Bericht des Instituts für Aerodynamik und Strömungstechnik Report of the Institute of Aerodynamics and Flow Technology

EB 124-2017/905

Windkanalmessungen am DLR-F15DS Profil mit dynamischem Spoiler - Zusammenfassung der Messkampagne TN 2634 -

S. Geisbauer, T. Löser

Institut für Aerodynamik und Strömungstechnik DNW, Niedergeschwindigkeitswindkanal Braunschweig

Herausgeber:

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz Gemeinschaft Institut für Aerodynamik und Strömungstechnik Lilienthalplatz 7, 38108 Braunschweig

Stufe der Zugänglichkeit: 2 Braunschweig, im Oktober 2017

Institutsdirektor:	Verfasser:
Prof. DrIng. habil. CC. Rossow	DiplIng. Sven Geisbauer
	DiplIng. Thomas Löser

Abteilung: Transportflugzeuge Abteilungsleiter: Dr.-Ing. O. Brodersen Der Bericht enthält:

- 46 Seiten
- 12 Bilder
- 10 Tabellen
- 9 Literaturstellen

(This page is intentionally left blank)

Zusammenfassung

Der vorliegende Bericht entstand im Rahmen des internen Projekts "Mephisto" des DLR, das von April 2014 bis März 2018 unter Leitung des Instituts für Aerodynamik und Strömungstechnik, Braunschweig, durchgeführt wurde.

Im Rahmen dieses Projektes wurden mehrere Windkanalmessungen an unterschiedlichen Konfigurationen durchgeführt. Eine Aktivität in Mephisto widmete sich der Untersuchung des aerodynamischen Einflusses von statischen und dynamischen Spoilerausschlägen auf einen 2D-Flügel. Im Vorfeld wurde hierzu das bereits vielseitig genutzte DLR-F15 Modell modifiziert und um einen dynamischen Spoiler samt integrierter Kinematik zur Ansteuerung erweitert. Dieses Derivat wird daher als DLR-F15DS (Dynamischer Spoiler) bezeichnet.

Die Messungen mit dem DLR-F15DS Modell wurden im DNW-NWB Windkanal in Braunschweig durchgeführt. Das Ziel bestand einerseits darin, die auftretenden strömungsphysikalischen Effekte infolge der Dynamik einer solchen Steuerfläche zu erfassen und zu verstehen. Darüber hinaus wurden die experimentellen Rohdaten entsprechend aufbereitet, um sie für die Validierung von Strömungssimulationen heranziehen zu können.

Der vorliegende Bericht fasst die erste (TN 2634, 27.07.2016 – 09.08.2016) von zwei Messkampagnen zusammen. Diese wurde durchgeführt im Zeitraum vom 27.07.2016 bis 09.08.2016. Über die zweite Messkampagne (TN 2635, 28.10.2016 – 11.11.2016), in der auch zeitaufgelöste PIV-Messungen durchgeführt wurden, wird separat berichtet werden.

Die Messdaten wurden vom DNW-NWB in Form einer USB-Speichermediums an den Auftraggeber (Hr. Geisbauer) übergeben.

Eine Zusammenfassung der ersten Messkampagne wurde von den Autoren dieses Berichts im Sommer 2017 veröffentlicht¹. Hierbei wurden exemplarische Ergebnisse für statische und dynamische Spoilerausschläge vorgestellt. Dazu zählen Druckverteilungen, aufintegrierte Kraft- und Momentenverläufe, Wirbelablösefrequenzen und Einflüsse des Spoilerbewegungsprofils auf dessen instationäre Charakteristik.

¹ In S.Geisbauer, T. Löser: "Towards the Investigation of Unsteady Spoiler Aerodynamics", AIAA Paper 2017-4229, 35th AIAA Applied Aerodynamics Conference, Denver, 2017.

Summary

The present report originated in the internal DLR project "Mephisto" which was led by the Institute of Aerodynamics and Flow Technology, Braunschweig, and lasted from April 2014 to March 2018.

Several wind tunnel campaigns, using different configurations, were conducted during this project. One of those experimental activities focused on the investigation of the aerodynamic influence of static and dynamic spoiler deflections on a 2-D wing configuration. To achieve this, the well-known DLR-F15 wind tunnel model was modified by integrating a dynamic spoiler including drive and kinematics. This derivative of the original F15 model is therefore called DLR-F15DS (dynamic spoiler) model.

This model was experimentally investigated in the DNW low-speed wind tunnel facility in Braunschweig (DNW-NWB), with the objective of capturing and understanding the transient aerodynamic effects which occur due to a dynamic spoiler deflection. In addition, the wind tunnel data serves for numerical validation purposes.

This report summarizes the first out of two wind tunnel campaigns using the DLR-F15DS model (TN 2634), which was conducted from July 27, 2016 to August 9, 2016. A separate report will be made available for the second wind tunnel campaign (TN 2635), which was conducted from October 28, 2016 to November 11, 2016. In addition to the experimental setup of TN 2634, time-resolved PIV measurements were conducted in TN 2635.

The experimental data have been handed over the customer (Mr. Geisbauer) on a USB flash drive.

In addition to this report, the results of the first campaign were summarized and published in 2017 by the same authors (see footnote 1 on previous page).

NWB-2016-04

Messungen am DLR F15-Modell mit dynamisch ausfahrbarem Spoiler im DNW-NWB

Projektnummern: 5210.2634 und 5210.2635

Autor:Thomas LoeserAbteilungsleiter:Carsten Lenfers, DNW-BGK

ÜBERSICHT

Am mit einem fernverstellbaren Spoiler ausgestatteten 2D-Profilmodell DLR-F15 wurden 2016 in der geschlossenen Messstrecke des DNW-NWB für DLR-AS-TFZ Messungen durchgeführt. Innerhalb der zehn Messtage umfassenden TN 2634 wurden statische und dynamische Druckmessungen durchgeführt; während der ebenfalls zehn Messtage umfassenden TN 2634 erfolgten -neben Druckmessungen- PIV-Messungen von Mitarbeitern von DLR-AS-EXV.

INHALTSVERZEICHNIS

<u>ÜB</u>	ERSICH	<u>нт</u>	4
IN	HALTS	ERZEICHNIS	4
TA	BELLEN	VERZEICHNIS	5
<u>AB</u>	BILDU	IGSVERZEICHNIS	5
<u>BE</u>	ZEICHN	IUNGEN	6
	<u>Abkürz</u>	<u>ungen</u>	7
<u>1</u>	EINLE	ITUNG	7
<u>2</u>	TEST S	SET UP	7
	<u>2.1</u>	Windkanal	7
	<u>2.2</u>	Modellsupport	8
	<u>2.3</u>	Windkanalmodell	8
	<u>2.4</u>	Modellinstallation	9
<u>3</u>	<u>INSTR</u>	UMENTIERUNG	9
	<u>3.1</u>	Oberflächendruckmessung	9
	<u>3.1.1.</u>	PSI-System für stationäre Druckmessung	9
	<u>3.1.2.</u>	Kulite-Druckaufnehmer für instationäre Druckmessung1	2
	<u>3.2</u>	Induktiver Wegsensor1	3
	<u>3.3</u>	SPR Video System1	3
	<u>3.4</u>	Flow Reference System1	4
	<u>3.5</u>	PIV Messsystem	4
<u>4</u>	MESS	PROGRAMM	5
	<u>4.1</u>	Messprogramm Tn 26341	5
	<u>4.2</u>	Messprogramm Tn 26351	6
<u>5</u>	DATE	<u>IERFASSUNG UND -AUSWERTUNG</u> 1	7
	<u>5.1</u>	Staudruckkalibrierung1	7
	<u>5.2</u>	Windkanalkorrekturen1	8
	<u>5.3</u>	Genauigkeitsabschätzung2	0
<u>6</u>	ERGEE	<u>3NISSE</u>	1
	<u>6.1</u>	Ergebnisse stationärer Messungen2	1

