataset that has
been gathered in 1995 at Memphis airport which is the base of FedEX. During the campaign
305 landings and the corresponding meteorological conditions have been captured. Wind and
temperature profiles were derived from a SoDAR/RASS system and were complemented by a
150 foot tower that measured wind direction, temperature and humidity at five elevations [122].
The meteorological conditions were accomplished between runway 36L and 36R and were
situated at a distance of about 2 km from the closest LiDAR measurement site [24]. Note
that at the southernmost measurement site trees are situated beneath the glide path which
may impact wake vortex behavior.

3.2.5 DFW97

In 1997 another NASA wake vortex field experiment was conducted, this time at Dallas/Fort
Worth International Airport [123]. The wake measurements were accomplished with a 2
µm LiDAR by NASA and by a 10.6 µm continuous wave LiDAR from the Lincoln Labs.
To measure the atmospheric properties at different heights, two meteorological towers were
installed. In addition, a SoDAR/RASS system was deployed. Turbulence was measured by
ultrasonic anemometers (10 Hz).

3.2.6 DEN03

In September 2003 NASA conducted a field experiment at Denver airport with the objective to
evaluate wake measurements using acoustic sensors [124]. Nevertheless, the trajectories of the
wake vortices and their circulation were measured by pulsed and continuous wave LiDARs. The
temperature profiles were measured with a microwave radiometer (MTP5) while wind profiles
were derived from pulsed LiDAR measurements. In addition, one minute average winds were
measured by towers that were equipped with propeller anemometers at 7 m, 14.6 m, and 32.3
m above ground and an ultrasonic anemometer (10 Hz) at 7 m. Profiles of EDR were obtained
from the LiDAR measurements using spatial structure functions [125]. This dataset has not
been used to assess the ensemble because is was made available too late. Nevertheless, in the
Appendix the performance achieved by the individual models is listed.
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3.3 Distribution of Aircraft and Meteorological
Parameters

Between the campaigns the distributions of the initial conditions, such as aircraft size and
initial altitudes, and the meteorological conditions may differ significantly. Figure 3.1 depicts
the aircraft initial condition distribution for each set of measured landings. While mainly land-
ings with initial heights at about 1 b0 have been captured during WakeOP and WakeFRA,
WakeMUC comprises wake vortices generated between 0.7 and 4 b0. In comparison, the cam-
paigns contributed by NASA cover higher initial heights. During DFW97 the vortex generating
aircraft were at altitudes between 2 and 5 b0, with some landings even below 0.5 b0. Memphis
covers a larger range, starting from 0.7 and up to more than 10 b0. Eventually, the DEN03
dataset contains the largest initial heights with z0 from 5 to 11 b0. Concerning the initial
vortex spacing b0, Figure 3.1 right reveals that all campaigns mostly involve medium-sized
aircraft, with exception of WakeFRA, where the larger part of the dataset is composed of
heavy aircraft.
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Figure 3.1.: Distribution of initial height z0 and initial wake vortex spacing b0 for each cam-
paign.

Figure 3.2 features the headwind and crosswind conditions for all campaigns. As the NASA
models do not include headwind in their initial conditions, u is only available for the DLR
campaigns. The left panel indicates that during normal airport operation aircraft rarely land
under tailwind conditions. And even if they do the winds are weak. The reason for head-
and tailwind being equally distributed for WakeOP is that HALO always had the same heading
during the conducted traffic patterns, with no distinguished wind direction. As far as crosswind
is concerned the calmest conditions can be found during WakeOP and DFW97, whereas the
crosswinds are relatively strong for WakeFRA and DEN03. Nevertheless, DEN03 does not
exhibit the largest turbulence levels (Figure 3.3 left) which could be referred to the high initial
heights in this campaign where the ground has less impact. Instead, WakeMUC is the campaign
that offers the highest EDR values, followed by WakeFRA. It is worth to mention that the
TKE values (Figure 3.3 right) show very similar distributions for the latter two campaigns,
while the EDR distributions deviate notably. It seems that the computation of EDR according
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to Donaldson and Bilanin [121] from TKE results in larger values compared to measurements.
With respect to the Brunt-Väisälä frequency, it is found that the largest stratification can be
observed in the WakeMUC campaign.
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4. Wake Vortex Prediction

This chapter is devoted to the properties and the performance of the employed wake vor-
tex models from NASA and DLR. For the performance evaluation measurements from the
campaigns WakeMUC, WakeFRA, WakeOP, MEM95 and DFW97 are employed.

4.1 Skill Metrics

To evaluate the model performance, the predictions are compared with wake vortex measure-
ments. Various skill metrics are employed that are discussed in this section.

Error The error erri in this thesis is referred to as the difference between the forecast fi and
a single observation oi at a given vortex age.

erri = fi − oi (4.1)

Root-mean-square error (RMSE) The RMSE considers outliers more than the Mean Ab-
solute Error (MAE ) as the errors are treated quadratically via

RMSE =

√∑n
i=1(fi − oi)2

n
(4.2)

Bias The bias specifies the model deviation from the measurement including its sign. In this
thesis, models with negative (positive) bias underestimate (overestimate) the observation
on average if compared to measurements.

bias =
1

n

n∑
i=1

(fi − oi) (4.3)

In this thesis, the above introduced metrics are computed for single landings that usually
comprise several measurements. Eventually, to evaluate the overall model performance the
median error of all simulated landings is derived. Compared to the mean, the median is more
robust regarding extreme error values.

4.2 The Fast-Time Models

4.2.1 Common model features

The ensemble is based on the forecasts of four different models which all predict the trajectory
and circulation development of the vortices in a plane perpendicular to the aircraft flight path.

33
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Their forecasts are based on aircraft side on input parameters such as weight, speed, wingspan
and initial position. Concerning the ambient conditions their predictions rely on vertical profiles
of crosswind speed, headwind speed, temperature and atmospheric turbulence, with the latter
being represented by the eddy dissipation rate ε. For the initial state of the vortices the models
assume that all vorticity created due to lift is rolled up into a pair of counter-rotating vortices,
with luff and lee vortex decaying at the same rate. All models treat the wake vortex parameters
non-dimensionally according to the convention presented in Section 2.3.2.

Further commonalities can be found between the lateral vortex transport that is driven
by the crosswind. Likewise, the lateral divergence in ground proximity is modeled by image
vortices, which are created by mirroring the actual vortices at the ground. The interaction of
real and image vortices causes the vortices to depart from each other as it would be expected
according to inviscid theory.

Differences can be found regarding the parametrization of vortex decay and descent, the
parametrization of the effects of the atmospheric conditions and the parametrization of the
interaction with the ground.

4.2.2 D2P

Both D2P and P2P are wake vortex models developed at DLR [15]. Vortex decay in D2P
is based on an analytical solution of the Navier-Stokes equations for the decaying potential
vortex (see Equation (2.13)). It has been extended to model the turbulent decay of a pair of
Lamb-Oseen vortices and split into a diffusion and into a rapid decay phase. Circulation is
calculated as a 5-15 m average. The first phase is described by

Γ∗5−15(t∗) =
1

11

15m∑
r=5m

[
AD2P − exp

(
−r∗2

4ν∗1(t∗ − T ∗1 )

)]
, (4.4)

where AD2P, ν∗1 and T ∗1 are constants with −T ∗1 corresponding to to the age of the vortices
at t∗ = 0 [15]. AD2P is used to adjust Γ∗5−15(t∗ = 0) [15] and ν∗1 = 1.78 · 10−3 (ν1 = 0.16
m2/s) is termed the effective viscosity. In the second phase a second term with T ∗2 , the onset
time of rapid decay, and ν∗2 , the adjusted effective viscosity, is introduced. For simplicity this
is formulated without averaging over different radii by

Γ∗5−15(t∗) = AD2P − exp

(
−R∗2

ν∗1(t∗ − T ∗1 )

)
− exp

(
−R∗2

ν∗2(t∗ − T ∗2 )

)
, (4.5)

with the mean radius R∗ approximately corresponding to the mean value of 10 m [15]. Both
T ∗2 and ν∗2 are determined in dependency of the meteorological conditions as presented in
Holzäpfel 2003 [15].

Concerning vortex descent, the relation w∗ = Γ∗ only holds if Γ∗ represents the circulation at
the neighboring vortex [15]. This is not valid here due to the use of 5-15 m Γ∗ averages [15].
Therefore, the descent speed is calculated according to the self-similar velocity profile of a
potential vortex as a function of vortex spacing b and core radius rc, adapted to the behavior
observed in LES [15].
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w∗ = 1− exp

(
−1.257b2

r2
c

)
(4.6)

The core radius is then derived from Γ∗5−15 that is formulated according to

Γ∗5−15 =
1

11

15m∑
r=5m

[
1− exp

(
−1.257r2

r2
c

)]
. (4.7)

The comparison with LES data showed that these equations are a useful approximation with
an effective vortex spacing of b = 0.4b0 [15]. In strongly stratified environments additional
terms that depend on the Brunt-Väisälä frequency N are introduced in order to allow vortex
rebound.

When the vortices approach ground they start to diverge laterally which is modeled by intro-
ducing image vortices. Secondary vorticity that detaches from ground is modeled using point
vortices that orbit the primary vortices. Another set of secondary image vortices orbits around
the respective image vortices. Crosswind encourages the detachment of secondary vorticity for
the lee vortex and suppresses it for the luff vortex [18]. The strength of the secondary vortices
is adapted according to crosswind speed [18]. Measurements from WakeMUC showed that the
lee vortex decays on average slightly faster than the luff vortex [22]. This effect is, however,
disregarded in the model physics. The impact of headwind is considered by D2P by adjusting
vortex age and generation height. In comparison to calm situations headwind advects younger
vortex segments into the observation plane [16].

The impact of shear on vortex descent is neglected in D2P as it is believed that the vortex-
shear-layer interaction is extremely sensitive to a number of shear layer parameters [16, 126].
Below vortex generation altitudes of b0 vortex decay is assumed to be faster the lower the
vortices are generated, rather than being affected by turbulence or stratification [18].

P2P is the probabilistic version of D2P and provides envelopes with the default uncertainty
levels 3 σ and 2 σ [16, 18]. The concept behind the probabilistic envelopes is based on three
layers. In a first step, three model runs are accomplished with varied decay parameters. Addi-
tionally to the resulting envelopes, fixed uncertainty allowances are added for vortex location
and strength. In the second step, dynamic uncertainty allowances are superimposed that con-
sider stochastic vortex deformation and transport driven by environmental turbulence and wind
shear.

In a final step, the probabilistic envelopes for vortex position and strength are calibrated
employing field measurement data. For this purpose unbounded Johnson distributions are
fitted to the error Probability Density Function (PDFs) generated by the deviations between
measured vortex behavior and the predicted probabilistic bounds achieved by steps one and
two. Uncertainty levels can be selected arbitrarily from the predicted Johnson distributions
and are adjusted by default to either 2σ or 3σ. Pronounced shear increases the widths of the
uncertainty allowances.

Further development

During the evaluation of the field measurement campaigns it became evident that the vortex
rebound in D2P was exaggerated. One of the reasons for this is that up to this point the
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Figure 4.1.: Trajectories of the primary, secondary and tertiary vortices and their respective
image vortices exemplarily for a case with crosswind from the right.

strength of the secondary and tertiary vortices did only decrease proportionally to the primary
vortices and did not depend on the distance between vortex and shear layer. However, in
theory one would expect that the secondary vortices detaching from the shear layer become
weaker the higher the primary vortices. For this reason the optimal magnitude of weakening
is explored in a parameter study. As a result, the secondary vortices are weakened by 30%
after they have absolved their first orbit around the primary vortices. In addition, the tertiary
vortices are weakened by 30% when they are generated. Consequently, the maximum strength
of the secondary vortices amounts initially to 40% of the strength of the primary vortex and is
reduced to 28% after their first orbit - the same strength as the tertiary vortices. The resulting
vortex trajectories are exemplarily depicted in Figure 4.1 for a case with a mean crosswind of
v∗ = 0.6.

Table 4.1 lists the RMS deviations for the DLR measurement campaigns with and without
weakening of the secondary and tertiary vorticity. As the Γ∗-forecast is only indirectly influ-
enced by the adaptions, its RMS deviations remain nearly unmodified. For the assessment with
the WakeMUC measurements 374 landings of high quality were employed. While the achieved
improvement is substantial for the y∗lee-forecast, it is minor for the z∗-prediction. Significant
improvements for the z∗-prediction can only be revealed when restricting the WakeMUC data
to z∗0 < 1.5. This can be readily explained by two opposing trends. While the legacy version
of D2P overpredicts vortex rebound, it overestimates vortex descent starting from high alti-
tudes. The latter trend is even increased by the described adaptations and compensates the
improvements achieved at lower altitudes. Potentially, the reasons for overpredicted vortex
descent could be related to the far-field of the vortices that shed off secondary vorticity from
the ground earlier than expected. This trend is further discussed in the results section. Further
decrease of the strength of secondary and tertiary vorticity leads to an increase of the RMS
deviation for z∗ while y∗ is further improved. Obviously the reasons for the decreased RMS
deviations for the y∗-prediction are not directly related to the improved z∗-forecast.
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Table 4.1.: Comparison of the median RMS errors achieved with and without the adaption of
the strength of secondary and tertiary vortices.

RMSE Γ∗ RMSE y∗ RMSE z∗

campaign Γsec/tert factor luff lee luff lee luff lee
WakeMUC 1 0.113 0.112 0.690 0.550 0.184 0.203

0.7 0.113 0.112 0.690 0.540 0.180 0.203
WakeMUC, z∗0 < 1.5 1 0.111 0.118 0.629 0.517 0.163 0.193

0.7 0.110 0.117 0.617 0.497 0.151 0.177
0.5 0.110 0.117 0.614 0.494 0.157 0.181

WakeFRA 1 0.114 0.103 0.472 0.516 0.136 0.169
0.7 0.115 0.103 0.475 0.504 0.125 0.160

WakeOP 1 0.090 0.097 0.685 0.535 0.182 0.233
0.7 0.090 0.097 0.647 0.549 0.161 0.178

With regard to WakeFRA also significant improvements can be achieved for z∗. However,
note that for this campaign the initial conditions were not determined as accurately as at the
time when the parametrization of the ground effect has been developed with this data [18].
Instead, the focus was laid on estimating prediction skills closer to practice. For this reason
the improvements could be less if applied to the original training data. For WakeOP the
decrease of RMS deviations for z∗ are even more significant than for WakeMUC. Conclusively,
the suggested adaptations prove to be successful for all evaluated DLR campaigns.

4.2.3 APA

APA, the AVOSS (Aircraft Vortex Spacing System) Prediction Algorithm discriminates between
Out-of-Ground Effect (OGE), Near-Ground Effect (NGE) and In-Ground Effect (IGE) [14]. If
the vortices are OGE the model utilizes a decay and transport model, such as developed by
Sarpkaya with two vortices descending at equivalent rates [13, 21]. His equations are based
on the rate of change of impulse in dependency of the buoyancy force due to stratification
which includes the area of the vortex oval AO and the force due to the rate of change of
circulation [14, 127].

dI

dt
= 2πρ

d(b2w)

dt
= −ρAON2z − ρd(bΓ)

dt
(4.8)

On the basis of the MEM95 and DFW97 field data it is then assumed that the decay of a vortex
pair can be described by e−C1t∗/T ∗

c , with T ∗c being the time at which a catastrophic demise
event such as Crow instability or vortex bursting occurs that depends on the eddy-dissipation
rate ε [127]. Additionally, the effect of stratification is included via the Brunt-Väisälä frequency
N [14].

Γ∗ = exp

(
−(C1 + 0.25N∗(z)2)

t∗

T ∗c (ε∗)

)
. (4.9)

The vortex descent speed w can then be formulated by combining Equations (4.8) and (4.9)
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to

dw

dt
= −C2

ˆ z

z0

N(z)2dz − 2w

(
1

b

db

dt

)
+
b0

b

[
Mc

w2
0

b0

− w0

(
1

b

db

dt

)]
e−Mct∗ , (4.10)

with Mc being defined as

Mc =
C1 + 0.25N∗2

T ∗c
. (4.11)

The descent speeds observed in measurements are faster than the calculated descents despite
agreeing circulations. This is assumed to be related to Crow instability and is modeled in APA
by a slow decrease of effective vortex separation initially [13].

b

b0

=

(
1 + αε∗

1− αε∗

)(
1− αε∗et∗/T ∗

c

1 + αε∗et∗/T ∗
c

)
for t∗ < T ∗c (4.12)

The parameter α is set 0.5. After T 2
c , vortex rings or other deformations may occur, such

that assuming organized descent is no longer valid [13]. Therefore, the following expression is
used, where K = 5/ε∗ and α = 0.5:

b

b0

=
b(T ∗c )

b0

{
1− 2eαε∗/K

1− (eαε∗)2

[
1− exp

(
−Kt∗ − T ∗c

T ∗c

)]}
for t∗ > T ∗c (4.13)

At altitudes below 1.5z0 (NGE) the algorithm no longer employs the above introduced
Sarpkaya model but the equations given by Donaldson and Bilanin [121], while applying the
same decay rate that occurs at the transition from OGE. At this stage image vortices are
introduced [128]. The equations are given exemplarily for one vortex only but are further
described in Robins and Delisi 2002 [14]. The subscripts 1 and 2 denote the port and starboard
vortices, whereas 3 and 4 describe their image vortices.

dz1

dt
=

1

2π

4∑
i=2

Γi(t)(yi − y1)

r2
i1

(4.14)

dy1

dt
= − 1

2π

4∑
i=2

Γi(t)(zi − z1)

r2
i1

+ v(z1) (4.15)

Even closer to the ground at 0.6b0 secondary vortices are generated together with their image
vortices [14,128] (D2P uses a similar formulation). The secondary vortices are unconstrained,
and their positions are calculated by the interacting vortex dynamics [128]. Further, crosswind
shear can affect the distance between primary and secondary vortices for the luff and lee vortex
differently, which may lead to an asymmetric rebound. The decay is then computed with a
formula derived from a Terminal Area Simulation System (TASS) LES study [80].

The difference between the two deployed APA versions lies in the approach for the OGE
region. In APA 3.4 the effect of buoyancy triggered by ambient stratification in the OGE phase
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is reduced. In contrast to APA 3.2, the newer version does not include the possibility to model
the linking process that occurs when the vortices experience Crow instabilities by decreasing
the vortex separation b as a function of time. Instead the vortices are separated by b = b0

throughout the OGE phase [34]. Furthermore, the vortices do not separate in the OGE region,
that is b = b0 throughout the OGE phase [34]. Together with divergent decay characteristics
the results of both versions are well-distinguishable.

4.2.4 TDP

TDAWP retains the IGE and NGE formulation of APA [34]. However, the transition between
OGE and NGE is lowered to 1.0z0 as the model’s OGE already contains NGE physics [34].
Additionally, the OGE module differs from the APA formulation. The motivation for the
development of TDAWP (TASS Driven Algorithms for Wake Prediction) were the results from
the TASS [129] which showed that stable stratification causes vortex circulation to decay more
rapidly at large radii than near the core (r ≤ 15 m) [17]. Therefore the TDAWP model uses
separate prognostic equations for vortex descent rate and circulation in OGE which are applied
separately to the port and starboard vortices. For vortex transport the circulation at r = b0 is
modeled by

dΓ∗

dt∗
=
dΓ∗L
dt∗

+
dΓ∗D
dt∗

+
dΓ∗S
dt∗

, (4.16)

where the terms on the right-hand side are contributions from linking instability (ΓL), turbu-
lence diffusion (ΓD), and stratification (ΓS). They are described in more detail by Proctor et
al. [17]. In a similar manner the average circulation between 10 and 15 m is calculated by

dΓ∗

dt∗
=
dΓ∗SS
dt∗

+
dΓ∗D
dt∗

+
dΓ∗S
dt∗

. (4.17)

Here ΓSS represents the change in average circulation from short- and long-wave instabilities
[17]. It is based on a hyperbolic tangent function with tuning parameters that are derived
from TASS results [17].

This version of TDAWP considers the effects of crosswind shear on vortex descent rate and
thus allows the prediction of vortex tilt and change in lateral separation due to crosswind above
1.0z0 (OGE) [21, 98]. Therefore, the term dΓ∗Sh is added to Equation (4.16) that depends
on the second derivative of ambient crosswind [17]. A negative shear gradient causes the luff
vortex to descend faster whereas a positive shear gradient accelerates the descent of the lee
vortex (see Fig. 4.2).

4.2.5 Necessary adaptions to the model output

In order to prepare the models for their use within the ensemble their output data needs to
be adjusted. Firstly, the forecasts are continued even after the vortices already have decayed.
While the vortices are assumed to stay at a constant altitude and to be further advected by the
wind, circulation is extrapolated, such that Γ may take unphysical negative values. Otherwise,
the uncertainty envelopes would converge to values other than zero as they would be centered
at zero in Γ-direction after some point. The latter is however considered unrealistic as this
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Figure 4.2.: Influence of shear on descent in TDP 2.1. The port vortex is illustrated by the
- symbol (negative rotational direction), whereas the + symbol represents the
starboard vortex (positive rotational direction), assuming a right-handed coordi-
nate system. The left panel displays the impact of ∂2v/∂z2 < 0 and the right of
∂2v/∂z2 > 0, c.f. [98].

implies that even after endless time the probability to encounter vortices is still given. Secondly,
the model output is mapped to a temporal grid with bin width 0.1 t0.

4.3 Model Evaluation

4.3.1 Initial conditions

The initial conditions of the NASA data are consistently given in form of initial vortex descent
speed, wingspan, weight, aircraft position and speed as well as air density. In contrast, the
DLR data partly requires the estimation of the starting values from LiDAR data.

WakeMUC

In the WakeMUC campaign the aircraft types are unfortunately unknown (see Section 3.2.2),
such that the initial conditions are extrapolated from the first two LiDAR measurements for y∗0
and z∗0 . To derive Γ∗0 the first luff and lee measurements are averaged under the assumption
that the vortex age given by the LiDAR is trustable.

WakeFRA

The aircraft types and the landing speed in WakeFRA are known. The wingspan and the
Maximum Landing Weight (MLW) are derived from a table, consisting of theoretical values.
Although employing the MLW seems overly conservative, it turns out that utilizing lower
values would significantly underestimate the circulation in this campaign. If the aircraft speed
is unknown, a speed of uac = 70 m/s is assumed. The initial values y∗0 and z∗0 are derived by
extrapolation in the same manner as in WakeMUC.
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WakeOP

In WakeOP the initial altitudes, the aircraft speeds and aircraft masses are available. y∗0 is
derived from the measurements. Extrapolation of y∗0 does not deliver satisfying results due to
partly fluctuating lateral vortex positions in the beginning, such that the initial value of y0 is
averaged from the first luff and lee measurement.

4.3.2 Sensitivity analysis

To compare the model’s performance under various ambient conditions, a sensitivity study
is conducted. Therefore, the meteorological parameters v, N and ε are adjusted to a set
of different values following the exercise conducted at WakeNET New Orleans [130]. The
parameters of the vortex generating aircraft are b0 = 50.6 m, uac = 70 m/s and Γ0 =
500 m2/s. When wind is non-zero a logarithmic wind profile is employed according to Figure
4.3 left with the wind speed at 10 m (0.2b0) serving as reference. Additionally, wind profiles
with inverted shear are included that demonstrate the susceptibility of the NASA models
to shear (see Figure 4.3 right). The examined dimensional meteorological input parameters
and their respective non-dimensional values are listed in Table 4.2. In the following, non-
dimensional results are discussed. By design, the NASA models continue to predict the last
vortex position value after the vortices have decayed. However, for the sake of clarity this
is not displayed in the following figures. An overview of the model sensitivity in general is
given in Tables 4.4 and 4.3. While D2P is not listed to be sensitive to shear, P2P widens its
envelopes under shear conditions [16].

The model characteristics in OGE are illustrated by Figure 4.4. Under calm conditions
(no stratification, no turbulence) the longest lifetime is predicted by TDP 2.1 with about
15t0 (more than 480 s). Very similar decay characteristics can be observed for D2P and
APA 3.2. In all forecasts the vortices reach less than 1b0 above ground, with D2P predicting
the fastest descent. The rebound of APA 3.2 is the weakest in this case. Concerning the lateral
separation in ground proximity D2P shows the strongest and APA 3.2 the weakest divergence
of the vortices.
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Figure 4.3.: Exemplary meteorological profiles with logarithmic wind profile (a) and inverted
shear that starts from 0.4b0 (b). In both cases the crosswind v∗ is equal to 3.2w0

(5 m/s) at a height of 0.2b0 (10 m).
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Table 4.2.: Dimensional and non-dimensional meteorological parameters used for the sensitivity
analysis.

v v∗

1 m/s 0.64
2.5 m/s 1.60
3.0 m/s 1.92
5 m/s 3.20

N N∗

0.02 1/s 0.64
0.04 1/s 1.28

ε ε∗

0.002 m2/s3 0.296

Table 4.3.: Overview of the model sensitivity in OGE. d denotes dependency, (d) weak depen-
dency and i indirect dependency.

sensitivity of z∗ to
model v u ε N sh

TDP 2.1 d - i d d
APA 3.4 - - i d -
APA 3.2 - - i d -

D2P - (d) i d -

sensitivity of Γ∗ to
model v u ε N sh

TDP 2.1 (d) - d d (d)
APA 3.4 - - d d -
APA 3.2 - - d d -

D2P - (d) d d -

The second row indicates that all models are sensitive to turbulence as the decay rates are
increased. In the case of APA 3.4 and TDP this results in an increased vortex lifetime, although
a circulation of Γ∗ = 0.4 is reached earlier than under calm conditions. As the vortices in
all models are weak or have decayed before they reach ground, no pronounced vortex-ground
interaction can be observed. Thus, the lateral separation is constant, with exception of APA
3.2. In this model, vortex descent and circulation are coupled which is why vortex convergence
caused by three-dimensional structures is used to achieve constant descent speed even after a
catastrophic demise event occurs, such as Crow instability [127].

In the third row, stratification is increased and turbulence is set zero. This has the effect
that the vortex lifetime is further reduced, even without the influence of turbulence. However,
the onset of rapid decay of APA 3.4 is delayed compared to the previous case which is why
the vortices reach ground and subsequently separate. Both D2P and TDP 2.1 incorporate the
influence of stratification on vortex descent caused by buoyancy, that is both models predict
vortex rebound after reaching the lowest point. This trend is continued when stratification is
further increased (fourth row). For strong stratification, vortex lifetime and descent deviate
substantially from the other models.

Table 4.4.: Overview of the model sensitivity in NGE and IGE.

sensitivity of z∗ to
model v u ε N sh

TDP 2.1 d - i d (d)
APA 3.4 (d) - i d (d)
APA 3.2 (d) - i d (d)

D2P d (d) - - -

sensitivity of Γ∗ to
model v u ε N sh

TDP 2.1 (d) - d d (d)
APA 3.4 - - d d -
APA 3.2 - - d d -

D2P - (d) - - -



4.3. MODEL EVALUATION 43

 0

 1

 2

 3

 4

 5

 6

 7

      

z
*

D2P
APA 3.2
APA 3.4
TDP 2.1

-3

-2

-1

 0

 1

 2

 3

      
y
*

prt
strb

 0

 0.2

 0.4

 0.6

 0.8

 1

      

Γ
*

v* = 0 

N* = 0 

ε* = 0 

 0

 1

 2

 3

 4

 5

 6

 7

      

z
*

-3

-2

-1

 0

 1

 2

 3

      

y
*

 0

 0.2

 0.4

 0.6

 0.8

 1

      

Γ
*

v* = 0 

N* = 0 

ε* = 0.296 

 0

 1

 2

 3

 4

 5

 6

 7

      

z
* 

-3

-2

-1

 0

 1

 2

 3

      

y
*

 0

 0.2

 0.4

 0.6

 0.8

 1

      

Γ
*

v* = 0

N* = 0.64 

ε* = 0 

 0

 1

 2

 3

 4

 5

 6

 7

      

z
*

-3

-2

-1

 0

 1

 2

 3

      

y
*

 0

 0.2

 0.4

 0.6

 0.8

 1

      

Γ
*

v* = 0

N* = 1.28 

ε* = 0 

 0

 1

 2

 3

 4

 5

 6

 7

0 3 6 9 12 15

z
*

t*

-3

-2

-1

 0

 1

 2

 3

0 3 6 9 12 15

y
*

t*

 0

 0.2

 0.4

 0.6

 0.8

 1

0 3 6 9 12 15

Γ
*

t*

v* = 0

N* = 0.64 

ε* = 0.296 

Figure 4.4.: Model sensitivity OGE.
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The last row shows the forecasts for combined stratification and turbulence. Compared to
the cases with either turbulence or stratification (second and third row) all models predict
faster decay when turbulence and stratification are present at the same time. Above 1.0z0,
the TDP model considers the impact of shear on vortex descent (see Figure 4.5). Positive
shear (positive wind speeds provided) leads to a faster descent of the luff vortex. The other
models show such asymmetry only after rebound.
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Figure 4.5.: Model sensitivity in OGE with crosswind.

Near ground (NGE phase), the model behavior is dominated by the vortex-ground interaction
that is connected with crosswind and shear. For this reason the emphasis is put on the impact of
crosswind strength and profile. Figure 4.6 indicates that rapid decay sets in faster than in OGE
for all models. However, in contrast to the other models D2P is insensitive to stratification and
turbulence in proximity to ground (compare first and second row). Holzäpfel and Steen [18]
argued that the sensitivity of vortex decay to these effects is minor compared to the interaction
with the ground. It is thus neglected in D2P, where decay is rather accelerated by decreasing
initial altitudes. All models show no or almost no sensitivity to crosswind strength for vortex
decay. In absence of crosswind the luff and lee vortices rise symmetrically in all models
(second row). As soon as crosswind sets in, an asymmetry of vortex rebound can be observed
which is increased with rising wind speed (fourth row). D2P assumes that this behavior,
observed in measurements, is due to different strengths of secondary vortices of the luff and
the lee vortex. With increasing crosswind the secondary luff vortex is weakened, whereas the
secondary lee vortex is strengthened such that the rebound of the primary lee vortex is more
pronounced [18, 90].

The common IGE formulation of both TDP and APA also allows asymmetric rebound, as
shear may affect the distances of the secondary vortices for the up- and downwind vortex
differently. However, the observed asymmetries are less distinctive for the APA models than
for TDP. The analysis reveals, that the observed rebound of the NASA models is contrary
to the D2P forecast. If shear is, however, inverted (see Figure 4.3) with unchanged wind
direction, the lee vortex rises stronger than the luff vortex such that the trends conform with
D2P, although ascribed to different effects. If shear is totally absent (constant wind profile)
the rebound predicted by the NASA models is symmetrical, whereas D2P still predicts a
stronger lee vortex rebound. The lateral separation is predicted very similarly by the NASA
models. Differences can be attributed to different rebound characteristics. D2P, however,
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Figure 4.6.: Model sensitivity NGE.
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Figure 4.7.: Model sensitivity IGE.



4.3. MODEL EVALUATION 47

shows a significantly stronger vortex divergence and furthermore a clear asymmetry in lateral
vortex transport. This can be ascribed to the strong asymmetry in rebound that firstly leads to
different lateral velocity induction by the image vortices and secondly exposes them to different
wind speeds due to the wind profile.

Even closer to the ground (here 0.5b0) rapid decay starts before 1t0 in all models (see
Figure 4.7). Increasing crosswind has the same effect on decay as in NGE. In any model, the
vortices do not descend but start to rise immediately after they have been generated with no
pronounced descent being visible. While the trend of D2P and the APA models concerning
rebound is comparable with what has been observed in NGE, the asymmetry of TDP 2.1 is
clearly less pronounced. Moreover, the NASA models show the same reaction to inverted shear
as in NGE.

4.3.3 Performance

While the DLR dataset concentrates on landings in IGE and NGE the NASA dataset comprises
for the most part OGE measurements. For this reason the model performance is evaluated
separately for the WakeOP/ WakeFRA/ WakeMUC and the MEM95/ DFW97 dataset.

Error distributions

Although the RMSE and bias are valuable quantities to characterize the model skill they
cannot fully describe their performance. Complementarily, the error distribution illustrates the
distribution of the model deviations. On the basis of the WakeMUC/ WakeFRA/ WakeOP
dataset, Figure 4.8 illustrates that the errors do not necessarily follow Gaussian but rather
leptokurtic distributions for z∗ and y∗luff whereas the Γ∗ forecast can be assumed to be normally
distributed. Beside the kurtosis, the distributions are distinguished by their skewness which
can be caused by a bias in the wind speed data (y∗luff ), the impenetrable ground that makes
negative errors less likely (z∗luff ) or by a bias in the model physics as the model rebound or
the lateral drift is under- or overestimated. Furthermore, the illustration reveals that the error
distributions for the y∗lee forecast nearly coincide, whereas D2P differs significantly from the
other models for y∗luff . Larger differences between the models are observed for z∗ and Γ∗.

When evaluating OGE data by employing the NASA dataset (see Figure 4.9) significant
differences are only revealed for the Γ∗ forecast. For z∗ they are very similar while they almost
coincide for the y∗ forecast. Reasons for the discrepancy between both datasets may be referred
to different initial altitudes, meteorological conditions, orographics as well as measurement data
quality. As an example, the less pronounced interaction with the ground, due to higher initial
heights, results in less skewed and shifted distributions.

RMSE and bias

The RMSE deviations of the respective models are illustrated in Figure 4.10 for the DLR dataset
and in Figure 4.11 for the NASA dataset. In comparison, the models perform on average better
for the DLR datasets. Furthermore, the models are more similar in their performance for the
NASA dataset with observations in OGE which is in line with the conclusions from the error
distributions in the previous section. Figure 4.12 and Figure 4.13 depict the model bias,
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Figure 4.8.: Distribution of model deviations for the WakeOP, WakeFRA and WakeMUC cam-
paign.

revealing that the sign of the error may vary significantly for different campaigns for the same
reasons listed above. As a result it is hard to identify a single best model for both RMSE and
bias as the performance varies significantly for different campaigns and initial heights.
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Figure 4.9.: Distribution of model deviations for 513 landings of the DFW97 and MEM95
campaign.
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Figure 4.10.: Median model RMSE for the WakeMUC/ WakeFRA/ WakeOP dataset.
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Figure 4.11.: Median model RMSE for the DFW97/ MEM95 dataset.
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Figure 4.12.: Median model bias for the WakeMUC/ WakeFRA/ WakeOP dataset.
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Figure 4.13.: Median model bias for the DFW97/ MEM95 dataset.



5. Multi-Model Ensemble Methods

Naturally, an ensemble forecast can exhibit better prediction skills than the worst-performing
model among all members. However, the question how an ensemble can possibly outperform
the best model is not straightforward and is thus discussed in this chapter. In the following,
the ensemble models are also termed members. Several methods to set up a MME are
considered, among them as most promising the Reliability Ensemble Averaging (REA) method
[58] and the Bayesian Model Averaging (BMA) [71]. These two methods have in common
that they weight the models on the basis of a training dataset in advance. As reference
the Direct Ensemble Average (DEA) is employed. Eventually, Monte-Carlo Simulations and
Lagged Average Forecasting, and the reasons why they were discarded are discussed. The
methods described below only constitute the most promising in connection with wake vortex
forecasts, although further variations of the Bayesian approach [131–134] and neural network
methodologies [72] exist. Despite they might also achieve good results, they were discarded
in favor of the DEA, REA and BMA approach.

5.1 Principles

Predictions are usually derived from models that either fully resolve or parametrize the relevant
processes [68]. Errors in the projections may arise from manifold uncertainty sources which
can be decomposed in the following groups.

Initial condition uncertainties Commonly the initial conditions are derived from measure-
ments that exhibit uncertainties or they are based on assumptions of unknown accuracy.
This may result in forecasts that diverge from the actual state right from the start. For
example, a wake vortex forecast can be flawed by an inaccurately given aircraft mass or
position. But also wind, deviating from the aircraft experienced conditions, may fall in
this category.

Ambient condition uncertainties This includes measurement uncertainty caused by the in-
struments themselves and not only in the beginning but rather over the whole forecast
horizon. For wake vortex forecasts an offset between the location of the instruments and
the vortex generation may cause such uncertainty. Additionally, the temporal resolutions
of the environmental condition measurements are limited. During the evolution of the
simulated phenomena the ambient conditions may change, which may lead to large er-
rors if the model forecast is not assimilated. In application to wake vortex forecasts this
would be equivalent to the gusts that strongly deviate from the crosswind mean. Not
being resolved they cannot be considered deterministically.

51
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Model uncertainties They stem from the fact that not all physical aspects of the environ-
mental conditions and vortex evolution are resolved in the models [135], either because
their scale is too small or the physics is simplified or not yet fully understood. Further-
more, the uncertainty in the model parameters causes errors in the projections.

To address these uncertainties a variety of ensemble types have been developed. Various
definitions and terms exist in literature but to clearly distinguish the different groups in this
study the following convention is applied:

Initial Condition Ensembles (ICE) To allow for the initial condition uncertainty imposed
by observational errors their influence on the simulation must be studied [65, 66]. By
perturbing the initial conditions, for example by employing Monte Carlo Simulations,
a variety of results can be achieved with one and the same model [67]. If the model
behaves non-linearly, the ensemble mean may deviate from the unperturbed simulation.
Moreover, a forecast PDF can be derived from which a probabilistic envelope can be
generated.

Perturbed Physics Ensembles (PPE) The model parameters also exhibit uncertainties that
can be accounted to the model uncertainty. By generating various ensemble members
by parameter perturbations, these uncertainties can be considered [68].

Multi-Model Ensembles (MME) Employing multiple independent models, this ensemble
type covers model uncertainty generated by simplifications or different and possibly in-
complete assumptions about the underlying physics. The MME can be further extended
by perturbing the initial conditions to allow for both the initial condition and model
uncertainty. However, if not explicitly stated, the term Multi-Model Ensemble is used
here for the combination of multiple models only.

In this study the focus lies on the MME. The reason is the increased run time of the ICE
that collides with the time critical application of wake vortex forecasts. The PPE is discarded
at this point as well, because it is assumed that the multiple available models should already
cover model uncertainty sufficiently.

While the ICE has proven to be successful in general as it considers non-deterministic initial
conditions, the reason to employ the MME can be found elsewhere. The key factor for its
success lies in the varying performance of each of its members as a consequence of model
uncertainty. Certainly, employing the best member instead of relying on the model consensus
is tempting. However, Hagedorn et al. [63] argue that the identity of the best member varies
under different conditions and is therefore difficult to identify. A Multi-Model Ensemble (MME)
takes this fact into account by accepting that any model can be the best in a certain situation.
An important consideration when discussing the superiority of the MME is that it may not
facilitate large improvements compared to the single best model in any individual case. The
study of Hagedorn et al. [63] rather points out the main advantage is the consistently better
performance compared to the best member over a large range of conditions.

The superiority of the MME has been proven many times [63, 64, 136–138] and led to
the ensemble approach becoming operational in met-offices all over the world. The simplest
approach to combine several ensemble members is the direct ensemble average (also called
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arithmetic ensemble mean), where no weights are employed. More sophisticated methods
give higher weights to more skillful models and introduce further parameters that calibrate
the ensemble prediction according to the environmental conditions. Here, the challenge is to
estimate the skill of each model correctly a priori. To estimate the likelihood of the prediction,
probabilistic ensemble forecasts utilize the ensemble spread.