	<u>6.2</u>	Ergebnisse instationärer Messungen	21
<u>7</u>	STRUK	TUR DER ERGEBNIS-DATEIEN	21
8	LITER	TURVERZEICHNIS	23
9	ABBIL	DUNGEN	24
AN	HANG A	: MESSPROTOKOLL TN 2634	31
<u>ANI</u>	HANG B	: MESSPROTOKOLL TN 2635	39

TABELLENVERZEICHNIS

Tabelle 1: Statische Druckbohrungen im Mittelschnitt	10
Tabelle 2: Statische Druckbohrungen im oberen Außenschnitt	11
Tabelle 3: Statische Druckbohrungen im unteren Außenschnitt	12
Tabelle 4: Kulite-Druckaufnehmer	13
Tabelle 5: Messprogramm von TN 2634, Szenario 1	16
Tabelle 6: Messprogramm von TN 2634, Szenario 2	16
Tabelle 7: Messungen bei nicht bewegtem Spoiler, Tn 2635	16
Tabelle 8: Messprogramm von TN 2635, Szenario 1	17
Tabelle 9: Koeffizienten der verwendeten Staudruckkalibrierung	18
Tabelle 10: Abschätzung der Genauigkeiten ΔC_p der verwendeten Drucksensoren	20

ABBILDUNGSVERZEICHNIS

Abbildung 1:	DNW-NWB, Draufsicht	24
Abbildung 2:	Statischer Druck entlang der Messstreckenachse, aus [1] 24	
Abbildung 3:	Positionen und Zuordnung von Druckbohrungen und Kulite-Sensoren	25
Abbildung 4:	DLR-F15-Modell im DNW-NWB (TN 2634)	26
Abbildung 5:	DLR-F15-Modell im DNW-NWB mit vier Fenstern für die PIV-Kameras in der	
Drehsche	<u>ibe (TN 2635)</u>	27
Abbildung 6:	Schematischer Messaufbau Mephisto Spoiler F15, TN 2634 und TN 2635	27
Abbildung 7:	Impuls-Zeit-Diagramm - Triggerung PIV Laser mit Video Pos. und	
Vipermes	sung	27
Abbildung 8:	Druck- und Temperaturmessstellen in Vorkammer und Düse des NWB	28
Abbildung 9:	Auftriebsbeiwert als Funktion des Anstellwinkels (unkorrigiert) bei	
eingefahr	renem Spoiler	28
Abbildung 10:	Druckverteilungen von PSI und Kulites bei eingefahrenem Spoiler	29
Abbildung 11:	Signale von Spoilerwinkel und Kulite K17 der sechs Ausfahrvorgänge von PO	L
<u>2037 (Sz</u>	enario 1).	29
Abbildung 12:	Signale von Spoilerwinkel und Kulite K17 der Sinusschwingung von POL 303	3
(Szenario	2, Ausschnitt).	30

BEZEICHNUNGEN

Symbol	Einheit	Bezeichnung in Ergebnisdatei	Beschreibung
b	m		Spannweite
C _{ref}	m		Bezugsflügeltiefe
		DPN	DataPointNumber, fortlaufend ab Messbeginn
		DPNP	DataPointNumberPolar, beginnt neu mit neuer Polare
Cw	1	CDW	Widerstandsbeiwert
C _A	1	CLW	Auftriebsbeiwert
C _m	1	CMYW	Nickmomentenbeiwert um x/ $c_{ref} = 0,25$
Cp	1	СР	Druckbeiwert
Ма	1	MAINF	Machzahl
		POL	"Polaren"-Nummer (auch VN)
Р	Ра	Р	Statischer Druck einer Druckbohrung/eines Kulites
Ps	Ра	PINF	Statischer Druck in der Messstrecke
PT	Ра		Totaldruck (= Gesamtdruck)
q	Ра	QINF	Staudruck
Re	1	REINF	Reynoldszahl * 10 ⁻⁶
		RUN	Nummer eines Test-Setups, hier immer 1
S	m		Halbspannweite
Sw	m ²		Bezugsflügelfläche
		TRIGGER	TTL-Signal zur Synchronisierung von SPR und Viper
V	m/s	VINF	Anströmgeschwindigkeit
		Winkelgeber	Signal des indukt. Weggebers, unskaliert
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1	x/l	x/c _{ref} -Koordinate von Druckbohrung oder Kulite
	1	y/l	y/c _{ref} -Koordinate von Druckb. oder Kulite (nicht verw.)
	1	z/l	z/c _{ref} -Koordinate von Druckb. oder Kulite
	mm	X_V	SPR: X-Koordinate des Mittelpunktes des Marker-
			Dreiecks
	mm	Y_V	SPR: Y-Koordinate des Mittelpunktes des Marker-
			Dreiecks
	mm	Z_Y	SPR: Z-Koordinate des Mittelpunktes des Marker-
			Dreiecks
α	0	ALPHA	Anstellwinkel
βv	0	BETA_V	SPR: Winkel der Markerebene um Z-Achse ( $\varphi_S = \alpha$ -
			βν)
	0	ALPHA_V	SPR: Winkel der Markerebene um Y-Achse (≈ 0)
	0	PHI_V	SPR: Winkel der Markerebene um X-Achse (≈ 0)
		ERROR	SPR: "worst Error" Fehlercode während einer Mes-
			sung



φs	0	PHI_SPOILER	Spoilerwinkel, positiv bei ausgefahrenem Spoiler ²
		PHI_SPOILER_FIT	Spoilerwinkel aus Kurvenanpassung gemäß Abschnitt 5.3

Variablen in den Ergebnisdateien, deren Name mit "_U" endet, bezeichnen Größen, bei denen keine Korrekturen entsprechend Abschnitt 0 angewendet wurden.

#### Abkürzungen

AoA	Anstellwinkel
AoS	Schiebewinkel
AC	Aerodynamic Center (≡ Moment Reference Point, MRP)
fps	frames per second
FRS	Flow Reference System
FS	Full Scale
SPR	Stereo Pattern Recognition
W/T	Windkanal

#### 1 EINLEITUNG

Im Rahmen des DLR-Projektes Mephisto wurden in zwei Messkampagnen im DNW-NWB Messungen am DLR-F15 – Modell mit dynamisch ausfahrbarem Spoiler durchgeführt. Die erste Kampagne (Tn 2634) umfasste zehn Belegungstage, fand vom 27.07. bis zum 09.08.2016 statt und diente der Erprobung des Spoilerantriebs sowie statischen und instationären Druckmessungen. Die zweite Kampagne (Tn 2635) umfasste 11 Belegungstage vom 27.10. bis zum 11.11.2016. Bei Tn 2635 wurden von Mitarbeitern von DLR-AS-EXV PIV-Messungen an festgehaltenem und bewegtem Spoiler durchgeführt. DLR-seitig wurden die Messungen von Sven Geisbauer betreut.

#### 2 TEST SET UP

#### 2.1 Windkanal

Der DNW-NWB ist ein atmosphärischer Niedergeschwindigkeits-Windkanal Göttinger Bauart, der sich auf dem Gelände des DLR Braunschweig befindet und von der Stiftung "Deutsch-Niederländische Windkanäle" betrieben wird (0). Die hier beschriebenen Messungen wurden in der geschlossenen Messstrecke durchgeführt, welche einen Querschnitt von  $3.25 \cdot 2.80 \text{ m}^2$  aufweist. Die maximale Geschwindigkeit der ungestörten Anströmung in der Messstrecke beträgt V = 90 m/s. Der Grundriss des NWB ist in *Abbildung 1* dargestellt.