5.1.1 Conditions for the MME success

Concerning the composition of the ensemble the study of Fritsch et al. [139] comes to the
conclusion that the superiority of the ensemble approach is not to be owed to simple error
cancellation. It can rather be attributed to the fact that models based on different physics
and numerics play an important role in generating the full spectrum of possible solutions. This
implies that a successful ensemble must be based on independent models. The potential of
a MME to improve the forecast skill is believed to be high when the members are experts
on different areas. In this context it is important to state that even poor-performing models
can contribute to the ensemble skill [63]. However, models with consistent low performance
compared to the other members will not add skill. For this reason it must be ensured that
only models are chosen that outperform the other members at least sometime.

5.1.2 Qualification of the available wake vortex models

To find evidence that the available models fulfill the condition of independence, their correlation
is evaluated. The dependency between two parameters f and r, evaluated for n cases, can be
expressed by the correlation coefficient R introduced by Pearson [140] via

R =
Cov(f ; r)√

Cov(f ; f)Cov(r; r)
=

1
n

∑n
i=1(fi − f)(ri − r)

σfσr
, (5.1)

where σf denotes the standard deviation of parameter f and where f describes its mean value.
Here, f and r constitute the forecasts of two individual models. If the models are linearly
correlated the values of R are equal to 1 while for uncorrelated models R would equal 0. To
evaluate the level of independence of the models among each other R is calculated for a dataset
comprising 694 landings from WakeOP, WakeFRA and WakeMUC. The results are depicted
in Figure 5.1 and additionally listed in Table A.1-A.5 in the appendix. They demonstrate that
the correlation among the models fluctuates between 0.900 and 0.986 for z∗, and between
0.886 and 0.953 for Γ∗. Concerning the prediction of the lateral vortex position y∗, higher
correlations that vary between 0.976 and 0.998 occur. As APA 3.2 and APA 3.4 constitute
two different versions of the same model, their correlations are the highest among all models
and for all parameters. In contrast, the least correlation occurs between D2P and TDP 2.1 for
z∗luff , whilst it is D2P and APA 3.2 for z∗lee. For y∗ the correlation is the smallest between D2P
and TDP 2.1. Eventually, the least linear correlation for the Γ∗-forecast can be found between
D2P and APA 3.2. The OGE simulations of APA 3.4 and APA 3.2 are lower correlated than
in ground proximity (see Figure 5.2). Nevertheless, on average the correlations are slightly
higher compared to IGE and OGE.
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Figure 5.1.: Correlation coefficients R for the WakeMUC/ WakeFRA/ WakeOP sample.
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Figure 5.2.: Correlation coefficients R for the DFW97/MEM95 dataset.

Figure 5.3 displays the forecasts for the WakeMUC/ WakeFRA/ WakeOP dataset of the
least correlated models against each other for the luff parameters, respectively. The left panel
reveals the increased deviations between the D2P and TDP 2.1 forecast for zluff in ground
proximity, whereas the agreement is larger at higher altitudes. Note that the correlation is
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Figure 5.3.: Model forecasts against each other of the respectively least correlated models for
the prediction of z∗luff , y∗luff and Γ∗ for WakeOP, WakeFRA and WakeMUC (694
landings).

a measure of linear dependency and not related to the gradient of the line that would be
achieved by linear regression.

These results suggest that structural model differences concerning the forecast of the vertical
position and of decay exist, even if they are partly small. Especially at low altitudes and
decreasing circulation the physics of the models seem to differ substantially. As far as the
lateral vortex position is concerned the model correlation is higher. This implies that a forecast
skill improvement is less likely for y∗ than it is for z∗ and Γ∗ with respect to the findings of
Fritsch et al. [139].

5.1.3 Spread-error correlation

Predicting the forecast skill and error distribution is desirable for two reasons. Firstly, the
information whether a prediction is reliable or unreliable can support the decision making
process. And secondly, on the basis of the forecast deviation distribution probabilistic envelopes
can be generated. Therefore, the dispersion of the ensemble members, usually referred to
as ensemble spread, can be exploited to indicate the forecast skill [141, 142]. Intuitively,
large spread is associated with high uncertainty in the prediction. In this context Whitaker
and Loughe [143] revealed that spread which is close to the climatological mean has little
predictive value for an ensemble generated by initial condition perturbations. By contrast
spread that departs from the climatological error distribution is more suitable as predictor of
skill. They suggest that the correlation of spread and error should be related to the magnitude
of spread variability which they confirmed for an operational ensemble. Note that the study
only discusses ensemble members generated from perturbed initial conditions such that the
source of spread is based on the initial condition uncertainty. In turn, in a MME the spread
originates from model uncertainty. Giorgi and Mearns [58] nevertheless connect the spread of
multiple models with the forecast reliability.
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5.2 Best Member Selection

Hagedorn et al. [63] stated that the task to identify a single best model is complicated due to
its changing identity. Nevertheless, it might be possible to identify certain conditions under
which one model may be exposed as an expert. For this purpose the correlation between
the meteorological conditions and model error is of particular interest in order to answer the
question if it could be possible to always pick the best model depending on the ambient
conditions (in the following termed expert model).

5.2.1 WakeMUC, WakeFRA, WakeOP

Figure 5.4 displays the RMS deviation of the z∗-forecast against z0 and the meteorological con-
ditions that have an impact on wake vortex descent for the WakeMUC/ WakeFRA/ WakeOP
dataset.
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Figure 5.4.: Correlation of RMSE z∗ and the ambient conditions experienced by the vortices
during their descent. The solid line corresponds to the luff and the dashed line to
the lee vortex.

In all panels the average developments are mostly parallel, with the order of the models being
the same. This indicates that on average it is on average always the same model that achieves
the least deviations, independently from the ambient condition. Yet, D2P seems to perform
even better for the luff vortex at low initial heights, as well as at increasing crosswind speeds
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Figure 5.5.: Correlation of both RMSE y∗ and RMSE Γ∗ with the ambient conditions experi-
enced by the vortices during their descent. The solid line corresponds to the luff
and the dashed line to the lee vortex.

and shear. Although it would have been expected to identify TDP as expert model for shear,
this could not be confirmed. To the contrary, it performs worst for the luff vortex in this
dataset. This is also observed for the derivative of shear.

The first row of Figure 5.5 depicts the model RMS errors for the y∗-prediction against
the most influential parameters, namely initial height, crosswind and headwind speed. It
is again observed that D2P shows significant better performance for low initial heights and
stronger crosswinds than the other models for the luff vortex. Moreover, the average RMS
error demonstrates that the performance of all models is very similar for the lee vortex where
the curves nearly intersect. In addition, the best performing member is constantly the same.

The second row of Figure 5.5 illustrates the RMS deviation of the Γ∗-forecast against initial
altitude, turbulence level and stratification. Here, the curves of D2P and TDP coincide. This
indicates that TDP would be the model of choice for low initial heights and strong turbulence,
whereas it would be reversed for D2P. However, the differences in model performance are
rather small between both models.

Conclusively, the findings point out that even if an expert model can be identified, it is the
same model that performs best on average anyway. An exception is the Γ forecast, where the
differences are, however, negligible. More meaningful results might be achieved by assessing
multiple parameters at a time (e.g. strong crosswind with pronounced shear). However,
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considering the size of the dataset this is hardly possible. At this point it is therefore not
beneficial to choose one model over another in specific situations.

5.2.2 MEM95, DFW97

Figure 5.6 and Figure 5.7 depict the model RMSE against the meteorological conditions for
the DFW97/ MEM95 dataset, where headwind is not provided in the input data. As in the
evaluation of the WakeMUC/ WakeFRA/ WakeOP dataset no expert models can be identified.
The fact that the trends are different in the DLR campaigns can be attributed to the distance
between the measurement site of the LiDAR and the meteorologic instrumentation and the
larger variability in the wake vortex measurements.
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Figure 5.6.: Correlation of RMSE z∗ and the ambient conditions experienced by the vortices
during their descent for the DFW97/ MEM95 campaign. The solid line corre-
sponds to the luff and the dashed line to the lee vortex.

5.2.3 Reasons for absence of expert models

Given the sensitivity analysis in Chapter 4.3.2 this result is astonishing at first glance. However,
the models being based on different physical equations does not guarantee their superiority un-
der certain conditions. Nevertheless, in the first place at least TDP would have been expected
to act as an expert in shear situations, especially in campaigns with higher vortex generation al-
titudes. Although the predicted behavior has been observed in laboratory experiments and LES
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Figure 5.7.: Correlation of both RMSE y∗ and RMSE Γ∗ with the ambient conditions expe-
rienced by the vortices during their descent for the DFW97/ MEM95 campaign.
The solid line corresponds to the luff and the dashed line to the lee vortex.

simulations [96, 98], it seems that the meteorological input from field measurements, usually
averaged over 10 minutes, is not accurate enough to produce robust deterministic predictions
in consideration of shear (see references [144] and [16]). Furthermore, the natural variability
of the vortices and their interaction with the ground might dilute environmental impacts, such
as observed by Holzäpfel and Steen [18] for turbulence induced decay in ground proximity.
Finally, it cannot be ruled out that the model skill does not depend on single meteorological
parameters only, but rather on the interplay of several. With regard to the limited size of
measurements this cannot be proved for the available datasets.

Even smaller differences between the models are observed for the NASA dataset. This
can be attributed to the imprecise input data due to different vortex generation and ambient
condition measurement sites, as well as due to the impact of the trees beneath the glide slope.
Inaccurate input data obscures the model performance differences.
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5.3 Direct Ensemble Average (DEA)

The simplest method to combine several model forecasts is to average them without employing
weights (see eqn.(5.2)). This neglects the strengths of individual ensemble members, but it
can help to reduce the influence of outlying predictions. Here it is used as a baseline to
compare the skills of the DEA with the other ensemble approaches.

f̃ =

∑I
i=1 fi
n

(5.2)

5.4 Reliability Ensemble Averaging (REA)

This method was developed by Giorgi and Mearns (2002) [58] and applied to atmosphere-
ocean general circulation models to predict the climate change. In their approach a model
is classified as reliable if both its bias Bi (performance criterion) and its distance Di to the
ensemble mean (divergence criterion) are within the scope of what they call natural variability.
They found that this approach allows a reduction of the uncertainty range as the influence of
poorly performing models is decreased compared to the DEA. The ensemble mean f̃ can be
expressed in a general form by

f̃ =

∑I
i=1Rifi∑
i

Ri

, (5.3)

where Ri denotes the general reliability factor and fi the individual forecasts for each model
i. The reliability factor is defined as

Ri = [(RB,i)
m · (RD,i)

n][1/(m·n)] (5.4)

and can be decomposed in two specific factors. RB,i is a factor that describes the model
reliability as a function of its bias Bi (with Bi = forecast - observation) and RD,i characterizes
the model reliability in terms of distance Di between an individual model forecast and the REA
average prediction (with Di = forecast - ensemble mean). RD,i can thus be understood as a
measure of the degree of convergence [58]. The natural variability nv represents variations of
the observed parameters that cannot be predicted by the models (e.g. turbulent fluctuations).
If Bi or Di are less than the natural variability, the model is considered as reliable and it obtains
the highest possible weight (RD,i = 1 or RB,i = 1 or both) because it cannot naturally perform
better (see Equation (5.5) and (5.14)).

RB,i = min

(
nv

|Bi|
, 1

)
(5.5)

RD,i = min

(
nv

|Di|
, 1

)
(5.6)

The distance DT,i is calculated iteratively with the direct ensemble average as first guess. The
exponents n and m in Equation 5.4 weight the influence of RD,i and RB,i on the ensemble
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prediction. RB,i is constant for all vortex predictions and determined a priori from a test
dataset, whereas RD,i varies depending on the model spread in each individual prediction. In
order to estimate the uncertainty of the ensemble forecast Giorgi and Mearns [58] introduce

δ̃f . It quantifies the weighted average of the model deviations from the ensemble mean:

δ̃f =

√∑I
i=1Ri(fi − f̃)2∑I

i=1 Ri

. (5.7)

That is, the larger the ensemble spread, the larger the uncertainty. We obtain upper and lower
uncertainty limits by adding and subtracting δ̃f from the ensemble mean.

f± = f̃ ± δ̃f (5.8)

Note that the probabilistic envelopes, however, do not naturally provide uncertainty levels
based on previous observations. Nevertheless, probability levels can be estimated under the
assumption that the forcasts are distributed following a Gaussian PDF [58]. Then δ̃f can be
viewed as a standard deviation and accordingly the envelopes represent a 68.3% confidence
interval.

5.4.1 Natural variability

In this study the natural variability is treated as a model resolution limit. It describes the range
for which a model forecast can be considered reliable. In our application the model resolution
is limited by [145]:

• stochastically decaying vortices (ground linking, Crow instability, vortex bursting)

• turbulent deformation

• variability of environmental conditions

• uncertainty of initial conditions

To identify the impact of stochastically decaying vortices and the effect of large scale turbulence
on vortex variability, wake vortex measurement data is used. The variations that are found in
measurements under essentially the same ambient conditions can be attributed to the wake
vortex variability and are quantified by the deviations of the observations from the measurement
derived mean. The observed variability is given by the standard deviation σobs for z∗ and Γ∗

using non-dimensional data. As the LiDAR measurements are afflicted with errors, the observed
variability σobs contains both the measurement error σerr and the actual wake vortex variability
σnv [145]:

σobs =
√
σ2
err + σ2

nv (5.9)
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For the LiDAR measurement errors the findings of Köpp et al. (2005) [117] serve as a reference.
They used simultaneous measurements with different LiDAR systems of the same vortex pair
to derive standard deviations:

• σerr,z = 9 m

• σerr,y = 13 m

• σerr,Γ = 13 m2/s.

However, finding a significant number of cases featuring identical ambient conditions is not
possible for the available dataset. Therefore, the wake behavior is clustered in bins, which
represent intervals of various initial or ambient conditions. Either crosswind (for σobs,z∗) or
turbulence bins (for σobs,Γ∗) are employed to compute the observed variability within given
bins of vortex generation altitudes. Stratification is ignored here because its impact is minor
in ground proximity compared to the vortex ground interaction [146]. Certainly, the natural
vortex variability also increases with time. Given the size of the dataset this is ignored here.

In order to compute σobs,z∗ and σobs,Γ∗ we utilize 1252 landings of the WakeMUC, WakeFRA
and WakeOP campaigns. Figure 5.8 displays the measured wake vortex variability for z∗, y∗

and Γ∗ for specific crosswind and turbulence bins and model runs for the upper and lower bin
limit. The model derived sensitivities (here from D2P as a reference) to the chosen bin widths
are small for z∗ and Γ∗ which implies that they can be neglected and that the bins are small
enough for this study. However, this does not hold for y∗ which is why nvy∗ must be derived
differently [145].

The standard deviations listed in Table 5.1 indicate that larger variability can be observed
for larger z∗0 where wake vortex behavior is less restricted by the ground (see Holzäpfel and
Steen [18]). Thus σobs,z∗ is calculated with the fits depicted in Figure 5.9. No clear correlation
between crosswind strength and observed variability can be found for the considered bins.
Furthermore the results reveal that the variability of the lee vortex is higher compared to the
luff vortex [145].

Holzäpfel and Steen [18] show that there is a correlation between turbulence and vortex
decay in ground proximity. Nevertheless, they state that its significance is minor. This also
applies to the respective observed variability that shows to be insensitive to the width of the
turbulence bins that are employed. Table 5.2 indicates that the observed variability of vortex
strenght during decay is neither sensitive to turbulence nor to the initial height z∗0 .

Tables 5.1 and 5.2 also indicate that σobs,z∗ can be on the order of the non-dimensional
measurement error, normalized by b0. This suggests that either the measurement errors deter-
mined by Köpp et al. [117] are too conservative or that there is no vertical vortex variability.
However, LES indicate that wake vortices can exhibit significant intrinsic variability [79] which
implies that the estimated LiDAR error is too conservative. Thus nvz∗ and nvΓ∗ are calculated
by [145]:

nv =

{√
σ2
obs − σ2

err if σobs > σerr

σobs otherwise
(5.10)
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Figure 5.8.: Wake vortex variability for 1.0 < z∗0 < 1.2 for luff (above) and lee (below) [145].

The above described method to derive nv is applicable to z∗ and Γ∗. However, the sensitivity
of the lateral position to crosswind is high (see Figure 5.8), which implies that the crosswind
bins must be smaller to derive the natural variability. As the number of observations in
our dataset is limited, this method is not applicable to nvy∗ [145]. Instead of employing
LiDAR data, nvy∗ is calculated from the turbulence velocity q, which is a measure of ambient
turbulence [121].

q =
√
u′2x + u′2y + u′2z (5.11)

Furthermore, it is assumed that q can be considered as a superimposed propagation velocity
[15]. As a result, the standard deviation of the vortex displacement can be determined in
dependency of vortex age [145]:

nv∗y = σnvy∗ =
1√
3
· q∗ · t∗. (5.12)

However, the assumption made in Equation (5.12) yields a natural variability that is mostly
larger than both Bi and Di. Although the physics of the models do not differ much for the
y-prediction there are differences that can be assigned to different vortex lifetimes and descend
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Table 5.1.: Observed variability for z∗, with number of employed data points in brackets that
are used for the weighted mean [145].

z∗0 0.0 < |v∗| < 0.5 0.5 < |v∗| < 1.0 1.0 < |v∗| < 1.5
σobs,z∗luff σobs,z∗lee σobs,z∗luff σobs,z∗lee σobs,z∗luff σobs,z∗lee

0.8 - 1.0 0.194 (251) 0.311 (305) 0.228 (207) 0.267 (200) 0.168 (196) 0.197 (208)
1.0 - 1.2 0.172 (428) 0.196 (427) 0.181 (299) 0.252 (290) 0.194 (380) 0.197 (330)
1.2 - 1.4 0.172 (207) 0.267 (210) 0.183 (296) 0.189 (252) 0.180 (199) 0.195 (194)
1.4 - 1.6 0.240 (118) 0.223 (122) 0.240 (234) 0.225 (210) 0.197 (195) 0.207 (176)
1.6 - 1.8 0.194 (126) 0.304 (161) 0.201 (131) 0.239 (120) 0.208 (149) 0.226 (114)
1.8 - 2.0 0.246 (77) 0.127 (73) 0.277 (186) 0.211 (171) 0.217 (210) 0.324 (182)
2.0 - 2.2 0.272 (83) 0.327 (84) 0.200 (127) 0.196 (121) 0.226 (181) 0.217 (161)
2.2 - 2.4 0.280 (42) 0.325 (46) 0.206 (114) 0.343 (94) 0.248 (177) 0.269 (155)
mean 0.198 0.254 0.230 0.235 0.202 0.225

Table 5.2.: Observed variability for Γ∗, with number of employed data points in brackets that
are used for the weighted mean [145] .

z∗0 0.0 < ε∗ < 0.5 0.5 < ε∗ < 1.0
σobs,Γ∗

luff
σobs,Γ∗

lee
σobs,Γ∗

luff
σobs,Γ∗

lee

0.8 - 1.0 0.086 (162) 0.113 (167) 0.097 (88) 0.097 (83)
1.0 - 1.2 0.108 (791) 0.101 (627) 0.082 (121) 0.100 (129)
1.2 - 1.4 0.119 (412) 0.112 (387) 0.116 (124) 0.108 (122)
1.4 - 1.6 0.101 (313) 0.113 (319) 0.090 (111) 0.094 (115)
1.6 - 1.8 0.111 (255) 0.094 (278) 0.100 (77) 0.086 (78)
1.8 - 2.0 0.095 (366) 0.106 (359) 0.080 (95) 0.097 (88)
2.0 - 2.2 0.101 (305) 0.103 (311) 0.098 (79) 0.091 (94)
2.2 - 2.4 0.096 (260) 0.095 (256) 0.082 (38) 0.111 (48)
mean 0.104 0.104 0.094 0.098

trajectories. By weighting all models equally (Ri = 1) these small differences are neglected.
It shows that decreasing nvy∗ by 4/5 clearly increases the ensemble skill of the y-prediction.
Although using standard deviations for the natural variability is successful for the z- and Γ-
forecast, it fails for the prediction of y. The prediction skill of the lateral position can only be
increased by the REA ensemble approach if we reduce nvy∗ to 1/5th (see Equation (5.13)) of
the value we would expect based on physical considerations (see Equation (5.12)) [145].

nv∗y =
1√
3
· q∗ · t∗ · 1

5
(5.13)

It is found that computing both reliability factors in dependency of vortex age can be
beneficial for the ensemble performance. Therefore, RB,i is computed vortex-age binned
before being interpolated, while RD,i is derived for each time step before being smoothed.
The weights achieved if nv is derived in this manner for a single landing are illustrated in
Figure 5.10. The low RB factors for the y-forecast can be referred to the fact that nvy∗ is
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Figure 5.9.: z∗0 dependency of nv for the examined vortex generation height and crosswind
bins in Table 5.1 [145].

small due to the factor 1/5 (see Equation (5.13)). The weights of APA 3.2 and APA 3.4 are
very similar for the z- and y-forecasts, as the calculation of the reliability factors does not take
into account that they are based on the same equations with different parameters. For this
reason the reliability factors of APA 3.2 are artificially set 0 for z and y. It is found that this
improves the ensemble performance considerably [145].