² In Absprache mit dem Kunden so gewählt; im Bewusstsein, dass gemäß LN 9300 der Klappenwinkel einer zur Oberseite hin ausgeschlagenen Klappe negativ ist.



Seit 2010 kann der NWB auch als aeroakustische Versuchseinrichtung betrieben werden. Nähere Informationen dazu finden sich in 0 bis 0.

Der Turbulenzgrad in der geschlossenen Messstrecke beträgt Tu_x < 0.06% auf der Kanalachse (gemessen 2014 von DLR-AT-TRA).

Der Verlauf des statischen Druckes entlang der Strahlachse ist in Abbildung 2 wiedergegeben.

#### 2.2 Modellsupport

Das Modell wurde in der geschlossenen Messstrecke mit Drehscheibeneinsätzen in Boden und Decke der Messstrecke installiert. Die Profiloberseite zeigt zur Nordwand, die Profilunterseite zur Südwand. Für Tn 2634 wurden die Messstreckenbodenseitige Stahlplatte, welche zwischen Drehscheibe und Modell installiert ist, sowie ein Stahl-U-Profil unterhalb des Drehscheibenbodens von SHT Braunschweig zur Montage des Spoiler-Aktuators angepasst. Bei Tn 2534 wurde der standardmäßige runde Drehscheibeneinsatz im Boden verwendet; bei Tn 2635 ein Drehscheibeneinsatz aus Tn 2591, da in dem Einsatz zwei Fenster für die PIV-Messungen benötigt wurden.

#### 2.3 Windkanalmodell

Das DLR-F15-Windkanalmodell ist ein kryo-taugliches 2D-Profilmodell, welches für Hochauftriebsuntersuchungen entwickelt und gebaut wurde. Die für den DNW-KKK passende Spannweite von 2,40 m kann mit Verlängerungen auf eine für den DNW-NWB geeignete Spannweite von 2,80 m vergrößert werden. Das DLR F15 – Modell kann als 1-Element-, 2-Elementund 2-Element-Konfiguration verwendet werden. Mittels einer speziellen Modellaufnahme innerhalb der unteren Drehscheibe ist eine Installation des DLR-F15-Modelles als 2,5D-Modell mit einstellbarer Pfeilung möglich. Für die hier dokumentierten Tn 2634 und Tn 2635 wurde das F15-Modell in Reiseflugkonfiguration mit einem fernverstellbaren Spoiler in den Abmessungen 600 mm · 90 mm ausgerüstet. Der Antrieb der Spoilers (ein elektrischer Aktuator von Wittenstein cyber motor GmbH mit  $F_{max} = 10$  kN,  $V_{max} = 400$  mm/s,  $\Delta x = 200$  mm) befindet sich unterhalb des unteren Drehscheibenbodens. Der Antrieb wird mit der Aluplatte an der Profilunterseite verschraubt.

Das F15-Modell ist mit Druckbohrungen sowie Kulite-Druckaufnehmern zur Messung von Oberflächendrücken ausgestattet. Bei der hier untersuchten clean-Konfiguration mit Spoiler wurden im Mittelschnitt 73 Druckbohrungen, im deckenseitigen Außenschnitt 34 Druckbohrungen und im bodenseitigen Außenschnitt 36 Druckbohrungen gemessen.

Die Transitionsfixierung erfolgte durch ein Klebeband von 0,2 mm Stärke und etwa 3mm Breite, welches entlang der Vorderkante aufgeklebt wurde. Da das Klebeband, welches bei Tn 2634 verwendet wurde, sich –vermutlich aufgrund des hohen Alters– bei Ma = 0.2 wiederholt vom Modell löste, wurde bei Tn 2635 ein anderes Klebeband mit gleichen Abmessungen verwendet.



Andere Änderungen am Modell von Tn 2634 zu Tn 2635 umfassten

- eine Nacharbeit am Spoiler-Antriebsmechanismus seitens DLR-SHT zur Reduzierung des Spiels im Antriebsmechnismus³;

-schwarze selbstklebende Folie auf der Modelloberseite zur Vermeidung von Reflektionen des Laser-Lichtschnittes bei den PIV-Messungen

- Beschichtung der Spoilerrückseite sowie der Modelloberfläche unterhalb des Spoilers mit schwarzem Sprühdosen-Lack.

#### 2.4 Modellinstallation

Bei einem Anstellwinkel von  $\alpha = 0^{\circ}$  betrug die Versperrung 2,3 %; bei einem Anstellwinkel von  $\alpha = 10^{\circ}$  betrug die Versperrung 3,7 % (jeweils bei eingefahrenen Spoiler).

#### 3 INSTRUMENTIERUNG

#### 3.1 Oberflächendruckmessung

Die Messung der Oberflächendrücke fand mittels PSI-Druckmessmodulen in drei Schnitten und Kulite-Druckaufnehmern im Mittelschnitt statt. Die Koordinaten der Druckmessbohrungen bzw. –sensoren sind in *Tabelle 1* bis *Tabelle 4* angegeben. Die Positionen der Bohrungen und Sensoren sind in den Tabellen wie folgt farblich gekennzeichnet:

Bohrung Nr. 107 (Mittelschnitt, Oberseite) lieferte bei TN 2635 keine einwandfreien Ergebnisse und ist deshalb nur in den Ergebnisdateien von TN 2634 ausgegeben.

Die Positionen und Schnittzuordnungen der Druckbohrungen und –aufnehmer sind in Abbildung 3 dargestellt.

Spoileroberseite
Spoilerrückseite
Flügeloberseite
Flügelobers. unter dem Spoiler
Flügelvorderkante
Flügelunterseite

#### 3.1.1. PSI-System für stationäre Druckmessung

-	5									
Clean Nose Wing	cW [mm] =	600.00					TN	2634 Belegur	ng PSI Init	ium
-	Boh. Nr.	x/c	z/c	x[mm]	z[mm]	55F700	Modul-Rö.	Modul-Nr.	Range	Modul-SN
	2	0.8728	0.028708	523.662	17.225	2	2	2	5 psi	641318
	3	0.8459	0.034153	507.523	20.492	3	3	2	5 psi	641318
en ile	4	0.8192	0.039067	491.537	23.440	4	4	2	5 psi	641318
ri dag	6	0.7615	0.048097	456.902	28.858	6	6	2	5 psi	641318
0, 0,	7	0.7162	0.053708	429.705	32.225	7	7	2	5 psi	641318
	8	0.6593	0.059110	395.586	35.466	8	8	2	5 psi	641318
	<del>9</del>	<del>0.6008</del>	<del>0.063168</del>	<del>360.477</del>	<del>37.901</del>	9	<del>9</del>	2	<del>5 psi</del>	<del>641318</del>
	10	0.5513	0.065472	330.807	39.283	10	10	2	5 psi	641318
	11	0.5011	0.066818	300.643	40.091	11	11	2	5 psi	641318
ber	12	0.4516	0.067247	270.974	40.348	12	12	2	5 psi	641318
o dit	13	0.4005	0.066802	240.315	40.081	13	13	2	5 psi	641318
_	14	0.3494	0.065477	209.657	39.286	14	14	2	5 psi	641318
	15	0.3008	0.063400	180.482	38.040	15	15	2	5 psi	641318
ea N N S e € in	<del>101</del>	0.2654	0.061363	<del>159.219</del>	<del>36.818</del>	<del>- C01-5</del>	5	<del>1</del>	<del>15 psi</del>	<del>64453</del>

Statische Druckbohrungen im Mittelschnitt

³ Bereits während Tn 2634 wurde am 02.08.16 nach POL 1032 von DLR-SHT das Spiel in der Spoiler-Antriebskinematik reduziert.