5.4.2 Weighting of RB and RD

The bias does not differ drastically between the models, such that the differences of RB,i are
rather small. However, it turns out that a non-linear weighting that promotes models with
small biases stronger has positive impact on the ensemble performance. One can achieve this
by employing exponents n and m that are less than 1. For a better understanding of the
weighting of RB and RD, Equation (5.4) can be put differently according to

Ri = [(RB,i)
1/n · (RD,i)

1/m]. (5.14)

A large weighting exponent m leads to weak weighting of RD,i as 1/m converges towards
0. By contrast, if m is smaller than 1 the exponent 1/m takes values larger than 1 and thus
introduces non-linearity. Of course, the same holds for n. It turns out that the best results
are achieved for n = 0.3 and m = 1 [145].

5.4.3 Potential

The REA is in comparison to the DEA more sophicated as it assesses the model performance
a-priori. For this reason the improvements achieved by the ensemble are expected to be larger.
Moreover, this approach is chosen due to its capability to provide probabilistic envelopes that
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Figure 5.10.: REA weights for a single landing from the WakeMUC/ WakeFRA/ WakeOP
sample. While RB,i does not change after being calculated in the training, RD,i

varies between single landings.

are based on model spread. At the same time the natural variability ensures that only models
with self-imposed poor skill are degraded, leaving measurement errors and wake vortex behavior
that cannot be modeled yet disregarded.

5.5 Bayesian Model Averaging (BMA)

Model forecasts are connected with uncertainties with respect to initial and environmental
conditions, stochastic vortex behavior and model physics. Further uncertainty is ascribed to
the assessment of the model performance against measurement data which itself is subject
to measurement uncertainties. Calculating uncertainty allowances is one way to handle them.
Another way is to include them a priori, which constitutes the essence of the Bayesian Model
Averaging [71]. This approach quantifies the prediction uncertainties by dressing each model
forecast with a Probability Density Function (PDF). An ensemble forecast can then be gen-
erated by weighting the PDFs according to the respective model performance and summing
them up.

This can be formulated by the law of total probability. It describes the probability that
event B occurs in dependency of the likelihood of event Ai, given that B resides in the same
probability space. P (B) is the probability that B occurs, P (Ai) denotes the probability that
Ai occurs and P (B|Ai) describes the probability that B occurs given Ai.
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P (B) =
n∑
i=1

P (B ∩ Ai) =
n∑
i=1

P (Ai)P (B|Ai) (5.15)

Raftery et al. [71] apply this to an ensemble forecast. In Equation (5.16) y denotes the quantity
to be forecasted and yT denotes the training data for I different statistical models M1, ...,MI .
The forecast PDF is then given by [71]

p(y) =
I∑
i=1

p(Mi|yT )p(y|Mi). (5.16)

Here p(y|Mi) is the forecast PDF of Mi alone and p(Mi|yT ) denotes the a priori probability
of model Mi being correct given the training data [71]. The resulting PDF p(y) is given by
the sum of the individual model PDFs, weighted by their a priori probabilities [71]. Applying
this to dynamical models, the ensemble PDF p(y) quantifies the uncertainty about the best
member in our ensemble [71]. Each of the forecasts f1, ...., fI by the models 1 to I has an
a priori probability wi of being the best member among the ensemble and a conditional PDF
gi(y|fi). Centered at the individual determinstic model forecasts, the width of the PDF can
be viewed as the accuracy of the forecast, given that it is the best forecast in the ensemble.
The individual wi’s are weights that sum up to one. The ensemble PDF is then defined by

p(y|f1, ..., fI) =
I∑
i=1

wigi(y|fi), (5.17)

which constitutes a weighted sum of PDFs [71]. Figure 5.11 displays the weighted PDFs at
t∗ = 2 where the individual PDFs gi(y|fi) are centered at the respective deterministic model
forecast. In addition, the envelope that comprises the 90% probability level of the MME is
displayed. The deterministic ensemble forecasts f̃ equals the expectation of the ensemble PDF
p(y) [71] and is calculated according to Equation (5.18). Deriving f̃ from the global maximum
of p(y) instead results in impaired performance.

f̃ = wi · fi. (5.18)

5.5.1 Maximum-likelihood estimation of ensemble parameters

To determine wi and the standard deviation σ of the PDF gi it is useful to employ a maximum
likelihood method [147] to combine various PDFs such that their sum matches a given distri-
bution best. Deriving the ensemble parameters directly, by counting how often each model is
the best among the ensemble and by computing the standard deviation of the model forecasts,
showed to be inferior to such an optimization method.

The maximum-likelihood estimation approach is based on the idea that only a random
sample from an unknown population is available [147]. The goal of this method is to estimate
the properties of a PDF for a population that has most likely generated the sample [147].
Therefore, a PDF formulation must be assumed in the first place (e.g. a normal distribution).
Exemplarily, the likelihood function for a sample of observed data yo at observation site or
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Figure 5.11.: Ensemble forecast at t∗ = 2 with the PDFs of the individual model predictions.
The black lines show the ensemble PDF and the dotted vertical lines denote the
90% uncertainty envelope.

time o, that is to be approximated by a single model (the PDF g(µ, σ2) with mean µ), is

L(µ, σ) =
n∏
o=1

g(yo|µ, σ). (5.19)

It describes the probability of the training data yo to be estimated as a function of µ and σ [71]
(Figure 5.12a). Finding the maximum of L as a function of µ and σ is equivalent to finding
the optimal PDF that describes the population from which the sample was extracted. Note,
that this method is sensitive to the starting values, as the likelihood function may exhibit more
than one maximum [71].

In the ensemble more than one model is available (in contrast to the example before), where
each is represented by a PDF with given mean fi. The function that is to be maximized for
the MME is [71]

log (L(wi, fi, σ)) =
n∑
o=1

log

(
I∑
i=1

wi · gi(yo|fi,o, σ)

)
. (5.20)
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The logarithm is applied such that the likelihood function can be expressed by sums instead
of products to simplify the calculation. Here, wigi(yo|fi,o, σ) is the weighted a priori likelihood
that observation yo is predicted correctly by forecast fi for a given standard deviation σ, which
is depicted in Figure 5.12b. As an analytical maximization is not possible here the Expectation-
Maximization (EM) algorithm [148,149] is utilized to find the optimal ensemble properties from
the training dataset [71]. It determines the parameters of a weighted sum of PDFs that have
most likely produced the available distribution iteratively, with the current iteration denoted as
j. Explained more descriptively, the goal is to approximate the PDF of the model deviations of
the ensemble forecast in the most realistic way, based on all available model forecasts for the
training data. For a single model this problem would be solved easily by directly dressing it with
its PDF of model deviations derived from observations. For multiple models, however, this
is achieved by determining wi and σ such that the ensemble PDF reproduces on average the
distribution of model deviations for the whole dataset in an optimal way. Approximating PDFs
as a combination of various individual PDFs is also known as finite mixture modeling [150].

P

y

g(yo|σ)

g

yo μ

σ

(a)

P

y

w1g1(yo|f1,o,σ)

w1g1

yo f1,o

w2g2

f2,o

w2g2(yo|f2,o,σ)

σ σ

(b)

Figure 5.12.: Computation of g(yo|µ, σ) (a) and wigi(yo|fi,o, σ) (b).

At first the so-called unobserved quantities z̃
(j)
i,t must be computed in the expectation step,

employing an initial guess for wi and σ in the first iteration. Under the assumption that
the identity of the best model cannot be determined directly, the unobserved quantities are a
measure of which model i offers the best forecast fi for a given observation at time t [71].
Here, the best forecast does not simply depend on the RMSE but on wi and σ. Given the
case that model one achieves the best forecast at a specific time, z̃

(j)
1,t eventually approaches

the value one, while it is zero for the other models. However, during the iterations of the
EM-algorithm z̃

(j)
i,t may also take values other than zero or one [71] and does not necessarily

converge to either of the values. It is calculated according to

z̃
(j)
i,t =

w
(j−1)
i g(yt|fi,t, σ(j−1))∑I

i=1 w
(j−1)
i g(yt|fi,t, σ(j−1))

. (5.21)

In the maximization step z̃
(j)
i,t is utilized to determine the individual model weights w

(j)
i and
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the variance σ2(j) with n being the number of total observations.

w
(j)
i =

1

n

n∑
t=1

z̃
(j)
i,t (5.22)

σ2(j) =
1

n

n∑
t=1

I∑
i=1

z̃
(j)
i,t (yt − fi,t)2 (5.23)

The iteration can be stopped when the parameters are iterated to convergence. In our case
200 iterations proved to be sufficient such that the change of w

(j)
i is below 0.5% eventually.

Note that σ is not distinguished between the individual models as it represents the standard
deviation of the respectively best model, which can be any of the members. Implementing
model dependent standard deviations σi is de facto possible but turns out to impair the
performance significantly due to highly bi-modal ensemble forecasts, caused by single models
with small σi [151].

5.5.2 Distribution formulation

If the distributions of the deviations of the measurements from the deterministic predictions
are unknown, normal distributions are a good estimate to generate the ensemble forecast
[151]. However, it turns out that the unweighted mean model error distributions are rather
leptokurtic as they exhibit higher peaks and fatter tails than Gaussian distributions, especially
for the y-forecast (Figure 5.13) [151]. This can be explained by the intermittent nature of
wind [152], manifested in the form of gusts. Räth et al. relate the thereof resulting fat tails
in the turbulence distribution to so-called phase correlations [153]. Not being resolved by the
measurement-derived 10 minute wind averages that are employed as input data, gusts can
cause large errors due to misjudged drifting velocities. Further, the wind measured by the
instrumentation and the wind sensed by the vortices may deviate substantially depending on
the spatial distance between measurement device and vortex [151]. As wind also affects the
interaction of the vortices with the ground, the PDF of model deviations for the z∗-forecast
is non-Gaussian likewise. In addition, the model deviation PDFs turn out to be skewed and
not to be centered at zero [151]. In order to enable the ensemble to achieve leptokurtic
forecast distributions, the individual model PDFs that compose the ensemble forecast must
be leptokurtic likewise. Therefore, the training strategy is as follows [151]:

1. Determine the formulation of the non-Gaussian mean model error PDF in the precondi-
tioning step

2. Use the in step one calculated PDF formulation as baseline to calculate the ensemble
parameters σ and wi as described in Section 5.5.1

Fits for step one are here obtained by applying the EM algorithm to four single Gaussian
PDFs with the standard deviations σ̃1,2,3,4, and mean µ̃1,2,3,4 = 0 (see Fig. 5.14). The stan-
dard deviations σ̃1,2,3,4 have a fixed ratio in dependency of σ̃, such that each of the four PDFs
may approximate a different part of the mean model error distribution found in the training
data. Exemplarily, the PDF defined by σ̃1 is intended to model the tails, while σ̃4 increases the
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Figure 5.13.: Average distributions of model deviations (all models) and their fits for the train-
ing dataset consisting of landings from WakeMUC, WakeFRA and WakeOP [151].

curtosis in the middle part. The algorithm then determines σ̃ and the weights w̃1,2,3,4 such that
the best fit is achieved under the given constraints. It is important to mention that it is not
intended to find a perfect fit here. Although sophisticated fits can be easily achieved by this
technique by choosing µ̃1 6= µ̃2 6= µ̃3 6= µ̃4, the goal is rather to find a PDF that approximates
the kurtosis [151]. The rest will be managed by the training described in Section 5.5.1, where
the individual model forecasts are incorporated. The resulting fits are depicted in Figure 5.13
for the WakeMUC/ WakeFRA/ WakeOP training sample [151]. Applying leptokurtic instead
of Gaussian distributions eventually delivers better probabilistic prediction results as the tails of
the PDFs are approximated more precisely [151]. This procedure can once more be understood
as finite mixture modeling [150].

5.5.3 Temporal development of model uncertainty

In the original approach [71] the uncertainty is assumed to be constant over time. However,
Figure 5.15 clearly indicates that the error is increasing with advancing vortex age for all
parameters and regardless of the model. While the steepest error increase occurs below one
t0, the growth progresses more slowly afterwards. Qualitatively, the error development is similar
among all models featuring an increase for all parameters. Nevertheless, the gradients of the
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linear fits are different where D2P shows the lowest for the WakeMUC/ WakeFRA/ WakeOP
training dataset, except for ylee. The average value in the first time bin can be understood
as initial condition uncertainty and has about the same value for all models. It can be noted
that the NASA models exhibit a large performance difference between the forecast of y∗luff
and y∗lee. This tendency is exclusively observed in ground proximity and must thus be related
to the vortex-ground interaction.

Given these results, constant standard deviations are a simplification, leading to overly
conservative envelopes for early and to non-conservative bounds for later vortex ages. Note,
that in the approach with constant parameters the impact of the early conservative and the late
non-conservative envelopes may compensate each other such that on average the probabilistic
results seem satisfactory nevertheless.

The temporal increase in model error can be considered by applying the maximum likelihood
method described before to vortex age bins. To avoid overfitting of the ensemble to the
training data both the weights and the standard deviations are approximated linearly instead
of interpolating. As wi and σ are dependent (see Equation 5.22 and 5.23), both parameters are
treated vortex-age dependently. Figure 5.16 and Figure 5.17 display the standard deviations
derived in this manner for the DLR and NASA measurements, respectively. Only measurements
below 5 t0, where the data coverage is sufficient, are evaluated. σ clearly increases linearly for
z∗ and y∗ for all evaluated datasets. While σΓ∗ increases in the DLR data as well, it decreases
for the NASA training sample. Although a square fit would be more suitable for σΓ∗ for the
WakeMUC/ WakeFRA/ WakeOP test sample, a linear approximation is expected to be the
best compromise as the order of the best fit deviates between different datasets.

Figure 5.18 and Figure 5.19 depict the corresponding model weights. While clear trends are
observed for the WakeMUC/ WakeFRA/ WakeOP training sample, they remain less clear for
the MEM95/ DFW97 training set. Nevertheless, for the sake of simplicity and robustness a
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Figure 5.15.: Temporal development of the model uncertainty in terms of error magnitude
against vortex age for the WakeMUC/ WakeFRA/ WakeOP training sample.

linear approximation is employed again. Note that the constraints σ,wi > 0 and
∑I

i=1wi = 1
must be satisfied when applying the parameters eventually.

Also note that the shapes of the error distributions differ depending on vortex age. Both
Gaussian and leptokurtic PDFs may occur during different stages of the wake vortex lifetime.
It is found that the PDFs for early vortex ages are more leptokurtic while they turn more
Gaussian towards the end of the vortex lifetime. As a consequence the approximation of the
model deviation PDFs by the EM algorithm must be applied vortex-age-binned as well. As a
consequence, the parameters are approximated linearly once more.

5.5.4 Potential

This approach has been chosen as it enables uncertainty envelopes with arbitrary uncertainty
levels. Being based on model deviation PDFs, this method directly addresses the uncertainties
derived from the assessment of observations. This way the BMA does not only include model
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Figure 5.16.: Temporal development of σ if computed by maximum likelihood based on the
test dataset from WakeMUC, WakeFRA and WakeOP.
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Figure 5.17.: Temporal development of σ if computed by maximum likelihood based on the
test dataset from MEM95 and DFW97.

uncertainty, but if applied vortex-age dependently also initial condition and ambient condition
uncertainty. This offers the opportunity to incorporate the vortex-age dependence of the
model errors which is believed to further increase the reliability of the uncertainty envelopes.
In comparison to the REA the BMA applies different skill measures to the models, such that
both approaches are expected to perform differently.
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Figure 5.18.: Temporal development of wi if computed by maximum likelihood based on the
test dataset from WakeMUC, WakeFRA and WakeOP.
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Figure 5.19.: Temporal development of wi if computed by maximum likelihood based on the
test dataset from MEM95 and DFW97.
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5.6 Monte Carlo Simulation (MCS)

In the course of this work it has often been argued whether the initial condition uncertainty
must be taken into account directly by introducing perturbations. Already invented as early as
in the 1930s [154] this approach has various applications of which one is weather forecasting.
Lorenz stated in 1963 that “slightly differing initial states can evolve into considerably different
states” [155]. Under the assumption that the true state of the atmosphere is hard to capture,
the MCS is used to find all possible forecast developments by perturbing the initial conditions.
Therefore, a set of initial condition samples is drawn from a probability density p(y) [154],
describing the initial condition uncertainty, from which a set of simulations is generated.
The spread of the simulations can then be utilized to compute probabilistic envelopes. It is
important to provide a sufficient number of perturbed initial conditions in order to achieve
convergence of the uncertainty bounds. The drawback of this approach is the increasing
simulation time due to the increased number of necessary simulations. This makes it not
only expensive but also difficult to implement for time-sensitive applications. Nevertheless it
is employed by NASA in Körner et al. [156] due to theoretical interest. Furthermore, it has
already been applied to wake vortex forecasts before by DeVisscher et al. [33], using a single
model and limiting the number of runs by employing a bootstrap resampling technique.

5.7 Lagged Average Forecasting (LAF)

The LAF [157,158] also addresses initial condition uncertainty. However, instead of introducing
random perturbations the LAF is initialized with current and past observations such that the
simulations start with time lags [157]. The rationale of this approach is to allow for the
uncertainty of the time at which an event will occur rather than for the initial condition
uncertainty. An optimal model would be able to predict the observation that is used in the
following initialization step correctly. Hoffman and Kalnay [157] showed the superiority of this
approach to Monte Carlo forecasting and simple single-model predictions. However, the time
horizons they utilize for their predictions comprises 25 days, and the time lag between the
observations used as initial values amounts to six hours. Assuming that wake vortices may
live on average as long as 12 t0 for calm conditions (see Figure 4.4) this would correspond
to time lags of about 0.12 t0. For an aircraft with t0=20 s (e.g. A320) this would mean
that the initialization observations needed to be separated by 2.4 s. However, such a high
temporal resolution of meteorological measurements can seldom be provided for wake vortex
measurements. Given this, the LAF is not suitable for the application to wake vortex forecasts.



6. Results

Before the ensemble skill is evaluated by applying the DEA, REA and BMA approaches to the
captured LiDAR data, the available wake vortex measurements are employed to further study
vortex physics. In a next step the deterministic and probabilistic performance of the wake
vortex ensemble is presented.

6.1 Evaluation of the LiDAR Wake Vortex Measurements

6.1.1 Impact of initial height on descent and decay

The WakeMUC data comprises landings with various vortex generation heights, which is why
the z∗0 dependence of wake vortex behavior can be evaluated. The findings presented here have
been published in Holzäpfel et al. [32] in a similar manner. However, the number of landings
and the initial conditions slightly changed in comparison. Additionally, the D2P model has
been further developed as described in Section 4.2.2.

Figure 6.1 depicts the measured vertical wake vortex position z∗, the vortex spacing b∗ and
the circulation Γ∗ in scatter plots for 907 landings. Additionally, the plots include the averages
of wake vortex behavior for various generation altitudes for the luff and lee vortex separately.
As the LiDAR is usually not able to capture incoherent vortices which occur below 0.4Γ0, the
temporal Γ∗ averages are biased towards later vortex ages for low circulations. For this reason
a Γ∗-binned average is provided additionally to the t∗-bins. The curves are derived from bins
containing a fixed number of measurements.

The upper left panel in Figure 6.1 indicates that the minimum vortex altitude increases
from 0.5b∗0 to 1b∗0 with increasing vortex generation height. Possibly the interaction with the
ground does not only depend on the altitude as expected so far, but also on time as diffusion
processes are involved. Secondary vortices might detach after the far field of a vortex has
acted long enough upon the boundary layer [32]. Besides, the results suggest that the lee
vortex descends slower and initiates its rebound earlier while rising faster after having reached
the lowest point [32]. This is in line with the results from LES [101, 102, 104, 105] and can
be referred to the production of secondary vorticity in the shear layer at the ground which is
supported by crosswind. The upper right panel indicates that the vortices diverge faster than
it is assumed by theory. In Figure 6.1 b∗ is determined by

b∗ =
√
z∗2 + y∗2. (6.1)

This supports the theory that the vortex-ground interaction starts earlier than expected.
D2P assumes that the lateral separation starts when the vortices have reached 1.5 b0 above
ground. However, even the vortices generated within the highest altitude interval show lateral

77
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Figure 6.1.: Average wake vortex transport and decay for WakeMUC (911 landings) for various
intervals of vortex generation altitude.

divergence at early stages. Firstly, the lower panels in Figure 6.1 point out that the decay
rate is ordered according to the vortex generation height, with higher generated vortices living
on average longer [32]. The life time of the on average longest-lived luff vortex for z∗0 =
0.4-0.8 is more than halved compared to z∗0 = 2.4-2.8 [32]. This can possibly be ascribed
to either the increased turbulence level close to the ground or to the end effects that are
expected to reach vortex segments closer to the touchdown point earlier [32]. Secondly, the
results demonstrate without exception that the lee vortex decays on average faster than the
luff vortex [32]. Holzäpfel and Steen [18] expected this trend as a consequence of stronger
secondary vorticity on the lee side, but they could not detect it in the WakeFRA LiDAR data.
The here presented findings and results from LES [101] support their hypothesis. Comparing
the different methods to derive the average developments for Γ∗ it is obvious that the curves
level less out at large vortex-ages for the Γ∗-binned approach.
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Figure 6.2.: Cumulative distribution of vortex strength for t∗ < 1 and various initial height
intervals for the WakeMUC dataset (reprinted from Holzäpfel et al. [159]).

To find further evidence for the existence of the so-called end effects [7] mentioned in Chapter
2.8.2, the decay rate for various height intervals is evaluated. Under the assumption that these
effects travel with a designated velocity and start from the touchdown point of the aircraft,
faster decay rates would be expected for lower altitudes [159]. For this reason the cumulative
distribution of vortex strength is evaluated for headwind speeds between 0-3 m/s, 3-6 m/s and
for velocities larger than 6 m/s, and for the two intervals of vortex generation altitudes 0.4-1.2
b∗0 and 2.0-3.5 b∗0. The results in Figure 6.2 demonstrate that the stronger the headwind the
less likely it is to observe strong vortices [159]. This trend is less significant at larger initial
altitudes where the disturbances have to travel larger distances from the touchdown point.
Another explanation for this effect could be headwind-induced turbulence which is increased
close to ground (boundary layer) [159].

6.1.2 Impact of wind speed and direction on descent and decay

Holzäpfel et al. [90] concluded from LES results that not only crosswind but also headwind
may have an impact on wake vortex behavior which they concluded from LES results. In order
to find further evidence and assess the LES capabilities, the LiDAR data captured during the
WakeMUC, WakeFRA and WakeOP campaigns is evaluated with regard to head- and crosswind
influence. Figure 6.3 shows the head- and crosswind which the vortices were exposed to on
their descent trajectory. The linear fits demonstrate that strong headwind does not necessarily
imply strong crosswind. Therefore, evaluating the impact of either head- or crosswind without
excluding the other is appropriate.
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Figure 6.3.: Correlation of headwind u∗ and crosswind v∗ that the vortices were exposed to
for z∗0 < 1.5.

Figure 6.4 displays the LiDAR measurement derived minimum (before rebound) and maxi-
mum vortex height (after rebound) above ground against head- and crosswind. Additionally,
the respective trends and LES results that comprise simulations with different ratios of head-
and crosswind are included.

First of all, the trends suggest that headwind has only minor impact on descent and re-
bound. A possible explanation is that headwind induced vorticity is oriented orthogonal to the
vortex induced secondary vorticity and thus has no impact on wake vortex descent or rebound.
Furthermore, the trends confirm that the rebound of the luff vortex is attenuated in the pres-
ence of crosswind (decreasing maximum descent and rebound height), while it is supported
for the lee vortex (increasing maximum descent and rebound height). Both analytical consid-
erations [107] and the depicted LES results imply that the detachment of secondary vorticity,
triggered by the luff vortex, and the subsequent rebound is suppressed for wind speeds above
4w0. As the data coverage for wind speeds above 3w0 is poor, an exact value cannot finally be
determined here. Extrapolation of the trend derived from the LiDAR measurements, however,
suggests that this effect only occurs above 5w0.

In general the trends are qualitatively well reflected by the LES. While the maximum descent
height conforms very well with the LiDAR data, the rebound height seems to be too high in
the LES. One possible explanation for this discrepancy might be the LiDAR only being able
to track the vortices until they have reached a circulation of about 50% of the initial value
on average. This also involves that their maximum altitude cannot finally be determined.
Therefore Figure 6.4 also depicts the vertical vortex position found in LES at the time the
circulation reaches 0.5Γ∗0, which turns out to be closer to the LiDAR fit.

Figure 6.5 depicts the time t0.6Γ0 , at which the vortices reach 60% of the initial circulation,
against normalized head- and crosswind speed. The value 60% is chosen as most vortices can
still be tracked by the LiDAR at that stage. The results suggest that headwind accelerates
decay to the same extent for both the luff and the lee vortices (parallel trends). While cross-
wind affects the luff vortex in a similar way as headwind, it enhances decay additionally for
the lee vortex where the secondary vortices are expected to be stronger. In comparison to
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Figure 6.4.: Correlation of average wind exposure, and wake vortex descent and rebound for
z∗0 < 1.5 for 392 landings of WakeMUC, WakeFRA and WakeOP. The subscript
0.5Γ∗0 indicates the vortex height at the time when the circulation reaches 0.5Γ0.
The LES results have been published in [90].

the LES results the crosswind impact on the lee vortex conforms very well with the measured
trend, whereas the trends are contrary for the luff vortex. This can be well explained by the
occurrence of ground linking of the luff vortex in the LES cases for crosswind speeds of 3
and 4 w0, such that the decay characteristics deviate strongly from the lee vortex [90]. For
LES cases with v∗ = 0 the effect of headwind on decay is the same for both luff and lee vortices.

6.1.3 Comparison of the WakeMUC measurements with D2P

Figure 6.6 and Figure 6.7 illustrate the comparison of the LiDAR measured mean and the
averages of the D2P predictions (version with updated strength of secondary and tertiary
vortices) of the individual cases. The initial altitude intervals are the same as in Figure 6.1
and consist of 0.4–0.8, 0.8–1.2, 1.2–1.6, 1.6–2.0, 2.0–2.4, 2.4–2.8 and 2.8–3.5 z0. The results
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Figure 6.5.: Correlation of average wind exposure, and wake vortex decay for z∗0 < 1.5 for
392 landings of WakeMUC, WakeFRA and WakeOP. The LES results have been
published in [90].

for the lowest z0-interval indicate that rebound in D2P is still too strong. However, note
that only a small amount of data is available (11 landings) for this initial altitude range such
that the significance cannot be guaranteed. For the intervals 0.8 − 1.2 and 1.2 − 1.6 z0 the
rebound is on average qualitatively well-predicted. Eventually, the plots for the succeeding z0

intervals reveal that D2P overestimates the maximum descent distance. This goes together
with a less pronounced rebound of the lee vortex in the measurements. Likewise a very good
accordance is found in the interval 0.4 − 0.8 z0 for the vortex separation b. With increasing
vortex generation height the vortex separation sets in both earlier and stronger in the LiDAR
data than in the D2P predictions. This trend has been observed before in Section 6.1.2. One
hypothesis for the described discrepancies between measurements and D2P-predictions is that
the vortex-ground interaction already begins at larger heights than so far assumed. This could
be due to the temporal development of the vortex far-field as a result of diffusive processes.
Given this, not only the vortex height but also the time that a vortex remains at a specific
altitude above ground would have an impact on its descent.

Moreover, the results demonstrate that D2P predicts significantly longer lived vortices than
what is measured for the lowest evaluated z0 interval. With increasing vortex generation
altitude this discrepancy is reduced. One reason for this trend might be the existence of the
before mentioned end effects which enhance decay especially in close ground proximity and
which are not yet fully considered in D2P in the here employed version. In the DLR project
L-bows a parametrization of the end effects has been developed for D2P that agrees much
better with observations. The same evaluation is performed for the WakeFRA and WakeOP
campaign. For both datasets the D2P model performs very well. The results can be found
in the appendix (see Chapter A.3). Note that the here employed initial conditions for the
WakeFRA dataset are different from the original training of D2P [15] which leads to different
results.
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Figure 6.6.: Comparison of mean D2P prediction and the LiDAR mean for various height
intervals.
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Figure 6.7.: Comparison of mean D2P prediction and the LiDAR mean for various height
intervals.
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6.2 Assessment of the Ensemble Performance

The BMA and REA are employed based on both a vortex age dependent and independent
training approach for comparison. In the following, the subscript t∗ denotes approaches with
vortex age dependently treated ensemble parameters. The campaigns of NASA and DLR are
assessed separately, as they differ concerning the orography, the LiDAR systems, the algorithms
to calculate the circulations and the positions of the instruments to measure the meteorological
conditions. The application to a combined dataset turned out to be less successful, although
the ensemble still achieved at least RMSE deviations less than the second best model for all
parameters.

Before the ensemble is applied the datasets are split into training and test samples. To
provide realistic operational conditions the training sample contains landings from the first
part of each of the campaigns, whereas the test sample consists of the second part. For the
WakeMUC, WakeFRA and WakeOP dataset the ensemble is trained with 335 landings before
being applied to a test sample of 359 cases. In case of the second dataset that consists of
DFW95 and MEM95 data, the training sample comprises 250 landings, while the test dataset
consists of 263. Figure 6.8 demonstrates that the meteorological conditions of the train-
ing and test sample of the WakeMUC/ WakeFRA/ WakeOP dataset resemble each other. In
contrast, the differences are larger for the MEM95/ DFW97 dataset which is illustrated by Fig-
ure 6.9. As the NASA data does not contain headwind, the distribution of u cannot be plotted.
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Figure 6.8.: Cumulative distribution of the meteorological conditions that the vortices have
been exposed to for the training and test sample of the WakeMUC/ WakeFRA/
WakeOP dataset.

Exemplary, the forecasts of the REAt∗ and BMAt∗ and its members are depicted in Figure
6.10 and Figure 6.11, respectively, for a landing of a Boeing 747. Additionally, the 10 minute
averages of the meteorological conditions are displayed. The crosswind (v∗) profile reveals that
there is negative shear above an altitude of 1.3 b0. Furthermore, the atmosphere is weakly
stably stratified while turbulence is on a medium level. While the ensemble means of the y∗

and Γ∗ forecasts do not deviate significantly between the REA and BMA, larger differences
can be observed for the z∗-prediction.

However, the most significant disagreement between both methods is revealed by the prob-
abilistic envelopes that are depicted for the 2σ (95.4%) of the REA and the 95% probability
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Figure 6.9.: Cumulative distribution of the meteorological conditions that the vortices have
been exposed to for the training and test sample of the MEM95/ DFW97 dataset.
In this dataset no headwind is provided.

level of the BMA. As the REA computes its uncertainty bounds based on model spread, the
envelopes are much narrower than the BMA envelopes. For parameters where model spread
is close to zero, such as for y∗lee, the envelope can merely be distinguished from the ensemble
mean. For the depicted landing the probability level of the REA uncertainty bounds are thus
non-conservative and do not seem credible. It is peculiar that single model forecasts may lie
outside of the envelope. Adding the initial condition uncertainty on top would increase the
envelope width. However, this still would not address the ambient condition uncertainty. In
contrast the BMA envelopes are not only composed of model uncertainty but also of initial
and ambient condition uncertainty. Additionally, the stringent vortex age dependent treatment
of the ensemble parameters leads to a stronger temporal increase of uncertainty. The BMA
envelopes thus seem much more credible in comparison. For this reason the focus of the evalu-
ation of the probabilistic approach in Section 6.2.2 lies on the evaluation of the BMA approach,
whereas the deterministic performance is also evaluated for the DEA and REA approaches.

6.2.1 Deterministic Performance

WakeMUC, WakeFRA and WakeOP

Table 6.1 lists the median RMSE for the ensemble approaches and the individual wake vortex
models when applied to the test dataset. While the DEA approach is not able to achieve
smaller RMS deviations than the best model for any of the parameters, the other ensemble
methods yield significantly better outcomes. Both BMA approaches are capable of achieving
smaller RMS errors than any of the models for four out of six parameters. The two REA
methods achieve this only for two out of six parameters. Further, the results indicate that the
vortex age dependent treatment of the ensemble parameters yields on average smaller RMS
deviations than the methods that rely on constant ensemble parameters. Obviously the model
performance varies with vortex age. It seems that the more information about the models is
added, the larger the potential benefit achieved by the ensemble.

The BMAt∗ achieves on average smaller errors, larger skill enhancements and smaller skill
impairments than the REAt∗ for all parameters. The improvements by the BMAt∗ reach up to
11.4% (Γ∗luff ) and the maximum impairment does not exceed 1.9% (z∗luff ) (0.2% for y∗luff ).
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Figure 6.10.: REAt∗ forecast. The solid lines denote the forecast for the port vortex and the
dashed lines the prediction for the starboard vortex.



88 CHAPTER 6. RESULTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7

z
* 

t* 

040928 063509 UTC B742

prt

stb

95%

-2

 0

 2

 4

 6

 8

 0  1  2  3  4  5  6  7
y
* 

t* 

b0 = 47 m, Γ
0
 = 607 m

2
/s

prtlidar (1σ)

stblidar (1σ)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7

Γ
* 

t* 

 

D2P

APA 3.2

APA 3.4

TDP 2.1

BMA

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1  0  1  2  3  4

z
* 

u*, v*, q*, ε*, N*

 

u*

v*

q*

10 ε*

N*

Figure 6.11.: BMAt∗ forecast. The solid lines denote the forecast for the port vortex and the
dashed lines the prediction for the starboard vortex.
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The largest improvement accomplished by the REAt∗ amounts to 6.14% (Γ∗luff ), whereas the
impairment can be as high as 15.4% (z∗luff ). These findings reveal the superiority of the BMA
approach in comparison to the DEA and REA methods in this dataset.

It is interesting that the ensemble is in general able to improve the forecast of the lateral
position. The fact that the lateral transport is governed to a large part by crosswind would
imply that the model forecasts do not deviate much from each other. However, it seems that
in ground proximity the differences in parametrization are large enough to achieve a sufficient
widening of the solution space.

Table 6.1.: Median RMS deviations between deterministic prediction and measurement data
for the ensemble and its members for the WakeMUC, WakeFRA and WakeOP test
sample. The smallest RMS errors are underlined.

RMSE Γ∗ RMSE y∗ RMSE z∗

model luff lee luff lee luff lee
DEA 0.132 0.116 0.752 0.518 0.200 0.191
REA 0.108 0.099 0.691 0.529 0.182 0.188
REAt∗ 0.107 0.101 0.640 0.520 0.180 0.186
BMA 0.110 0.100 0.606 0.511 0.161 0.176
BMAt∗ 0.101 0.098 0.608 0.506 0.159 0.174
TDP 2.1 0.116 0.105 0.790 0.552 0.241 0.192
APA 3.4 0.156 0.142 0.841 0.525 0.207 0.207
APA 3.2 0.248 0.218 0.915 0.513 0.209 0.221
D2P 0.114 0.103 0.606 0.523 0.156 0.177

Instead of further comparing the model and ensemble performance based on single param-
eters, the overall relative skill measure si is introduced. It is calculated by the relation of
the average RMS deviation between the MME and model i, averaged over all parameters p.
Therefore, si expresses to which extent the ensemble could improve the RMSE, if it competed
with a single model that was chosen to predict all six parameters. Negative skill values indicate
that the ensemble performs better than the respective individual model. As shown in Section
5.2, there is no clear correlation between model RMSE and the ambient conditions, such that
the skill is computed independently.

si =
1

6

6∑
p=1

RMSEMME,p

RMSEi,p
− 1 (6.2)

Figure 6.12 depicts the model skill relative to the ensemble approaches for the WakeMUC/
WakeFRA/ WakeOP test dataset. Due to their superiority only the vortex-age dependent
approaches as well as the DEA as baseline are presented. The results stress that among the
three methods only the BMAt∗ is able to outperform D2P (the best model for this dataset)
on average with all parameters considered. It achieves RMSE values that are on average by
3.3% smaller. The largest improvement compared to a single model is also achieved by the
BMAt∗ with 32.4% compared to APA 3.2 alone.

When evaluating the bias, it becomes apparent that the ensemble approach is less successful
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Figure 6.12.: Model skill relative to the respective ensemble approach for the WakeMUC/
WakeFRA/ WakeOP test dataset.

compared to the RMS deviations (Table 6.2). Only for the Γ∗luff - and y∗luff -forecasts smaller
biases can be achieved by the BMAt∗ . It is peculiar that both REA approaches, that base their
weight calculation on the model bias, are not able to yield better results. Nevertheless, both
the REA and BMA approaches are capable of outperforming the DEA.

Table 6.2.: Median bias (=model-observation) for the ensemble and its members for the Wake-
MUC, WakeFRA and WakeOP test sample. The smallest biases are underlined.

bias Γ∗ bias y∗ bias z∗

model luff lee luff lee luff lee
DEA -0.080 -0.066 0.079 0.102 0.092 -0.035
REA -0.005 0.005 0.048 0.090 0.074 -0.023
REAt∗ 0.001 0.005 -0.027 0.068 0.067 -0.018
BMA 0.013 0.018 -0.003 0.102 0.043 -0.008
BMAt∗ 0.000 0.014 0.001 0.111 0.035 -0.004
TDP 2.1 -0.006 -0.002 0.104 0.151 0.146 -0.012
APA 3.4 -0.122 -0.105 0.109 0.110 0.101 -0.057
APA 3.2 -0.214 -0.182 0.133 0.105 0.091 -0.075
D2P 0.027 0.033 -0.003 0.080 0.022 0.000

To assess whether extreme errors can be reduced by the ensemble approach, the 90th
percentile of the RMSE is evaluated and listed in Table 6.3. The results indicate that large
errors are only considerably reduced by the BMAt∗ projections, where five out of six parameters
exhibit smaller 90th percentile RMS deviations than the respective best individual member for
the respective parameter. Compared to D2P the number is even increased to six.
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Table 6.3.: 90th percentile RMSE for the ensemble and its members for the WakeMUC/ Wake-
FRA/ WakeOP test dataset. The smallest 90% RMS errors are underlined.