	102	0.2308	0.058925	138.450	35.355	18	18	1	15 psi	64453
	103	0.1945	0.055815	116.693	33.489	29	29	1	15 psi	64453
	<del>104</del>	<del>0.1581</del>	<del>0.051980</del>	<del>94.864</del>	<del>31.188</del>	<del>10</del>	<del>10</del>	+	<del>15 psi</del>	<del>64453</del>
	105	0.1395	0.049673	83.704	29.804	3	3	1	15 psi	64453
	106	0.1116	0.045657	66.963	27.394	24	24	1	15 psi	64453
	107	0.0930	0.042508	55 803	25 505	20	20	1	15 nsi	64453
	107	0.0744	0.038867	11 612	23.303	1	1	1	15 psi 15 nsi	64453
	100	0.0744	0.034519	22 /02	20.320	26	26	1	15 psi 15 psi	64452
	110	0.0338	0.034518	33.402	10 170	20	20	1	15 psi	04455
	111	0.0400	0.031755	27.701	17.172	- <del>10</del>	<del>10</del>	+	15 psi	64455
	111	0.0372	0.029065	22.321	17.439	22	22	1	15 psi	64453
	112	0.0279	0.025790	16./41	15.474	13	13	1	15 psi	64453
	113	0.0186	0.021833	11.161	13.100	30	30	1	15 psi	64453
	114	0.0093	0.016153	5.580	9.692	15	15	1	15 psi	64453
	115	0.0047	0.011638	2.790	6.983	8	8	1	15 psi	64453
	116	0.0019	0.007233	1.116	4.340	46	46	1	15 psi	64453
	117	0.0006	0.003890	0.350	2.334	48	48	1	15 psi	64453
	118	0.0000	0.000000	0.000	0.000	19	19	1	15 psi	64453
	119	0.0006	-0.003783	0.350	-2.270	6	6	1	15 psi	64453
	120	0.0019	-0.006787	1.116	-4.072	4	4	1	15 psi	64453
	121	0.0047	-0.010448	2.790	-6.269	7	7	1	15 psi	64453
	122	0.0093	-0.014113	5.580	-8.468	17	17	1	15 psi	64453
	123	0.0186	-0.019153	11.161	-11.492	27	27	1	15 psi	64453
	124	0.0279	-0.023167	16.741	-13,900	14	14	1	15 nsi	64453
	125	0.0372	-0.026475	22 321	-15 885	12	12	1	15 psi	64453
	125	0.0372	_0.020473	22.021	17.545	Ω	Ω	1	15 psi 15 psi	64452
	120	0.0400	0.021242	27.701	10.004	21	21	1	15 psi	64453
	127	0.0338	-0.031040	33.402	-10.704	21	21	1	15 psi	64453
	128	0.0744	-0.035668	44.04Z	-21.401	11	11	1	15 psi	64453
	129	0.0906	-0.038588	54.387	-23.153	23	23	1	15 psi	64453
	130	0.1005	-0.040110	60.321	-24.066	25	25	1	15 psi	64453
	131	0.1121	-0.041808	67.244	-25.085	28	28	1	15 psi	64453
	132	0.1261	-0.043585	75.650	-26.151	2	2	1	15 psi	64453
	133	0.1508	-0.046342	90.485	-27.805	31	31	1	15 psi	64453
	134	0.1731	-0.048430	103.836	-29.058	32	32	1	15 psi	64453
	135	0.2010	-0.050643	120.578	-30.386	33	33	1	15 psi	64453
	41	0.2489	-0.053537	149.329	-32.122	C02-16	16	2	5 psi	641318
in the second se	42	0.3008	-0.055548	180.482	-33.329	17	17	2	5 psi	641318
en	43	0.3676	-0.056598	220.536	-33.959	18	18	2	5 psi	641318
ti tr	44	0.4335	-0.055828	260.095	-33.497	19	19	2	5 psi	641318
Σ -	45	0.5011	-0.052857	300.643	-31.714	20	20	2	5 psi	641318
	46	0.5736	-0.047068	344.159	-28.241	21	21	2	5 psi	641318
2 ㅠ ㅗ ㄷ	47	<del>0.6478</del>	<del>-0.038343</del>	388.663	<del>-23.006</del>	<del>22</del>	<del>22</del>	<del>2</del>	<del>5 psi</del>	<del>641318</del>
terr K	<del>48</del>	0.7162	-0.027708	429.705	<del>-16.625</del>	<del>23</del>	<del>23</del>	2	<del>5 psi</del>	641318
	1	1.0000	-0.000802	600.003	-0.481	C02-27	27	2	5 psi	641318
	2	0.9860	0.003828	591.611	2.297	28	28	2	5 psi	641318
	3	0.9720	0.006677	583.212	4.006	29	29	2	5 psi	641318
	4	0.9580	0.009618	574.813	5.771	30	30	2	5 psi	641318
<u>e</u> 5	5	0.9440	0.012672	566 415	7,603	31	31	2	5 psi	641318
Fla	6	0.9160	0.019107	549 618	11 464	32	32	2	5 psi	641318
_ 0	7	0.8992	0.022552	539 528	13 522	32	32	2	5 psi	641318
	Q	0.0772	0.022333	537.320	1/ 000	2/	2/	2 2	5 psi	6/1210
	0	0.0000	0.023470	515 042	15 /5/	25	25	2	5 psi	6/1210
	10	0.0099	0.020707	400 204	16.000	24	22 24	2	5 psi	6/1010
	10	0.0320	0.028033	477.204	15.044	30	30 40	2	5 psi	041318 6/1210
	23	0.7270	-0.025073	450.192	-10.044	49 E1	49 E1	2	o psi	041310 411210
en	20	0.7020	-0.019498	407.199	-11.099 0 E00	51	51	2	5 pSi 5 pci	041310 6/1210
ĮĮ	20	0.7900	-0.014317	474.002	-0.390	52	52	2	5 pSi 5 pci	041310 6/1210
р Б	21	0.0320	-0.000828	477.200 520.012	-4.097	53	51	2	5 psi	041310 6/1210
Fla	20	0.0982	0.001000	552 07	-0.301 1 104	54	54	2	o psi	041318
	29	0.9210	0.001990	566 /10	1.194	- 	1	2	5 pci	6/1017
1		0.7440	0.001047	500.410	1.100	003-1		ാ	5 P2I	041317

Tabelle 1: Statische Druckbohrungen im Mittelschnitt

	Boh. Nr.	x/c	z/c	x[mm]	z[mm]	55F700	Modul-Rö.	Modul-Nr.	Range	Modul-SN
Shroud	1	0.8950	0.023358	537.010	14.015	C03-3	3	3	5 psi	641317
oben	3	0.8011	0.042147	480.638	25.288	5	5	3	5 psi	641317



	4	0.7162	0.053708	429.705	32.225	6	6	3	5 psi	641317
	5	0.6008	0.063168	360.477	37.901	7	7	3	5 psi	641317
Mittelteil	6	0.5011	0.066818	300.643	40.091	8	8	3	5 psi	641317
oben	7	0.4005	0.066802	240.315	40.081	9	9	3	5 psi	641317
	8	0.3008	0.063400	180.489	38.040	C04-16	16	4	5 psi	321332
	101	0.2308	0.058925	138.450	35.355	7	7	4	5 psi	321332
	102	0.1395	0.049673	83.704	29.804	14	14	4	5 psi	321332
	<del>103</del>	<del>0.0930</del>	<del>0.042508</del>	<del>55.803</del>	<del>25.505</del>	<del>6</del>	<del>6</del>	4	<del>5 psi</del>	<del>321332</del>
	<del>104</del>	<del>0.0558</del>	<del>0.034518</del>	<del>33.482</del>	<del>20.711</del>	8	8	4	<del>5 psi</del>	<del>321332</del>
	105	0.0372	0.029065	22.321	17.439	4	4	4	5 psi	321332
	106	0.0186	0.021833	11.161	13.100	11	11	4	5 psi	321332
	107	0.0093	0.016153	5.580	9.692	9	9	4	5 psi	321332
	108	0.0047	0.011638	2.790	6.983	5	5	4	5 psi	321332
Nase	109	0.0000	0.000000	0.000	0.000	1	1	4	5 psi	321332
	110	0.0047	-0.010448	2.790	-6.269	2	2	4	5 psi	321332
	111	0.0093	-0.014114	5.585	-8.468	10	10	4	5 psi	321332
	112	0.0186	-0.019153	11.161	-11.492	3	3	4	5 psi	321332
	113	0.0465	-0.029242	27.901	-17.545	15	15	4	5 psi	321332
	114	0.0744	-0.035668	44.642	-21.401	13	13	4	5 psi	321332
	115	0.1005	-0.040110	60.321	-24.066	12	12	4	5 psi	321332
	116	0.1261	-0.043585	75.650	-26.151	17	17	4	5 psi	321332
	<del>117</del>	<del>0.2010</del>	-0.050643	<del>120.580</del>	<del>-30.386</del>	<del>18</del>	<del>18</del>	4	<del>5 psi</del>	<del>321332</del>
Mittel-	19	0.3008	-0.055548	180.489	-33.329	27	27	4	5 psi	321332
teil	20	0.4335	-0.055828	260.095	-33.497	C03-10	10	3	5 psi	641317
unten	21	0.5736	-0.047068	344.159	-28.241	11	11	3	5 psi	641317
	1	1.0000	-0.00080	600.003	-0.481	C03-15	15	3	5 psi	641317
Flan	2	0.9720	0.00668	583.211	4.006	16	16	3	5 psi	641317
oben	3	0.9440	0.01267	566.415	7.603	17	17	3	5 psi	641317
oben	4	0.9216	0.01779	552.979	10.671	-				
	5	0.8992	0.02267	539.539	13.601	18	18	3	5 psi	641317
	12	0.7270	-0.02507	436.192	-15.044	25	25	3	5 psi	641317
	13	0.7340	-0.02457	440.397	-14.741	26	26	3	5 psi	641317
	14	0.7900	-0.01432	474.002	-8.590	27	27	3	5 psi	641317
	15	0.8992	0.00113	539.529	0.679	28	28	3	5 psi	641317
	16	0.9440	0.00185	566.410	1.108	29	29	3	5 psi	641317

Tabelle 2: Statische Druckbohrungen im oberen Außenschnitt

	Boh. Nr.	x/c	z/c	x[mm]	z[mm]	55F700	Modul-Rö.	Modul-Nr.	Range	Modul-SN
Chanada	1	0.8950	0.023358	537.010	14.015	C03-30	30	3	5 psi	641317
Shroud	3	0.8011	0.042147	480.638	25.288	32	32	3	5 psi	641317
oben	4	0.7162	0.053708	429.705	32.225	33	33	3	5 psi	641317
	5	0.6008	0.063168	360.477	37.901	34	34	3	5 psi	641317
Mittelteil	6	0.5011	0.066818	300.643	40.091	35	35	3	5 psi	641317
oben	7	<del>0.4005</del>	<del>0.066802</del>	<del>240.315</del>	<del>40.081</del>	<del>- CO4-43</del>	<del>12</del>	5	<del>5 psi</del>	<del>321333</del>
	8	0.3008	0.063400	180.489	38.040	44	13	5	5 psi	321333
	101	0.2308	0.058925	138.450	35.355	40	9	5	5 psi	321333
	102	0.1395	0.049673	83.704	29.804	33	2	5	5 psi	321333
	103	0.0930	0.042508	55.803	25.505	35	4	5	5 psi	321333
	104	0.0558	0.034518	33.482	20.711	36	5	5	5 psi	321333
	105	0.0372	0.029065	22.321	17.439	42	11	5	5 psi	321333
	106	0.0186	0.021833	11.161	13.100	32	1	5	5 psi	321333
	107	0.0093	0.016153	5.580	9.692	41	10	5	5 psi	321333
	108	0.0047	0.011638	2.790	6.983	29	29	4	5 psi	321332
Nase	109	0.0000	0.000000	0.000	0.000	37	6	5	5 psi	321333
	110	0.0047	-0.010448	2.790	-6.269	34	3	5	5 psi	321333
	111	0.0093	-0.014114	5.585	-8.468	30	30	4	5 psi	321332
	112	0.0186	-0.019153	11.161	-11.492	38	7	5	5 psi	321333
	113	0.0465	-0.029242	27.901	-17.545	39	8	5	5 psi	321333
	114	0.0744	-0.035668	44.642	-21.401	31	31	4	5 psi	321332
	115	0.1005	-0.040110	60.321	-24.066	28	28	4	5 psi	321332
	116	0.1261	-0.043585	75.650	-26.151	45	14	5	5 psi	321333
	117	0.2010	-0.050643	120.580	-30.386	46	15	5	5 psi	321333
Mittel-	19	0.3008	-0.055548	180.489	-33.329	55	24	5	5 psi	321333
teil	20	0.4335	-0.055828	260.095	-33.497	C03-36	36	3	5 psi	641317
unten	21	0.5736	-0.047068	344.159	-28.241	37	37	3	5 psi	641317
	1	1.00001	-0.00080	600.003	-0.481	C03-41	41	3	5 psi	641317
Flan	2	0.97202	0.00668	583.211	4.006	42	42	3	5 psi	641317
oben	3	0.94403	0.01267	566.415	7.603	43	43	3	5 psi	641317
oberr	4	0.92163	0.01779	552.979	10.671	-				
	5	0.89923	0.02267	539.539	13.601	44	44	3	5 psi	641317



	12	0.72699	-0.02507	436.192	-15.044	51	51	3	5 psi	641317
	13	0.73400	-0.02457	440.397	-14.741	52	52	3	5 psi	641317
Flap unten	14	0.79000	-0.01432	474.002	-8.590	53	53	3	5 psi	641317
	15	0.89922	0.00113	539.529	0.679	54	54	3	5 psi	641317
	16	0.94402	0.00185	566.410	1.108	55	55	3	5 psi	641317
<b>T</b> / // 0 0/			,							

Tabelle 3: Statische Druckbohrungen im unteren Außenschnitt

#### 3.1.2. Kulite-Druckaufnehmer für instationäre Druckmessung

Die Kulite-Druckaufnehmer wurden mit einer Viper, einem Transientenrekorder der Firma *gbm, Mönchengladbach, Germany*, erfasst. Eine *Viper* besitzt 48 Kanäle mit 16 bit Auflösung und eine maximale Abtastrate von 250 kHz.