90% RMSE Γ∗ 90% RMSE y∗ 90% RMSE z∗

model luff lee luff lee luff lee
DEA 0.272 0.243 1.895 1.142 0.377 0.363
REA 0.209 0.191 1.814 1.211 0.360 0.353
REAt∗ 0.210 0.188 1.811 1.188 0.360 0.351
BMA 0.206 0.183 1.505 1.170 0.351 0.341
BMAt∗ 0.197 0.178 1.504 1.155 0.354 0.331
TDP 2.1 0.226 0.208 1.998 1.285 0.442 0.405
APA 3.4 0.338 0.308 2.046 1.149 0.412 0.412
APA 3.2 0.476 0.451 2.152 1.147 0.419 0.443
D2P 0.204 0.186 1.505 1.220 0.368 0.332

DFW97 and MEM95

Provided by NASA, this dataset comprises to a good part OGE data. Applied to these ap-
proaches the RMSE improvements by the ensemble are not as distinctive as for the DLR data,
as shown in Table 6.4. Notably, the DEA and REA approaches achieve results that are closer to
the BMA outcomes and in parts even better. The DEA is even able to achieve the same RMS
deviation as the best member for Γ∗lee and even better skill for the z∗luff prediction. Further, it
is rather surprising that the REAt∗ performs better than the BMAt∗ for z∗luff and Γ∗luff , given
the performance results in Chapter 6.2.1. Nevertheless, the BMAt∗ is still the best choice as it
achieves again for four out of six parameters smaller RMS deviations than any of the models
(one out six for the REA, three out of six for the REAt∗ and two out of six for the BMA).
Again, the approaches with temporal treatment of the ensemble parameters are superior to the
methods with constant parameters. In this dataset the largest enhancement achieved by the
BMAt∗ compared to the best member amounts to 2.2% (z∗luff ), and the highest impairment
to 2.6% (y∗lee). The maximum improvement of the REAt∗ is with 2.5% (z∗luff ) even a little
higher, but so is its largest impairment with 3.0% (y∗lee).

The skill factors si are once more calculated according to Equation 6.2 and illustrated
by Figure 6.13. The results stress that the BMAt∗ is again the only model to outperform
all individual models on average concerning all parameters. With RMS errors that are by
1.6% smaller than the deviations achieved by APA 3.4 (the best model in this dataset) the
improvements are however smaller than for the DLR data. Further, the maximum improvement
compared to a single model is with 5.3% enhanced performance relative to TDP 2.1 not as
significant as for the WakeMUC/ WakeFRA/ WakeOP dataset.

In accordance with the ensemble performance for the DLR dataset, the bias cannot be
significantly reduced on average. The ensemble may only achieve the best bias for the z∗lee-
forecast (Table 6.5). Table 6.6 lists the 90th percentile RMSE deviations for the DFW97/
MEM97 test dataset. The results underline the findings from the DLR data that it is the
BMAt∗ that achieves the best performance among all ensemble approaches. For three out of
six parameters it may achieve smaller 90th percentile RMS deviations than the best performing
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Table 6.4.: Median RMS deviations between deterministic prediction and measurement data
for the ensemble and its members for the DFW97 and MEM95 test sample. The
smallest RMS errors are underlined.

RMSE Γ∗ RMSE y∗ RMSE z∗

model luff lee luff lee luff lee
DEA 0.219 0.240 0.517 0.490 0.319 0.367
REA 0.216 0.240 0.517 0.483 0.318 0.368
REAt∗ 0.208 0.237 0.517 0.484 0.315 0.367
BMA 0.219 0.241 0.504 0.484 0.324 0.363
BMAt∗ 0.214 0.236 0.496 0.482 0.316 0.362
TDP 2.1 0.238 0.252 0.520 0.494 0.331 0.373
APA 3.4 0.211 0.240 0.530 0.487 0.323 0.364
APA 3.2 0.222 0.248 0.535 0.470 0.325 0.364
D2P 0.234 0.245 0.506 0.484 0.328 0.372
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Figure 6.13.: Model skill relative to the respective ensemble approach for the DFW97/ MEM95
test dataset.

individual model. Compared to D2P it even achieves better performances for all parameters
except for yluff .

Statistical significance and robustness

To provide evidence that the number of simulated cases is sufficient to draw conclusions about
the ensemble performance for all predicted parameters , the parameter skill si,p is computed
consistently according to

si,p =
RMSEMME,p

RMSEi,p
− 1, (6.3)

based on the average RMS deviations of the previous landings. Figure 6.14 depicts the skill si,p
against the number of already simulated cases for each model for the WakeMUC/ WakeFRA/
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Table 6.5.: Median bias (=model-observation) for the ensemble and its members for the
DFW97/ MEM95 test sample. The smallest biases are underlined.

bias Γ∗ bias y∗ bias z∗

model luff lee luff lee luff lee
DEA -0.023 -0.068 -0.056 0.004 0.034 0.013
REA -0.029 -0.077 -0.053 -0.002 0.034 0.010
REAt∗ -0.039 -0.086 -0.054 -0.002 0.033 0.011
BMA -0.025 -0.053 -0.057 0.007 0.026 0.010
BMAt∗ -0.043 -0.067 -0.059 0.009 0.027 0.009
TDP 2.1 0.033 -0.005 -0.044 -0.001 0.039 0.023
APA 3.4 -0.046 -0.092 -0.061 0.003 0.055 0.027
APA 3.2 -0.112 -0.145 -0.051 0.013 0.063 0.020
D2P 0.013 -0.033 -0.051 0.002 -0.009 -0.011

Table 6.6.: 90th percentile RMSE for the ensemble and its members for the DFW97/ MEM95
test dataset. The smallest 90% RMSE deviations are underlined.

90 % RMSE Γ∗ 90 % RMSE y∗ 90 % RMSE z∗

model luff lee luff lee luff lee
DEA 0.417 0.435 1.561 1.363 0.777 0.873
REA 0.415 0.434 1.528 1.339 0.768 0.873
REAt∗ 0.409 0.441 1.535 1.340 0.767 0.873
BMA 0.408 0.443 1.487 1.321 0.766 0.870
BMAt∗ 0.402 0.430 1.489 1.319 0.767 0.864
TDP 2.1 0.419 0.432 1.609 1.397 0.799 0.876
APA 3.4 0.406 0.437 1.542 1.342 0.825 0.889
APA 3.2 0.433 0.464 1.594 1.290 0.833 0.859
D2P 0.415 0.440 1.484 1.337 0.802 0.875

WakeOP test sample for the BMAt∗ method. The curves demonstrate that a dataset larger
than 200 cases leads to adequately converging skills. Fluctuations cannot be totally ruled out,
as the ensemble performs differently in the course of the measurement days.

To demonstrate that the above results are robust, firstly the test and training dataset are
swapped and secondly totally different sets are generated from the whole dataset by mixing
the cases randomly. For this study only the DLR data is employed. Figure 6.15 and Figure
6.16 both show enhanced ensemble performance compared to the baseline training. While
the BMAt∗ approach achieves on average 3.3% smaller RMS errors than the best model, it
reaches 4.7% and 3.5% for the swapped and mixed datasets, respectively. Furthermore, the
performance ranking of the different ensemble methods stays the same, giving proof for the
robustness of the presented methods.
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Figure 6.14.: Individual relative parameter skill, computed according to Equation 6.3, taking
into account the preceding simulated landings. Illustrated exemplarily for the
WakeMUC/ WakeFRA/ WakeOP test sample for the BMAt∗ .
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Figure 6.15.: Model skill relative to the respective ensemble approach if trained by the test and
applied to the training sample for the WakeMUC/ WakeFRA/ WakeOP dataset.
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Figure 6.16.: Model skill relative to the respective ensemble approach for the WakeMUC/
WakeFRA/ WakeOP mixed test dataset.

6.2.2 Probabilistic Performance

As mentioned earlier, the REA envelopes do not seem sufficiently credible if applied to wake
vortex forecasts (compare Figure 6.10 and Figure 6.11). For this reason only the probabilistic
forecasts of the BMA approach are discussed in the following.

WakeMUC, WakeFRA and WakeOP

Figure 6.17 and Figure 6.18 depict a probabilistic BMA forecast for both constant and vortex
age dependent ensemble parameters, separately for the luff and the lee vortex. Firstly, it
can be noted that the deterministic forecasts do not deviate much between both approaches,
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whereas larger differences are observed for the probabilistic envelopes. While the uncertainty
allowances of the BMAt∗ approach are smaller than those of the BMA at early vortex ages,
they are wider for later vortex ages, especially for the z∗ and y∗ forecasts. Secondly, for
both the BMA and BMAt∗ the width of the uncertainty envelope of the z∗-forecast is on
the order of the measurement uncertainty which indicates the good forecast quality. For the
mostly crosswind driven lateral transport, however, the LiDAR measurement uncertainty is
small compared to the envelope width. This underlines that the forecast uncertainty is mostly
caused by inaccurate wind measurements. Likewise, the ratio of envelope width and LiDAR
measurement uncertainty for the Γ∗-forecast is large and points out that uncertainties arise
from the natural variability of wake vortices.

Figure 6.19 illustrates the probabilistic performance of the ensemble for the training (a)
and the test sample (b) in terms of coverage of the measured vortex behavior for the BMA
approach with constant ensemble parameters in a so-called reliability diagram. Accordingly,
the same is depicted in Figure 6.20 for the BMAt∗ envelope. Perfect probabilistic prediction
skill (the highest reliability) is achieved when all points are lying on the diagonal line.

The deviations from the optimum if applied to the training dataset can be accounted to
a good part to the constraints under which the training algorithm has to find the optimal
properties. Firstly, the employed model PDFs are the same among all models and secondly
they are symmetrical. Besides, the temporal linear approximation of the model weights and
the standard deviations is a simplification that may lead to inaccuracies. And thirdly, for
higher probability levels fewer data points are available. Given this, it is especially hard to find
a solution that accurately describes both the tails and the middle part of the distributions.
Nevertheless, further calibration of the σ-values may increase the prediction quality. Note that
in the original approach by Raftery et al. [71] a bias correction is applied in the training period
which might further increase the probabilistic performance. Given the limited size of the test
dataset it could not be guaranteed that a bias-correction would improve model performance
for other data.

As wake vortex predictions are safety relevant, well-dispersed forecasts, leading to more
conservative probability levels, are more desirable than overconfident ensemble predictions. If
normal distributions were employed instead of fitting the kurtosis of the error distributions in
advance (see Section 5.5.2), the observed coverage would increase for lower selected forecast
probability levels. In turn it would decrease for the operationally relevant higher nominal
forecast probability levels, reducing the safety level. The accordance between the performance
for the training and the test dataset in Figure 6.19 and Figure 6.20 is an indicator whether all
possible situations could be covered in the training phase.

It is remarkable that both the BMA and the BMAt∗ approach achieve very similar perfor-
mance for both the training and test sample if the whole vortex longevity is assessed. For
the training data in the left panels of Figure 6.19 and Figure 6.20, the observed coverage
never lies more than 3% above or beneath the nominal forecast probability. As expected the
deviations are larger if applied to the test sample. Here, the observed coverage may be as high
as 7% above the nominal forecast probability, while it does not lie more than 4% beneath the
optimum. A small advantage of the BMAt∗ is observed.

However, the benefit of the temporal approach can be emphasized by assessing late vortex
ages separately, which is illustrated in Figure 6.21 for t∗ > 2 exemplarily for the training sample.
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Figure 6.17.: BMA forecast with constant ensemble parameters. The predictions are shown
separately for each parameter.
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Figure 6.18.: BMA forecast with temporal dependency of σ. The predictions are shown sepa-
rately for each parameter.
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The BMAt∗-envelope is able to achieve adequate coverage (right panel), whereas the BMA
(left panel) with constant ensemble parameters is not conservative enough for all parameters
but zluff and Γlee. If vortex ages earlier than t∗ = 2 are evaluated, the performance of the
BMAt∗ does not change much while the BMA envelopes are too conservative.
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Figure 6.19.: Reliability of the probabilistic BMA envelopes (constant ensemble parameters)
for the training (a) and the test dataset (b) (WakeMUC/ WakeFRA/ WakeOP).
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Figure 6.20.: Reliability of the probabilistic BMAt∗ envelopes for the training (a) and the test
dataset (b) (WakeMUC/ WakeFRA/ WakeOP).

DFW97 and MEM95

The previous results demonstrated that the BMAt∗ approach achieves reliable probabilistic
forecasts at any vortex age as it allows for the growing forecast uncertainty. For this reason
only the results of the BMAt∗ method are shown for the DFW97/ MEM95 dataset.
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Figure 6.21.: Reliability of the probabilistic ensemble envelopes of the BMA (a) and BMAt∗

approaches (b) for the training sample and for t∗ > 2 (WakeMUC/ WakeFRA/
WakeOP).

Figure 6.22 illustrates the BMAt∗ forecast for a single landing. The ratio of LiDAR mea-
surement uncertainty and ensemble envelope width again reveals that the LiDAR uncertainty
is on the order of the forecast uncertainty for the z∗-forecast. For y∗ and Γ∗ the LiDAR mea-
surement uncertainty is considerably smaller than the ensemble uncertainty. This confirms the
findings in Section 6.2.2.

Compared to the WakeMUC/ WakeFRA/ WakeOP dataset the widening of the y∗-envelope
is significantly larger which indicates larger uncertainties in the wind measurements in the
NASA campaigns. It is striking that the uncertainty of the Γ∗ forecast is decreasing with
vortex age for this dataset. Obviously the circulation data exhibits larger variations for early
vortex ages. Additionally, a discrepancy between the observed (higher rates) and predicted
decay rates (lower rates) can often be noted at earlier vortex ages. The Γ∗luff -forecast in Figure
6.22 illustrates this observation. The conclusion that the natural vortex circulation variability
decreases with vortex age would be incorrect.

Figure 6.23 depicts the probabilistic performance for both the training (a) and the test
dataset (b), consisting of the NASA measurements. It is remarkable that, although DLR and
NASA data differ in vortex generation altitude and quality, the achieved probabilistic results
resemble one another. This indicates the qualification of the here presented training approach.
While the coverage does not deviate from the optimum by more than 4% for the training data,
it may be up to 10% too conservative for the test dataset. Moreover, the observed coverage
never comes more than 4% below the nominal probability.

6.2.3 Spread-error correlation

In Section 5.1.3 the correlation between spread and forecast error has been theoretically dis-
cussed. Here, it is assessed whether the ensemble spread is indeed qualified to predict the
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Figure 6.22.: BMA forecast with temporal dependency of σ. The predictions are given sepa-
rately for each parameter.
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Figure 6.23.: Reliability of the BMAt∗ envelope for the training (a) and the test sample (b)
(MEM95/ DFW97).

wake vortex forecast quality. Therefore, the weighted ensemble spread σMME of the BMAt∗

approach is computed according to

σMME =

√√√√ 1

n

I∑
i=1

n∑
t=1

wi(fi,t − f̃t)2. (6.4)

Figure 6.24 demonstrates that larger σMME results in increased RMSE for all parameters
in the WakeMUC/ WakeOP/ WakeFRA test sample with a very strong relation for the z∗lee
and y∗lee prediction. This indicates that the ensemble is well calibrated. Similar results are
obtained for the DFW97/ MEM95 dataset (see Fig. 6.25) regarding the vortex position.
However, contrary to the DLR data the results suggest that increasing Γ∗-spread indicates
more accurate predictions. This might be attributed to the large variations in the measured
vortex strength in the NASA measurements, making the ensemble spread less meaningful if
compared to the LiDAR data. Conclusively, the BMAt∗ envelopes proved to be qualified to
predict the forecast quality, with exception of Γ∗ for the MEM95/ DFW97 test sample. For
the latter data it can be argued that the unexpected characteristics are rather related to
the measurement data, respectively the LiDAR data processing algorithm, than to the MME
approach.
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Figure 6.24.: Ensemble RMSE against ensemble spread in terms of standard deviation σMME

for the WakeMUC/WakeFRA/WakeOP test sample.
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Figure 6.25.: Ensemble RMSE against ensemble spread in terms of standard deviation σMME

for the DFW97/MEM95 test sample.



7. Discussion

7.1 LiDAR Measurement Evaluation

The presented evaluation of the LiDAR measurements indicates that wake vortex forecasts
do not yet incorporate the interaction with the ground to its whole extent. Considering the
temporal evolution of the far-field, which is a result of diffusion, might further increase the
model prediction skill. Besides, the results suggest that the effect of headwind on decay of
both vortices is similar to the impact of crosswind on the luff vortex. Whether this is caused
by end effects or headwind-induced turbulence could not conclusively determined. Although
not as distinctive as the accelerated decay of the lee vortex that is caused by crosswind, there
is a clear trend that could be implemented in model forecasts. NATS also investigated the
impact of headwind on vortex dissipation in the context of time-based separation and came
to the conclusion that the vortices decay more quickly in strong headwind conditions [30].

7.2 Multi-Model Ensemble Wake Vortex Prediction

7.2.1 Deterministic benefit of the ensemble approach

To compare the ensemble approaches more directly, the skill according to Equation 6.2 is now
calculated only based on the best performing approach, the BMAt∗ , and related to both the
individual models and the other ensemble approaches. In the following the BMA and REA
approach with constant ensemble parameters are disregarded, as they showed to be inferior
to the temporal approach in the previous chapter. The relative skill measure si is listed in
Table 7.1. It indicates that the BMAt∗ ensemble outperforms the best member (in this case
D2P) by 3.3% for the DLR data. Compared to the other models it is even consistently able
to achieve RMSE deviations that are by more than 15% smaller. The REAt∗ and the DEA
achieve smaller skill values. The results indicate that the REAt∗ is by 5.7% (0.5%) inferior to
the BMA∗t while the DEA achieves 15.0% (2.0%) worse RMS deviations.

For the NASA test dataset, the best model with regard to all parameters is APA 3.4.
The skill measure indicates that the ensemble exhibits RMSE deviations that are by 1.6%
smaller which is less than the values achieved in IGE and NGE. Nevertheless, the ensemble
outperforms the worst model by 5.3%. Again the BMAt∗ approach outperforms the other
ensemble approaches, although the differences are smaller than for the DLR data.

The results demonstrate that the ensemble provides added value for the deterministic fore-
cast independently of which dataset is used, given that only one of the models can be chosen.
Larger skill improvements seem to be achievable closer to the ground. Additionally, the mea-
surement data quality might have an impact on the ensemble skill. Also note, that the identity
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Table 7.1.: Relative skill improvement for both the DLR and NASA test sample. Negative skill
stands for better performance of the BMAt∗ compared to the individual model (or
to the REA∗t and the DEA).

skill si
model DLR campaigns NASA campaigns
BMAt∗ 0.000 0.000
REAt∗ -0,057 -0,005
DEA -0.150 -0.020
TDP 2.1 -0.158 -0.053
APA 3.4 -0.229 -0.016
APA 3.2 -0.324 -0.027
D2P -0.033 -0.036

of the best model is, however, not known before the ensemble is applied. Under the wrong
assumption that D2P would achieve the best results for the NASA dataset, the ensemble would
still achieve by 3.6% smaller RMSE deviations. It is found that mixing the DLR and NASA
dataset for training and testing of the ensemble is not as effective as treating the datasets
separately. This is due to the significantly different model forecast quality for both datasets,
resulting in notably different model weights.

To answer the question why the potential forecast skill improvements achieved by the en-
semble approach are not larger, the analysis of the natural variability in Section 5.4.1 must be
compared with the RMSE deviations. This reveals that the model predictions are already on
the order of the observed variability caused by gusts, stochastic vortex decay and measurement
uncertainty that cannot be accounted for by the models. This leads to the conclusion that the
potential of the models to be enhanced is small.

The improvements of single parameters achieved by the original BMA approach, compared
to the best bias-corrected model, do not exceed 3% [71]. This implies that the presented
improvements for wake vortex forecasts, given all parameters are considered at once, are on
the same order as the benefits achieved for temperature and precipitation predictions [71].

Reasons for the superiority of the BMA over the REA method

The reason for the BMA method being more robust and effective than the REA approach is the
basic concept of the weight calculation. Instead of calculating a-priori determined weights from
an absolute mean value, it is rather derived from the number of times a model achieves the
best forecast compared to the others. This allows that the weights of very similar performing
models are yet distinguishable, in favor of the slightly better skilled model. In practice this
means that the weights of APA 3.2 and APA 3.4 may differ substantially. However, both
models exhibit very similar bias values such that their REA weights do not deviate much.
Because of the similarity of their forecasts this would be equivalent to adding the forecast
of one model twice, or to doubling its weight. This is the reason why APA 3.2 must be
neglected for the REA z∗- and y∗-forecasts. For the BMA forecasts none of the models has
to be degraded artificially.
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7.2.2 Probabilistic benefit of the ensemble approach

Comparison with P2P

To demonstrate the added value of the ensemble approach, a comparison with P2P is con-
ducted in a probabilistic manner. Note that the dynamic uncertainty allowances in P2P sum
up over time which introduces vortex age dependency. However, the model calibration with
training data is vortex age independent, because there was not enough measurement data
available at the time when this method was developed. In contrast, the new Multi-Model
Ensemble approach directly models the temporal error growth based on a comparison of the
models with observations to accomplish vortex age dependent uncertainty envelopes.
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Figure 7.1.: Comparison of probabilistic P2P and BMAt∗ forecast. The projections for luff and
lee vortices are combined here.
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Figure 7.2.: Comparison of probabilistic P2P and BMA forecast without vortex age dependent
ensemble parameters. The projections for luff and lee vortices are combined here.

To assess this approach the ensemble envelopes shall be compared with the P2P uncertainty
bounds. Note that wake vortex predictions based on the MME should employ separate vortex
habitation areas for port and starboard vortex in order to not to be overly conservative. On the
other hand, the combination of uncertainty allowances of both vortices gives room to decrease
the uncertainty allowances for the vortex pair and thus potential capacity increases of a Wake
Vortex Advisory System (WVAS). In the previous section, individual envelopes for the luff and
lee vortex were computed. However, P2P chooses the more conservative of both as upper
and lower bound. For this reason the same is applied to the ensemble for this comparison
which results in more conservative probabilistic forecasts as shown in Fig. 7.1. Additionally,
the P2P envelope for the 2σ probability level is depicted. While a large difference of the
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temporal development can be observed between P2P and the ensemble for the z∗ forecast,
the deviations are less for the y∗ and Γ∗ forecast. Fig. 7.2 depicts the BMA forecast for the
same landing but without vortex age dependent ensemble parameters where the difference to
the P2P forecast is even larger for y∗, whereas it is smaller regarding z∗.
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Figure 7.3.: Reliability of the conservative ensemble and P2P envelopes for the training (a) and
the test sample (b) of the WakeMUC/ WakeFRA/ WakeOP dataset. Accordingly,
the second row displays the performance for the training (c) and the test dataset
(d) of the MEM95/ DFW97 campaigns.

Fig. 7.3 depicts the observed coverage for the training (a) and test dataset (b) of the
WakeMUC, WakeFRA and WakeOP dataset as well as for the MEM95 and DFW97 samples
((c) and (d)) for the conservative uncertainty envelopes. The combined ensemble predictions
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are as expected more conservative than the separate predictions for luff and lee for both the
DLR and NASA data. In contrast, the P2P predictions are shifted towards the non-conservative
direction. For the DLR data in the first row, especially the 2σ envelope (95.4%) deviates
strongly, with the Γ∗-forecast having an offset of more than 5%. The 3σ forecast (99.73%)
comes closer to the optimum but is still not able to outperform the ensemble prediction on
average. This applies to both the training and the test dataset.

The same trend can be observed for the DFW97 and MEM95 dataset which is displayed in
the second row. Note that the deviations of P2P are even larger here. This can be accounted
to the fact that P2P has been trained with WakeToul data, where the variability of the vortices
may deviate from what is observed in the NASA measurements.

The differences to the P2P forecasts must also be partly accounted to the fact that it has
been trained with high quality datasets with thoughtfully derived initial conditions (partly from
aircraft data and partly from LiDAR measurements). In contrast, in the here employed training
dataset the first measurements are extrapolated to derive the possibly most accurate initial
conditions for the ensemble members. Furthermore, the initial conditions were partly derived
from theoretical values instead of employing LiDAR or aircraft data. Naturally, this results in
different model uncertainty. Theoretically, if the ensemble was trained with and applied to the
datasets P2P has been trained with, utilizing the same initial conditions, no difference should
be notable.

Nevertheless, this analysis highlights the added value of the probabilistic BMAt∗ envelopes.
Firstly, the superiority of the ensemble is caused by the training with similar data that is
also used for the performance assessment. Note that this could also be done for the P2P
model. Secondly, the ensemble envelopes are vortex age dependent. And thirdly the ensemble
envelopes allow for the model uncertainty, which increases their robustness if applied to a
dataset that the ensemble has not been trained with.

Performance for rare but dangerous cases

One of the questions that was intended to be answered by this thesis is whether the ensemble
approach is able to cover wake vortex behavior that is seldom observed but may result in
dangerous situations for following aircraft. For this reason, landings are investigated where
the vortices hover in a square with a side length of b0, surrounding the glide path while
being observed until at least 3t0. Among 665 landings in total, 17 cases with such dangerous
vortex behavior could be identified in the WakeMUC and WakeFRA dataset. While in 13
cases a dangerous situation is correctly foreseen by the models, for 4 landings wake vortex
behavior is not sufficiently predicted by the deterministic forecasts. Two different situations
are distinguished: (a) the vortex rebound is stronger than expected and (b) the vortices are
stronger than predicted.

Figure 7.4 and Figure 7.5 depict the ensemble forecasts for vortices with stronger rebound
than the members expect. In both cases the y∗- and Γ∗-envelopes are well-predicted, whereas
the vortices partly exceed the 99% envelope for the z∗-forecast. Further, at both landings
wake vortex encounters are likely if the following aircraft performs a long landing. In Figure
7.6 and Figure 7.7 decay in the models progresses faster than in the observations. This is
partly due to an underestimated initial circulation but also due to a slower decay rate. In both
cases all forecasted parameters are within the 99% envelopes. While in the first case a vortex
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encounter is likely, a vortex would only be encountered in the second case if the flight track of
the following aircraft was below the glide path. In 3 of those 4 cases the probabilistic coverage
is superior to the P2P envelopes if the 2σ and the 95% envelope are compared.
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Figure 7.4.: BMAt∗ forecast with combined envelopes for the luff and lee vortex. The lee
vortex remains close to the glide path.

Comparison with probabilistically dressed D2P

In order to identify the benefit of employing multiple models more clearly, the training is
now restricted to D2P only. The weights for all other models are forced to be zero. This
can be understood as a probabilistic dressing of D2P alone. In Figure 7.8 the probabilistic
performances of both the ensemble and the dressed D2P model are depicted for the training
(a) and the test sample (b). The deviations from the optimum (diagonal line) demonstrate
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Figure 7.5.: BMAt∗ forecast with combined envelopes for the luff and lee vortex. The luff
vortex hovers in the glide path.
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Figure 7.6.: BMAt∗ forecast with combined envelopes for the luff and lee vortex. The vortices
remain stronger than predicted.
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Figure 7.7.: BMAt∗ forecast with combined envelopes for the luff and lee vortex. The initial
circulation is underestimated and the vortices remain stronger than predicted.
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Figure 7.8.: Reliability of D2P if dressed by an envelope computed in the same vortex-age
dependent manner as the ensemble envelope. Illustrated for the training (a) and
the test dataset (b) of the WakeMUC/ WakeFRA/ WakeOP sample and compared
to the ensemble results.

that the MME approach is advantageous for both approximating the overall model deviation
distribution for the training data and for the application to the test sample. Although the
dressed D2P forecasts do not depart much from the ensemble for the 99% level, the trend is
towards higher deviations for lower probabilities.

Table 7.2 lists the probabilities for the 99% and 95% envelope depicted in Figure 7.8 (b)
for a more thorough comparison. The outcomes reveal that the MME approach achieves for
the 95% bound better coverage (closer to the nominal forecast probability) than the dressed
D2P model for all parameters but z∗lee. For the 99% bound the difference is less significant
but yet to be observed with the dressed D2P forecast achieving better probabilistic reliability
for the y∗luff - and z∗luff -forecast. This stresses that multiple models achieve on average better
probabilistic reliability for the operationally relevant 99% and 95% uncertainty bounds than a
single model, although the differences are small.

7.2.3 Skill distribution

In order to analyze how much the ensemble is able to improve single parameters in single fore-
casts Figure 7.9 and Figure 7.10 illustrate the cumulative distribution of the skill factors (see
Equation 6.3) for the test samples for the DLR and NASA data and for each model separately.
They describe the probability that values smaller than shown on the x-axis occur. On the one
hand the results reveal that for the DLR data improvements of over 50% are possible (negative
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Table 7.2.: Nominal and observed probability for the WakeMUC/ WakeFRA/ WakeOP test
sample.

pobs Γ∗ [%] pobs y
∗ [%] pobs z

∗ [%]
model pnom [%] luff lee luff lee luff lee
BMAt∗ 95.0 93.8 94.2 92.1 95.8 92.1 94.6

99.0 97.8 97.7 96.6 98.1 96.6 97.8
D2P (dressed) 95.0 92.5 93.3 91.5 95.9 91.5 94.7

99.0 97.6 97.7 96.7 98.0 96.7 97.7

skill values). On the other hand the ensemble may also impair the forecast by 150% in single
cases (positive skill values). Note that this may be related to single models with extremely
small RMSE deviations such that the skill si,p can take very large values. Nevertheless, it is
peculiar that this can only be observed for impairments (positive values) and not for improve-
ments (negative values). This can be noted for all models and is related to the fact that s
is limited towards negative values by -1 whereas it is unlimited towards positive values. Yet
the curves intersect the P=0.5 line at skill values lower than or close to 0, indicating that the
ensemble success is based rather on many moderate than on few extreme skill improvements
when compared to the respective best model.

7.2.4 Effort and benefit

With regard to the above presented evaluations, the advantages of the ensemble approach lie in
the better deterministic average performance in consideration of all parameters. Improvements
compared to all models can be achieved - even compared to the best performing member. As
deterministic forecasts are operationally not feasible, the second focus lies on the probabilistic
skill. Combining the models in a manner such that a deterministic and probabilistic benefit
is achieved is connected with substantial effort. However, the presented BMAt∗ approach,
including the training, has been automated such that for future application no further effort
has to be expended into manual computation of ensemble parameters. While the RMS error
could be diminished by at least 3% for D2P on average, the probabilistic benefit appears to
be larger. To a large part this can be accounted to the maximum-likelihood estimation of the
ensemble parameters and their vortex age dependent treatment that can also be applied to a
single model. Nevertheless, it becomes apparent that the multi-model combination achieves
enhanced reliability compared to a single dressed model, although the superiority for the
operationally relevant 95% and 99% envelopes is less than 1%.

7.2.5 Concept of operations

Implementation into the WSVBS

To implement the ensemble into the WSVBS the envelopes for z and y must be combined such
that the probability of a vortex within a closed area in the z-y-space is defined. The WSVBS
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Figure 7.9.: Cumulative ensemble skill distribution (WakeMUC/ WakeFRA/ WakeOP).

computes this vortex area within 15 planes along the glide path, based on numerical weather
prediction data for the 10 upper and on measurements for the lowest 5 planes. The distance
between the so-called gates is reduced according to Figure 7.11 in order to properly resolve
the interaction of the vortices with the ground [37]. The upper gates are separated by 1 NM.

The initial circulation of the vortices is computed individually in each gate, as the airspeed
is variable along the glide path. For the approach below 3000 ft it calculates for jet and
turboprop aircraft as

uac = Cumin · ustall + udDES, (7.1)

with the stall speed ustall, the descent speed increment udDES, and the minimum speed coef-
ficient Cumin = 1.3 [160]. ustall is a function of flight configuration and is obtained from the
Base of Aircraft Data (BADA) [160] that is provided by Eurocontrol. udDES depends on the
flight altitude and is 10 kt below 1500 ft, 20 kt below 2000 ft and 50 kt below 3000 ft [160].
For the calculation of the initial circulation two runs with different weight assumptions are
performed. In the first run, the Maximum Landing Weight (MLW) is employed for maximum
circulation. In the second run, the Operational Empty Weight (OEW) plus the fuel weight for
one hour of flight plus the weight of 10% of the maximum amount of passengers as input is
applied for the minimum circulation [161].
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Figure 7.10.: Cumulative ensemble skill distribution (DFW97/ MEM95).

To model the advection of the vortices caused by head- or tailwind properly, the whole
gate is transported according to the windspeed. This must be considered by switching off the
headwind impact on vortex transport in the models (here only D2P considers headwind) when
implementing the ensemble in the WSVBS. However, the computation of the lateral vortex
transport is still handled by the models.

When operated with P2P the vortex area is computed using the upper and lower bounds
as well as the left and right bounds of the envelopes to define the elliptic vortex area (1 or
2σ). It represents the area within any of the two vortices may be encountered under a given
probability.

In a next step, the elliptical approach corridor (1 or 2σ) is added. It is derived from studies
of the arrival flight tracks at the airports of St. Louis, Atlanta and Chicago below a distance
of 3.3 NM and at larger distances from the flight path adherence statistics (FLIP) [161]. The
corridor dimensions decrease when approaching the runway [161].

With this information SHAPe (Simplified area HAzard PrEdiction) computes simplified haz-
ard areas based on the Roll Control Ratio (RCR) for a given aircraft pairing. The RCR is the
ratio of the exerted rolling moment of the vortices and the maximum available roll control
momentum achievable by aileron deflection [37, 38]. The shapes in the WSVBS represent
areas with RCRs of 0.2 or more [37]. Values less than that are considered nonhazardous. The
hazard areas shrink due to vortex decay [37], predicted deterministically by the SHAPe model



7.2. MULTI-MODEL ENSEMBLE WAKE VORTEX PREDICTION 119

Figure 7.11.: Gate topology of the WSVBS c.f. [37]

Figure 7.12.: Exemplary hazard areas and approach corridor for heavy leader with medium
follower as well as heavy leader and heavy follower [37].

for the conservative aircraft mass assumption.
The gates stay blocked until the approach corridor does not intersect the SHAPe area

anymore [37]. Figure 7.12 illustrates exemplarily the hazard areas for two different aircraft
pairings (heavy leader, medium follower (HM) and heavy leader, heavy follower (HH)) in a
specific gate at a specific time. For the HM pairing the hazard area is still large enough to
overlap with the approach corridor such that the gate is still blocked. In contrast, the area for
the HH pairing does not intersect the approach corridor and the gate can be cleared. SHAPe
is run with both the minimum and maximum circulation predictions and the more conservative
separation time is chosen.

With the meteorological measurements conducted by a SoDAR/ RASS system and the
numerical weather predictions being updated every 10 minutes, the WSVBS can predict min-
imum separation times for a 60 minutes horizon for planning purpose [37]. Short-term it can
be employed for a 20 minutes horizon as advisory system.

Capacity and safety gain

As stressed earlier the BMAt∗ ensemble envelopes widen stronger with increasing vortex age
than the P2P bounds, albeit being narrower right after vortex generation. Most probably
this will rather contribute to larger than to smaller separations, because for the separation
relevant vortex ages the envelopes of the BMAt∗ ensemble may be wider. Still, the shape of
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the hazard areas can be formulated in a more sophisticated way by the BMA than by P2P, as
multivariate PDFs can be employed in the future (see Appendix A.6). Further, the circulation
can be predicted more accurately by the ensemble, affecting the temporal development of the
hazard areas. Which of the discussed effects dominates must be investigated in a further
study. Therefore, the WSVBS must be operated with the ensemble and applied to the traffic
mix and the meteorological data of a major airport as demonstrated in Gerz et al. [39]. It can
be expected that the benefit for a closely-spaced parallel runway system, where the vortices of
the adjacent runway may affect the airport operations in crosswind situations, will be larger
than for single runway operations [39].

Beside a potential capacity gain, wake vortex predictions may also increase safety under
conditions where the current separation standards are not conservative enough. Figure 7.13
depicts a landing where the luff vortex still exhibits more than 20% of the initial circulation
(95.6 m2/s) at a vortex age of 135 s. Given the standard ICAO separation rules were applied,
a medium follower (75 m/s approach speed) would already pass the prediction plane after 123
seconds in the best case. The ensemble forecast recognizes this situation as critical and could
advise the controller to increase separation rather than to decrease it.

Training

In practice the employment of the ensemble at an airport will require a preceding training
period. Due to varying measurement equipment quality, different orography and traffic mix
the combination of both the DLR and the NASA wake vortex measurements for training,
the ensemble did not achieve significant improvements. For this reason it is suggested to
train the ensemble with reliable data captured under similar conditions (traffic mix, orography,
climatology) prevailing at the location of employment. It turned out that the larger the
training dataset the better the distributions of the model deviations could be approximated
which increased the probabilistic performance. For optimized performance in all gates along
the glide path it might be beneficial to train the ensemble not only vortex-age dependently,
but also vortex generation altitude dependently when implemented into the WSVBS. Further,
the uncertainty of the meteorological input is different for the numerical weather predictions
and the measurements. This can be taken into account by distinguishing the source of the
meteorological input data in the training.

The original BMA approach incorporated a continuous training, which means that mea-
surements are provided on a regular basis such that a fixed number of the latest verifications
can be consistently applied to update the ensemble parameters. Given the case that a LiDAR
and a SoDAR/RASS system are installed at the airport, with the raw data processing being
fast and accurate enough, a training of similar manner could be applied to the ensemble wake
vortex prediction. However, the runtime of the not yet optimized training routine would have
to be reduced. As airports are not yet equipped with such instrumentation, another option
would be to train the ensemble at the end of each day, week or even month.

Runtime

Due to the four employed models running serially, the runtime is naturally increased. Ad-
ditionally, the BMA code itself must be executed which includes the time needed for data
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Figure 7.13.: BMAt∗ forecasts for a long-lived vortex that remains in the glide path until it
cannot be tracked anymore after 135 s.
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processing. The whole BMA ensemble run takes about 0.5 s if executed on a local Linux PC
on a single core with 3.16 GHz and 3.8 GB of usable memory. Although the BMA code has
been runtime optimized in parts there is still room for improvement concerning in- and output
operations. Table 7.3 lists the runtime of the individual models, of the data processing and
of the BMAt∗ code in total. It indicates that the processing of the forecasts constitutes the
largest part of the total runtime rather than the individual model predictions. For lower spatial
PDF resolutions the runtime can be further reduced to achieve adequate prediction times for
the 15 gates in the WSVBS. Further, a run of the training routine with vortex-age dependent
ensemble parameters takes between 10 and 15 minutes for the employed training samples and
depends on their sizes.

Table 7.3.: Runtime of the ensemble and its members for a single WakeFRA case in IGE
(averaged over 3 consecutive runs).

task runtime [s]
TDP 2.1 0.0108
APA 3.4 0.0085
APA 3.2 0.0081
D2P 0.0112
processing 0.4587
BMAt∗ total 0.4973



8. Conclusion and Outlook

This thesis investigates the capability of a Multi-Model Ensemble to improve both the deter-
ministic and probabilistic forecast of wake vortex position and circulation. The ensemble is
based on wake vortex models that have been provided in the context of a NASA-DLR coopera-
tion and comprise D2P, APA 3.2, APA 3.4 and TDP 2.1. Three different ensemble approaches,
namely the Direct Ensemble Average (DEA), the Reliability Ensemble Averaging (REA) [58]
and the Bayesian Model Average (BMA) [71], have been assessed. For training and evaluation
of the ensemble methods, wake vortex campaigns accomplished by NASA (DFW97, MEM95)
and DLR (WakeMUC, WakeFRA, WakeOP) are employed. Therefore, the training datasets
and the samples for evaluation are of roughly equal size. The assessment of the individual
models demonstrates that no models with outstanding expertise under certain ambient con-
ditions are available. The only exception is D2P, which performs for the most part better for
low vortex generation altitudes in the presence of wind.