Bis auf die Kulites K17, K22 und K24 waren alle Kulites mit einem bei DLR-Kulites üblichen Lemosa-Stecker ausgestattet und wurden an zwei Vorverstärkereinheiten mit je 16 Kanälen einem Verstärkungsfaktor von 10 (ausgeliehen von DNW-TWG, Göttingen) angeschlossen. Die anderen drei Kulites wurden an eine dreikanalige Signal-Konditioniereinheit vom Typ *Endevco Model 136, 3-channel DC Differential Voltage Amplifier* angeschlossen, mit der der typbedingte hohe Offset der Absolutdrucksensoren aus dem Signal entfernt werden konnte. Alle Viperkanäle wurden vor der AD-Wandlung tiefpassgefiltert. Die Eckfrequenz wird Viperintern automatisch an die Abtastfrequenz angepasst; sie beträgt  $f_{Eck} = \frac{1}{2,56} \cdot f_{Abt}$ . Bei der eingestellten Abtastfrequenz von  $f_{Abt} = 1$  kHz beträgt die Eckfrequenz, bei der der Filter eine Dämpfung von 3 dB aufweist, also 390,6 Hz. Die durch den Filter verursachte Laufzeitverzögerung ist nicht bekannt, dürfte aber unterhalb 0,5 ms betragen.

Fortlaufende Nr.	CAD- Bezeichnung	x/c	x [mm]	z/c	z [mm]	Τνρ	ſɒsil	Seriennummer
1	K27	0.980	588.0	0.005	3.0	LQ-080 SG	10.0	8247-2-300
2	K25	0.930	558.0	0.016	9.5	LQ-080 SG	5.0	8247-2-331
3	K23	0.880	528.0	0.024	14.5	XCQ-93 D	5.0	7397-4-192
4	K33	0.865	519.0	0.030	17.8	LQ-080 SG	5.0	8247-2-334
5	K21	0.830	498.0	0.028	16.9	XCQ-93 D	5.0	7831-4-171
6	K31	0.828	497.0	0.037	22.1	LQ-080 SG	5.0	8247-2-328
7	K29	0.780	468.0	0.045	26.9	LQ-080 SG	5.0	8247-2-326
8	K17	0.732	439.0	0.052	31.2	XCQ-93 SG X-31	15.0	13
9	K15	0.608	365.0	0.063	37.6	LQ-080 SG	5.0	8247-2-332
10	K13	0.500	300.0	0.067	40.1	XCQ-93 D	5.0	7397-4-189
11	K11	0.350	210.0	0.065	39.3	LQ-080 SG	5.0	8247-2-337
12	К9	0.200	120.0	0.056	33.8	LQ-080 D	5.0	8287-1-416
13	K7	0.100	60.0	0.044	26.2	XCQ-93 D	5.0	7831-4-173
14	K5	0.050	30.0	0.033	19.8	LQ-080 D	5.0	8287-1-417
15	K3	0.025	15.0	0.025	14.8	LQ-080 D	5.0	8287-1-413
16	K1	0.007	4.2	0.014	8.5	LQ-080 D	5.0	8287-1-415
17	K2	0.007	4.2	-0.013	-7.5	LQ-080 SG	10.0	8247-2-319
18	K4	0.025	15.0	-0.022	-13.2	LQ-080 SG	10.0	8247-2-315
19	K6	0.050	30.0	-0.030	-18.1	XCQ-93 D	5.0	7831-4-175
20	K8	0.100	60.0	-0.040	-24.0	LQ-080 D	5.0	8287-1-419
21	K10	0.195	117.0	-0.050	-30.1	LQ-080 D	5.0	8287-1-418
22	K12	0.365	219.0	-0.057	-34.0	LQ-080 D	5.0	8287-1-422
23	K14	0.500	300.0	-0.053	-31.8	LQ-080 D	5.0	8287-1-412
24	K16	0.600	360.0	-0.044	-26.6	LQ-080 SG	5.0	8247-2-336
25	K18	0.735	441.0	-0.024	-14.6	XCQ-93 D	5.0	7831-4-170
26	K22	0.825	495.0	-0.008	-4.8	XCQ-93 SG X-31	15.0	35



27	K32	0.837	502.0	0.028	16.6	LQ-080 SG	5.0	8247-2-329
28	K24	0.880	528.0	0.000	-0.2	XCQ-93 SG X-31	15.0	36
29	K26	0.930	558.0	0.002	1.2	LQ-080 SG	5.0	8247-2-330
30	K28	0.9650	579.0	0.001	0.5	LQ-080 SG	5.0	8247-2-333

Tabelle 4: Kulite-Druckaufnehmer

#### 3.2 Induktiver Wegsensor

Innerhalb des F15-Modells oberhalb des Spoilers (im in der Messstrecke eingebauten Zustand) ist ein induktiver Positionssensor vom Typ NOVOPAD LS 1 0025 mit einem Messbereich von 25 mm installiert. Das Signal wurde in TN 2634 auf einem Viper-Kanal erfasst. Aufgrund der schlechten Signalqualität, unerklärbaren Unterschieden zum Signal des SPR-System sowie der Nutzung dieses Viper-Kanals für ein anderes Signal wurde bei TN 2635 auf die Aufzeichnung des Signals des induktiven Positionssensors verzichtet.

#### 3.3 SPR Video System

Zur Bestimmung des Spoilerwinkels, sowohl statisch als auch dynamisch, wurde das SPR Video-System des NWB eingesetzt. Dieses System besteht aus zwei Kameras vom Typ *Mikrotron EoSens 4CXP-6* mit einer maximalen Auflösung von 2336 x 1536 Pixeln bei einer maximalen Bildfrequenz von 563 fps, welche über CoaXPress[®]-Links an einen PC angeschlossen sind. Bei diesen Kameras kann die Bildrate durch Verkleinerung der Bildabmessungen erhöht werden. Bei Tn 2634 und 2635 wurden die Kameras mit einer Bildgröße von 2336 x 896 Pixeln und 1000 fps betrieben. Die Kameras wurden mit Objektiven Canon FD 50 mm 1:1,4 an C-Mount-Adaptern verwendet. Gegenüber den am LLF verfügbaren Canon EF 50 mm f/1.2 haben die erstgenannten den Vorteil, dass keine Fenster in den Messstreckenwänden installiert werden müssen, sondern dass die Öffnungen, die durch aufgefahrenen Schlitze entstehen, für die optische Zugänglichkeit der außerhalb der Messstrecke installierten Kameras ausreichen.

Aus den Schwerpunktskoordinaten von (mindestens) drei auf dem Modell (hier: auf dem Spoiler) aufgebrachten Markern wird eine Ebene gebildet und die Verschiebung des Schwerpunktes des aus drei Markern gebildeten Dreiecks sowie die Änderung der Orientierung im Raum gegenüber den aus einer Referenzmessung bestimmten Werten ausgegeben. Die Marker bestehen aus runden gelben oder orangefarbenen Papierklebepunkten aus dem Schreibwarenbedarf mit einem Durchmesser von 10 bis15 mm. Die Marker werden von UV-LED beleuchtet, welche an der Seitenwand der Messstrecke befestigt sind. Die UV-LED strahlen in einem Wellenlängenbereich von 395 nm bis 405 nm und haben eine Leistungsaufnahme von 30 W pro Stück. Bei Tn 2634 wurden 12 LED verwendet, bei Tn 2635 wurden 24 LED verwendet.

Um Reflektionen in den Kamerabildern zu vermeiden wurden bei Tn 2634 Gelbfilter verwendet, welche vor die Objektive geschraubt wurden. Bei Tn 2635 wurden stattdessen sogenannte Edge-Filter (montiert innerhalb der CMount-Adapter) mit einer Grenzwellenlänge von 532 nm verwendet, um nicht nur Reflektionen zu vermeiden, sondern auch um die Sensoren



der Kameras vor eventuell reflektiertem oder gestreutem Laserlicht des PIV-Messaufbaus zu schützen.

Die Kalibrierung des SPR-Systems erfolgt in der Messstrecke. Auf einem Stativ werden ein von der Rückseite beleuchteter kreisrunder Marker sowie, in definierten Abstand darüber angebracht, ein Prisma innerhalb des SPR-Messvolumens in etwa 12 bis 20 unterschiedliche Positionen gebracht. Parallel zu den Aufnahmen der SPR-Kameras von dem beleuchteten Marker wird der Ort des Prismas mit einer Trimble Totalstation gegenüber dem Bezugs-Koordinatensystem der Messstrecke vermessen. Damit liegen zu jedem Bildpaar mit den Bildkoordinaten des Markerschwerpunktes die X-, Y- und Z-Koordinaten im Bezugssystem vor. Das windkanalfeste Bezugssystem hat seinen Ursprung auf der Achse der Messstrecke in einem Abstand von 3500 mm hinter der Düsenaustrittsebene. Die X-Koordinate ist positiv in Strömungsrichtung, die Z-Komponente positiv in Richtung Messstreckendecke.

#### 3.4 Flow Reference System

Die Zustandsdaten des Windkanals wie zum Beispiel statischer Druck, Gesamtdruck, Barometerdruck, Gesamttemperatur und relative Feuchte in der Vorkammer werden mit dem *Flow Reference System* FRS des NWB gemessen, welches seit 2015 eingesetzt wird. Die Drucksensoren des FRS haben eine absolute Genauigkeit von 0,01% des Messbereiches und werden täglich mittels eines *Mensor CPC6000 Modular Precision Pressure Controller*, welcher Bestandteil des FRS ist, kalibriert.

Als Differenzdruck für alle Druckmessstellen wird der Luftdruck auf der Empore der Messhalle verwendet. Der Luftdruck bzw. Barometerwert wird mit einem Absolutdruckgeber vom Typ SETRA 370 mit einem Messbereich von 880 hPa bis 1100 hPa erfasst.

Der Staudruck q sowie der statische Druck P_s in der Messstrecke werden mittels quadratischer Funktionen berechnet, welche bei einer Kalibrierungsmessung mit einer Prandtl-Sonde in der leeren Messtrecke bestimmt werden. Auf diese sogenannte Staudruck-Kalibrierung wird in Abschnitt 5.1 eingegangen.

#### 3.5 PIV Messsystem

Das PIV-Messsystem wurde von Mitarbeitern des DLR-Instituts AS Abteilung EXV installiert und betrieben. Es wurden zwei Messebenen untersucht, welche parallel zu der X-Y-Ebene des kanalfesten Koordinatensystems lagen. Ein Lichtschnitt (= Messebene) befand sich etwa in Höhe der Strahlachse im Folgenden als Schnitt A bezeichnet; der Andere wenige Millimeter unterhalb der unteren Spoiler-Seitenkante, im folgenden Schnitt B bezeichnet. Der Laser befand sich neben der Messstrecke; das Laserlicht wurde mittels optischer Elemente durch ein Fenster in der Messstrecken-Seitenwand in die Messstrecke gebracht. Als Seeding-Material wurde DEHS (Di-Ethyl-Hexyl-Sebacat)verwendet. Die Seeding-Generatoren



befanden sich unterhalb der Messstrecke; die DEHS-Tröpfchen wurden durch die Breather-Klappen in Messstreckenboden in die Strömung eingebracht.

Es wurden zwei verschiedene Kamerapaare verwendet. Alle vier Kameras wurden unterhalb der Messstrecke am unteren Drehscheibenboden befestigt, so dass die Positionen der Kameras relativ zum F15-Modell unabhängig vom Anstellwinkel des Modells waren.

Ein Kamerapaar wurde für *Low Speed*-Messungen verwendet, bei denen der Abstand zwischen zwei Doppelbelichtungen 70 ms betrug. Das andere Kamerapaar wurde für *High Speed*-Messungen verwendet, bei denen der Abstand zwischen zwei Doppelbelichtungen 2 ms betrug. *Abbildung 5* zeigt die für die Kameras in der Drehscheibe angebrachten Fenster. Detailliertere Informationen zu dem PIV-Messsystem sowie die damit gewonnenen Ergebnisse werden direkt von den mit der PIV-Messung befassten Mitarbeitern von DLR-AS-EXV zur Verfügung gestellt.

#### 4 MESSPROGRAMM

#### 4.1 Messprogramm Tn 2634

Das Messprogramm bestand aus Anstellwinkelreihen bei festgehaltenem Spoilerwinkel sowie aus dynamischen Messungen mit bewegtem Spoiler. Die Messungen wurden bei den Machzahlen Ma = 0,15, Ma = 0,20 und Ma = 0,25 durchgeführt.

Die Messungen bei festgehaltenem Spoilerwinkel fanden bei folgenden Spoilerwinkeln statt:  $\phi = 0^{\circ}$ ,  $\phi = 2,5^{\circ}$ ,  $\phi = 5^{\circ}$ ,  $\phi = 10^{\circ}$ ,  $\phi = 20^{\circ}$ ,  $\phi = 30^{\circ}$ ,  $\phi = 45^{\circ}$ ,  $\phi = 60^{\circ}$ ,  $\phi = 75^{\circ}$  sowie  $\phi = 85^{\circ}$ .

Die Messungen bei bewegtem Spoiler fanden bei den festgehaltenen Anstellwinkeln  $\alpha = -5^{\circ}$ ,  $\alpha = 0^{\circ}$ ,  $\alpha = 5^{\circ}$ , und  $\alpha = 10^{\circ}$  statt. Es wurden zwei unterschiedliche Spoiler-Bewegungs-Szenarien untersucht:

- Bei Szenario 1 fährt der Spoiler innerhalb der Zeit  $t_{Stell}$  von  $\phi = 0^{\circ}$  auf einen Endwinkel, bleibt dort für die Zeit  $t_{Halte}$  und fährt innerhalb der Zeit  $t_{Retract}$  wieder auf  $\phi \Box = 0^{\circ}$ zurück.
- Bei Szenario 2 fährt der Spoiler von  $\varphi = 0^{\circ}$  auf einen vorzugebenen Winkel, verharrt dort eine vorzugebene Zeit, führt eine vorzugebene Anzahl von Sinusschwingungen vorzugebener Amplitude und vorzugebener Frequenz aus und fährt schließlich wieder auf  $\varphi = 0^{\circ}$  zurück. In *Tabelle 5* und *Tabelle 6* sind die dynamisch gemessenen Parameter-Kombinationen aufgeführt. Die vollständigen Listen aller durchgeführten Versuchsnummern von Tn 2634 und Tn 2635 finden sich in Anhang A.