While the DEA computes the ensemble average as simple arithmetic mean, the REA and
BMA put effort into weighting the models according to their performance in advance. The REA
employs two distinctive reliability factors for each model where the first one (RB,i) is calculated
from the model bias. The second reliability factor RD,i is derived from the distance of the
individual forecast to the ensemble mean and is computed iteratively. The larger the deviation
from the ensemble mean, the smaller RD,i. The overall reliability factor then calculates as
RD,i ·RB,i. Given the case that the bias or the deviation from the ensemble mean are smaller
than the so-called natural variability, the reliability factors are set to one and the respective
model is considered to be reliable. The observed natural variability is evaluated based on
LiDAR data.

The BMA approach computes the ensemble forecast as a weighted sum of Probability
Density Functions (PDFs), with the weights and standard deviations being determined by
maximum likelihood estimation in a training phase [71]. Choosing the ensemble parameters
directly, based on the RMSE deviations and by counting how often each model achieves the
best forecast, is inferior to such an optimization method. The evaluation of the model errors
suggests that the deviation distributions are rather leptokurtic than Gaussian which may be
related to the fat tails found in the distributions of turbulence data [153]. By applying an
additional maximum likelihood estimation, the kurtosis of the model deviation PDFs can be
approximated more accurately. Further analysis of the model errors reveals that the model
error grows with increasing vortex age. While the REA only allows for the temporal error
growth in terms of increasing model spread, the adapted BMA approach considers the growing
uncertainties directly by employing vortex age dependent standard deviations, derived in a
training period.

It turns out that the BMA approach is superior to both the DEA and the REA ensemble
method and that it may improve the deterministic forecast, in comparison to the respective

123
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best model, by 3.3% if evaluated for the DLR data (IGE and NGE) and 1.6% for the NASA
measurements (OGE). In direct comparison, the DEA, which constitutes the natural baseline
of a MME, performs by 15.0% (2.0%) worse than the BMA approach, while the REA is by
5.7% (0.5%) inferior (results for NASA campaigns in brackets). Furthermore, it is found that
the vortex-age dependent calculation of ensemble parameters is beneficial on average for both
the REA and the BMA. The improvements achieved are on the same order of what has been
published by Raftery et al. [71]. It is hypothesized that the reason why the possible skill
increase is not larger might be the high forecast quality of the models that is already within
the order of the natural vortex variability. While the vortex age dependent approach reveals a
distinct benefit for the RMSE, no advantage could be found with regard to the model bias.

The assessment of the probabilistic ensemble prediction skill reveals that the uncertainty
bounds provided by the REA are not as reliable in terms of forecast and observed probability
as the envelopes computed by the BMA. This can be attributed to the fact that the REA
envelopes consider the model uncertainty only. Adding initial condition and ambient condition
uncertainties is potentially possible but complicates calibration of the envelopes. For this
reason, the BMA approach, which does not only incorporate model but also initial condition
and ambient condition uncertainty, is chosen to be further pursued. Further analysis of the
relation between weighted ensemble spread and ensemble error of the BMA points out that
large errors are more likely to occur when the model forecasts deviate strongly from one another.
The spread-error correlation emphasizes the high probabilistic skill of the BMA ensemble.

The analysis of the probabilistic BMA performance suggests, that the here presented tem-
poral training approach is beneficial. While the approach with constant ensemble parameters
is only reliable as an average over the whole vortex lifespan, the temporal approach achieves
consistently reliable forecasts at all vortex ages. The deviations between the selected nominal
forecast probability and the observed coverage are less than 4% towards the non-conservative
direction for all evaluated campaigns. If the conservative bound of the respective luff and lee
vortex is chosen, this value can be decreased towards 2%.

In addition, the uncertainty envelopes outperform the probabilistic prediction skill of the
P2P model, which is the probabilistic version of D2P. Two main reasons can be identified for
this. Firstly, the ensemble is trained with similar data before it is applied to the datasets and
is capable of adapting to the prevailing conditions. And secondly, the ensemble applies vortex
age dependent uncertainties to allow for the error growth with vortex age.

The initially stated expectation to enhance the coverage of rare but dangerous cases could
be reached, which is mainly related to the fact that the ensemble envelopes are wider than
the P2P bounds for late vortex ages. Four landings were identified where deterministic model
predictions would have been insufficient. In comparison to the P2P bounds, the ensemble
envelopes achieve better coverage in those cases. By adding further ensemble members that
are experts under certain ambient conditions, it is believed that the performance could be
further increased.

Note that the BMA envelopes are data-derived, such that dynamic uncertainties are only
generated through the varying behavior during different ambient conditions. The advantage of
this approach is that the envelopes can be easily adapted to any measurement campaign. The
disadvantage is that even if the initial and ambient condition uncertainty were known a-priori
for each individual forecast they could not be considered.
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It is stressed that dressing D2P alone by an envelope derived in the same manner as for
the ensemble by maximum-likelihood yields on average slightly worse reliability for the 99%
and 95% uncertainty bounds. For lower probability levels this trend is even more significant,
emphasizing the benefit of employing multiple models.

Although the runtime of wake vortex forecasts increases by a large factor, it is with 0.5 s on
a local Linux PC still fast. Note, that a runtime optimization has not yet been fully carried out
such that there is potential for improvement. The presented methodology allows to predict
wake vortex behavior probabilistically and more reliable than in the past. As the uncertainty
envelopes are wider but more accurate than the P2P envelopes, especially for later vortex
ages, it can be concluded that the benefit is rather the increase of safety than the increase of
capacity.

Additionally, this thesis analyzes the vortex-ground interaction based on the WakeMUC
campaign. Different vortex generation altitudes are available due to multiple LiDAR azimuth
angles during the campaign. The evaluation points out that vortices generated at altitudes
above 1.5z0 do not approach the ground as close as the expected altitude of 0.5z0. The
conclusion drawn from this behavior is that the vortex-ground interaction begins already at
higher altitudes as it has been assumed so far.

Furthermore, it is demonstrated that the decay of the lee vortex, where the secondary
vorticity is believed to be stronger, is enhanced as it has been suggested by Holzäpfel and
Steen [18]. It is further found, that the closer to the ground the vortices are generated, the
faster they decay. Firstly, this can be attributed to end effects, constituting disturbances that
travel along the vortex core, starting from the touchdown point. Secondly, also the increased
turbulence in ground proximity may play a role.

The evaluation of the WakeMUC LiDAR measurements furthermore illuminates the influ-
ence of head- and crosswind speed on vortex descent and decay. The results suggest that the
headwind influence on vortex rebound is minor compared to crosswind. However, both head-
and crosswind enhance decay with increasing strength. In addition, the direct comparison of
LiDAR mean and D2P mean demonstrates that the rebound for vortices generated between
0.8 and 1.5 z0 is well modeled, which emphasizes the success of the adaptions made to D2P
concerning the strength of the secondary and tertiary vortices. For higher initial altitudes
D2P overestimates the maximum vortex descent distance, which confirms the trend described
above and offers the capability for further model improvement. This is in line with the under-
estimation of vortex divergence that increases with increasing vortex generation altitude.

For the future, a comparison with the performance of the envelopes accomplished by Monte-
Carlo simulations shall be further investigated. Another interesting aspect is the implementa-
tion of the training method to single models, which has already been briefly assessed in this
work. Especially the application of the EM algorithm, to approximate the model deviation
distributions in a vortex-age-binned manner, may help to increase the reliability of probabilistic
forecasts of single models. Additionally, it might be beneficial to combine the here presented
MME approach with a Monte-Carlo simulation by perturbing the initial conditions of each
single model. This way the initial condition uncertainty could be covered more thoroughly and
the dependency of the envelopes from measurement data would further decrease. The latter is
believed to further increase the reliability if the ensemble is applied to a dataset substantially
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different from the training sample.
With regard to operational feasibility it will be necessary to adjust the probability levels for

vortex pairs instead of for single vortices in order to fit to the requirements of a Wake Vortex
Advisory System (WVAS). This also involves combining the envelopes of the z- and y-forecast
in order to define hazard areas in flight direction. To fully assess the operational benefit of
employing a MME, it will be implemented in the Wake Vortex Prediction and Monitoring
System (WSVBS) of DLR and tested offline with the traffic mix of a major airport as input.

Note that the here presented models are still being further developed. This offers the
prospect that in the future expert models might be available that contribute to better ensemble
wake vortex predictions not only in general, but also in rare but dangerous situations at airports.



A. Appendix

A.1 Model Correlation

The tables in the following list the correlation R between the different wake vortex models,
which has been introduced in Section 5.1.2 and illustrated by figures.

Table A.1.: Matrix of correlation coefficients R for z∗luff .

R z∗luff D2P APA 3.2 APA 3.4 TDP 2.1

D2P 1.000 0.942 0.944 0.900
APA 3.2 0.942 1.000 0.986 0.935
APA 3.4 0.944 0.986 1.000 0.957
TDP 2.1 0.900 0.935 0.957 1.000

Table A.2.: Matrix of correlation coefficients R for z∗lee

R z∗lee D2P APA 3.2 APA 3.4 TDP 2.1
D2P 1.000 0.916 0.928 0.943

APA 3.2 0.916 1.000 0.984 0.937
APA 3.4 0.928 0.984 1.000 0.960
TDP 2.1 0.943 0.937 0.960 1.000

Table A.3.: Matrix of correlation coefficients R for y∗luff

R y∗luff D2P APA 3.2 APA 3.4 TDP 2.1

D2P 1.000 0.986 0.988 0.976
APA 3.2 0.986 1.000 0.998 0.989
APA 3.4 0.988 0.998 1.000 0.993
TDP 2.1 0.976 0.989 0.993 1.000

Table A.4.: Matrix of correlation coefficients R for y∗lee

R y∗lee D2P APA 3.2 APA 3.4 TDP 2.1
D2P 1.000 0.995 0.996 0.996

APA 3.2 0.995 1.000 0.998 0.993
APA 3.4 0.996 0.998 1.000 0.995
TDP 2.1 0.996 0.993 0.995 1.000
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Table A.5.: Matrix of correlation coefficients R for Γ∗ (no distinction of luff and lee).

Γ∗ D2P APA 3.2 APA 3.4 TDP 2.1
D2P 1.000 0.886 0.938 0.950

APA 3.2 0.886 1.000 0.978 0.919
APA 3.4 0.938 0.978 1.000 0.953
TDP 2.1 0.950 0.919 0.953 1.000

A.2 Model Performance

These tables list the performance of the individual models for the complete WakeMUC/ Wake-
FRA/ WakeOP dataset and the DFW97/ MEM95 dataset. Furthermore, the performance is
given for the campaigns individually.

Table A.6.: Median root-mean square errors of the models for 694 selected high quality cases
(WakeMUC/ WakeFRA/ WakeOP).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.116 0.104 0.789 0.562 0.240 0.195
APA 3.4 0.155 0.140 0.812 0.514 0.210 0.209
APA 3.2 0.238 0.209 0.866 0.508 0.207 0.219
D2P 0.113 0.107 0.591 0.526 0.158 0.176

Table A.7.: Median root-mean square errors of the models (complete DFW97/ MEM95
dataset, 513 landings)

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.242 0.240 0.635 0.644 0.361 0.354
APA 3.4 0.205 0.220 0.592 0.605 0.364 0.361
APA 3.2 0.201 0.235 0.598 0.590 0.356 0.364
D2P 0.222 0.232 0.609 0.603 0.354 0.364

Table A.8.: Median model bias of the models for 694 landings of the WakeOP, WakeFRA and
WakeMUC campaign.

model bias
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 -0.014 -0.005 -0.179 0.239 0.149 -0.004
APA 3.4 -0.121 -0.106 -0.170 0.199 0.100 -0.054
APA 3.2 -0.195 -0.180 -0.152 -0.205 0.082 -0.065

D2P 0.024 0.041 -0.088 0.202 0.021 0.007
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Table A.9.: Median model bias of the models for 513 landings of the DFW97 and MEM95
campaign.

model bias
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.074 0.020 -0.042 -0.021 0.049 0.075
APA 3.4 0.000 -0.057 -0.046 -0.015 0.068 0.104
APA 3.2 -0.058 -0.124 -0.028 -0.014 0.080 0.100

D2P 0.048 -0.012 -0.044 -0.009 0.018 0.047

Table A.10.: Median RMS deviation between model forecast and observation for the Wake-
MUC campaign (374 high-quality landings).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.118 0.110 0.827 0.598 0.228 0.215
APA 3.4 0.158 0.144 0.875 0.552 0.228 0.250
APA 3.2 0.253 0.219 0.937 0.554 0.224 0.248

D2P 0.113 0.112 0.691 0.540 0.181 0.199

Table A.11.: Median RMS deviation between model forecast and observation for the WakeFRA
campaign (291 landings).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.117 0.101 0.740 0.526 0.243 0.157
APA 3.4 0.159 0.145 0.781 0.457 0.179 0.171
APA 3.2 0.236 0.211 0.829 0.434 0.175 0.172

D2P 0.115 0.103 0.476 0.505 0.125 0.159

Table A.12.: Median RMS deviation between model forecast and observation for the WakeOP
campaign (31 landings).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.098 0.097 0.910 0.543 0.364 0.224
APA 3.4 0.101 0.093 0.865 0.525 0.334 0.200
APA 3.2 0.106 0.077 0.878 0.506 0.367 0.225

D2P 0.090 0.097 0.647 0.549 0.161 0.178
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Table A.13.: Median RMS deviation between model forecast and observation for the DFW97
campaign (208 landings).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.240 0.246 0.495 0.382 0.249 0.244
APA 3.4 0.203 0.227 0.489 0.371 0.253 0.233
APA 3.2 0.207 0.227 0.513 0.356 0.245 0.235

D2P 0.242 0.251 0.500 0.378 0.221 0.223

Table A.14.: Median RMS deviation between model forecast and observation for the MEM95
campaign (305 landings).

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.234 0.240 0.740 0.818 0.427 0.503
APA 3.4 0.207 0.214 0.735 0.790 0.451 0.512
APA 3.2 0.213 0.230 0.731 0.785 0.435 0.521

D2P 0.220 0.221 0.724 0.787 0.432 0.494

Table A.15.: Median RMS deviation between model forecast and observation for the DEN03
campaign (775 landings) with ε derived using structure functions.

model RMSE
Γ∗luff Γ∗lee y∗luff y∗lee z∗luff z∗lee

TDP 2.1 0.296 0.302 1.067 1.217 0.500 0.506
APA 3.3 0.219 0.227 1.060 1.228 0.505 0.522
APA 3.2 0.185 0.185 1.042 1.186 0.516 0.527

D2P 0.262 0.269 1.063 1.231 0.519 0.518

A.3 LiDAR Measurement Evaluation

The figures below show the comparison between LiDAR mean and D2P forecast for various
initial altitude intervals for the WakeFRA and WakeOP campaign.
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Figure A.1.: Comparison of mean D2P prediction and the LiDAR mean for WakeFRA.
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Figure A.2.: Comparison of mean D2P prediction and the LiDAR mean for WakeOP.
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A.4 Rare But Dangerous

The figures below illustrate the rare but dangerous cases evaluated in Section 7.2.2, including
the single model forecasts.
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Figure A.3.: Long-lived vortex that remains in the glide path until it cannot be tracked anymore
after 97 s.
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Figure A.4.: Long-lived vortex that remains in the glide path until it cannot be tracked anymore
after 77 s.
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Figure A.5.: Long-lived vortex that remains in the glide path until it cannot be tracked anymore
after 97 s.
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Figure A.6.: Long-lived vortex that remains in the glide path until it cannot be tracked anymore
after 149 s.

A.5 Extraordinary Measured Landings

Within the WakeMUC/ WakeFRA/ WakeOP dataset various cases with extraordinary wake
vortex rebound have been identified of which 4 are presented here. With exception of the first
case, crosswind shear can be observed. None of the models seems to be capable of predicting
such extreme behavior.
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Figure A.7.: Rarely strong rebound of the port vortex, although the 10-minute average cross-
wind is low. Lateral vortex transport indicates strong gust that may also be
responsible for unusually strong rebound.
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Figure A.8.: Rarely strong rebound of the port vortex, with strongly deviating model forecasts.
This might either be caused by the gust that can be observed at t∗ = 3 in the
lateral transport.
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Figure A.9.: Rarely strong rebound of the starboard vortex which might be caused by the
gust observed at t∗ = 1.5. Although a crosswind shear gradient can be observed
the results of Proctor et al. [97] suggest that this cannot be the reason for this
behavior.
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Figure A.10.: Rarely strong rebound of the starboard vortex which might be caused by the
gust observed at t∗ = 1. Although a crosswind shear gradient can be observed
the results of Proctor et al. [97] suggest that this cannot be the reason for this
behavior.
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A.6 Combined Confidence Areas for Vortex Position

The main task of the ensemble within the WSVBS is the calculation of the vortex area. While
P2P calculates elliptic areas, the BMA approach offers the opportunity to calculate more so-
phisticated shapes by employing multivariate PDFs. The previously presented envelopes repre-
sent the probability of encountering a single vortex in z- or y-direction individually. In practice
the more interesting parameter is however the vortex position in a 2-dimensional prediction
plane at a specific time that quantifies the probability to encounter any of the two vortices. As
the BMA output consists of PDFs, it is straightforward to compute multivariate distributions
here instead of assuming elliptic shapes as in P2P. Then, nominal forecast probabilities may
be defined to minimize the risk of a vortex encounter below a certain threshold.

In a first step the joint probabilities are calculated for z∗luff and y∗luff , as well as for z∗lee and
y∗lee. In the design of the one-dimensional BMA PDFs, the lateral and vertical vortex position
are assumed to be independent and, therefore, the probability to find the luff or lee vortex at
a certain position is given by

Pluff = P (z∗luff ∩ y∗luff) = P (z∗luff) · P (y∗luff) (A.1)

and

Plee = P (z∗lee ∩ y∗lee) = P (z∗lee) · P (y∗lee). (A.2)

Pluff and Plee are thus conjunctive probabilities (i.e. zlee ”and” ylee) [162]. In general, z∗luff and
y∗luff may be dependent, for example in the case of strong wind shear. Equations (A.1) and
(A.2) result in separate joint (bivariate) PDFs for the luff and lee vortex as depicted in Figure
A.11a and Figure A.11b. The normalizations

˜
Pluffdz

∗dy∗ = 1 and
˜
Pleedz

∗dy∗ = 1 are
retained. Note, that the contours for given probability levels are only close to elliptic because
the ensemble PDFs are a sum of the individual leptokurtic model PDFs.

In a next step the final PDF to encounter any of the two vortices at a time is generated by

P = P (luff ∪ lee) = (Pluff + Plee) /2. (A.3)

This can be understood as disjunction (i.e. luff ”or” lee) [162]. Again
˜
Pdz∗dy∗ = 1 is

guaranteed. Figure A.12a illustrates the overall joint PDF that now exhibits two peaks. To
find contours for specific confidence levels, the surface above the contours must be integrated
until the desired probability level is reached. As depicted in Figure A.12b, the contours are
tapered between both vortices at lower and may even be separated at higher probabilities. It
is striking that the confidence in the prediction of the vertical position is much higher than
in the lateral position, which can be attributed to a large part to the uncertainty in the wind
measurements.
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Plee = P(y*lee) • P(z*lee)
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Figure A.11.: Joint PDFs for the lee (a), and the luff vortex (b) for vortices generated in IGE.
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[144] F. Holzäpfel and R. E. Robins, “Probabilistic two-phase aircraft wake vortex model:
application and assessment”, Journal of Aircraft, Vol. 41, No. 5, pp. 1117–1126, 2004.
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[156] S. Körner, N. Ahmad, F. Holzäpfel, and R. L. VanValkenburg, “Multi-model ensemble
wake vortex prediction”, in 7th AIAA Atmospheric and Space Environments Conference,
p. 3173, 2015.

[157] R. N. Hoffman and E. Kalnay, “Lagged average forecasting, an alternative to monte
carlo forecasting”, Tellus A, Vol. 35, No. 2, pp. 100–118, 1983.
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