Szenario 1			
φ _{Spoiler} / °	α/°	Ма	t _{Stell} / s
	-5	0,2	0.25; 0.125; 0.06
10	0	0,1	0.5
10	0	0,2	0,50; 0.25; 0.125; 0.06
	5; 10	0,2	0.25; 0.125; 0.06
	-5	0,2	0.25; 0.125; 0.06
30	0	0,2	0,50; 0.25; 0.125; 0.06
	5; 10	0,2	0.25; 0.125; 0.06
50	-5; 0; 5; 10	0,2	0.25; 0.125; 0.08
	-5	0,1; 0,15; 0,2	0,50; 0.25; 0.125
	0	0.1; 0,15	0,50; 0.25; 0.125
70	0	0.2	1,0; 0,75; 0,50; 0.25; 0.125
	5	0.1; 0,15; 0,2	0,50; 0.25; 0.125
	10	0.1; 0,15; 0,2	0,50; 0.25; 0.125

Tabelle 5: Messprogramm von TN 2634, Szenario 1

Szenario 2				
α/°	Ма	φ _{0,Spoiler} / °	Δφ _{Spoiler} / °	f _{Spoiler} / Hz
	0,1	30	10	5; 10
	0,2	10	5	2; 5; 10
			5	2; 5; 10
0		30	10	2; 5; 10
0			20	2; 5; 7,5
			5	2; 5; 10
		50	10	2; 5; 10
			20	2; 5; 7,5
5	0,1; 0,2	30	10	5; 10
10	0,1; 0,2	30	10	5; 10

 Tabelle 6: Messprogramm von TN 2634, Szenario 2

#### 4.2 Messprogramm Tn 2635

Bedingt durch den zeitaufwändigen Aufbau des PIV-Messsystems stand für Messungen deutlich weniger Zeit zur Verfügung als bei Tn 2634. Alle Messungen wurden bei Ma = 0,2durchgeführt. Die bei nicht bewegtem Spoiler durchgeführten Parameterkombinationen sind in *Tabelle 7* aufgeführt; die Parameterkombinationen bei dynamisch aus- und einfahrendem Spoiler (Szenario 1) sind in *Tabelle 8* angegeben.

α/°	φ _{Spoiler} / °	PIV-Schnitt
0	0; 2,5; 5; 10; 15; 20;30; 40; 50; 60	А, В
5	0; 2,5; 5; 10; 15; 20;30; 40; 50; 60	А
10	0; 2,5; 5; 10; 15; 20;30; 40; 50; 60	А, В

Tabelle 7: Messungen bei nicht bewegtem Spoiler, Tn 2635



Szenario 1			
φ _{Spoiler} / °	α/°	Ма	t _{Stell} / s
10	0; 10	0,2	0,250; 0,125; 0,060
30		0,2	0,250; 0,125; 0,060
50		0.2	0,250; 0,125; 0,080

Tabelle 8: Messprogramm von TN 2635, Szenario 1

#### 5 DATENERFASSUNG UND -AUSWERTUNG

Die Datenerfassung der Kulites, des induktiven Weggebers und von Trigger-Signalen zum Start und der Synchronisierung der verschiedenen beteiligten Messsysteme erfolgte mittels einer *Viper*; einem für akustische Messungen ausgelegten Messsystem der Firma *gbm, Mönchengladbach.* Eine *Viper* hat 48 Kanäle, 16 Bit Auflösung und eine maximale Abtastfrequenz von 250 kHz. *Viper* und picColor SPR-System wurden mit einer Abtastfrequenz von 1 kHz betrieben. Die PSI-Druckmessmodule waren an ein Initium der Firma DMT, Bad Bentheim, angeschlossen.

Um Synchonizität der beiden Systeme picColor und *Viper* sicherzustellen, wurden beide Systeme zu Beginn einer Messung gestartet und anschließend ein Signal generiert, welches von beiden Systemen erfasst wurde und das den identischen Zeitpunkt in den Messdaten beider Systeme markiert. Für die *Viper* ist dieses "Start-Tor-Signal" ein TTL-Signal, welches auf einem freien Kanal aufgezeichnet wird; für das picColor-System ist dies eine Flächen-LED, welche sich im Blickfeld einer der beiden Kameras befindet. Der Zustand der Flächen-LED (an oder aus) wird von der picColor-Software während der Aufnahme jeden Bildpaares erkannt und ein entsprechender Wert im Ausgabe-Stream gesetzt.

Ferner geht das "Start-Tor-Signal" auch an die Steuerung des Spoiler-Aktuators, welcher daraufhin das voreingestellte Bewegungs-Szenario abfährt.

Eine schematische Darstellung der Datenerfassung ist in *Abbildung 6* dargestellt. *Abbildung 7* zeigt ein Impuls-Zeit-Diagramm der Triggerung.

Nach Ende einer Messung, welche bei statischen Messungen 2 s, bei dynamischen Messungen (nach Auslotung der software-seitigen Möglichkeiten) 24 s betrug, wurden die Daten unter Berücksichtigung der oben beschriebenen Zeitmarken in eine einzelne Datei zusammengeführt.

#### 5.1 Staudruckkalibrierung

Im NWB werden die Anströmbedingungen in der Messstrecke mit den Kalibrierkoeffizienten aus dem Düsendruckgefälle berechnet. Die Kalibrierkoeffizienten liegen für die leere Messstrecke im NWB aus der Staudruckkalibrierung vor. Das Düsendruckgefälle P_D ist die Differenz zwischen dem Gesamtdruck in der Düsenvorkammer und dem statischen Druck in der Düse. Die Düse des NWB hat 4 statische Druckmessstellen, jeweils 1 Messstelle in der Mitte pro Wand. Der statische Druck in der Düse wird aus der Mittelwertbildung von zwei gegenüberliegenden Messstellen gebildet. Bei 2D Profilmessungen sowie bei Halbmodellmessungen



sind dies die statischen Messstellen an der oberen (Nr. 1) und an der unteren (Nr. 3) Düsenwand. Die Druck- und Temperaturmessstellen in der Vorkammer und Düse des NWB sind in *Abbildung 8* skizziert.

Bei dem Verfahren, welches NWB-intern als Methode Nr. 6 bezeichnet wird, werden die Kalibrierkoeffizienten für den Staudruck und den Gesamtdruckverlust benötigt.

Für den Staudruck gilt:

 $Q_{\infty,u} = a_2 * \Delta P_D^2 + a_1 * \Delta P_D + a_0 \ .$ 

Für den Gesamtdruckverlust gilt:

 $\Delta P_t = c_2 * \Delta P_D^2 + c_1 * \Delta P_D + c_0 .$ 

Bei dieser Methode wird der statische Druck  $P_s$  aus dem Gesamtdruck in der Messstrecke, dem Gesamtdruckverlust sowie dem Staudruck aus dem Düsendruckgefälle ermittelt:

$$P_s = P_t - q - \Delta P_t$$

Für Tn 2634 und Tn 2635 wurden die in *Tabelle 9* angegebenen Faktoren der Staudruckkalibrierung aus Tn 2659 vom 21.07.2016 verwendet:

Koeffizienten						
Staudruck		statischer Druc	:k	Druckverlust Vorkammer -		
				Messstrecke		
a ₀	2.7871	bo	-0.4832	C ₀	0	
a ₁	0.8861	b ₁	-0.0155	C ₁	0.0068	
a ₂	-0.00000007	b ₂	-0.0000002	C ₂	-0.00000006	

Tabelle 9: Koeffizienten der verwendeten Staudruckkalibrierung

#### 5.2 Windkanalkorrekturen

Die im Folgenden beschriebenen Korrekturen können nur bei statischen Messungen mit vollständig eingefahrenem Spoiler angewendet werden, da es nur dann möglich ist, mittels Integration der Oberflächendrücke den Auftriebsbeiwert  $C_A$  zu bestimmen. Weiterhin ist bei ausgefahrenem Spoiler die Voraussetzung einer 2D-Strömung nicht mehr gegeben. Das Korrekturverfahren im NWB beruht auf einer von Allen & Vincenti entwickelten Methode und ist im AGARDograph 109 (0) durch die Gleichungen 5.5 und 5.48 wiedergegeben. Der Blockierungsfaktor  $\varepsilon_s$  für die Körperverdrängung lautet:

$$\varepsilon_s = \sigma * \Lambda$$

mit

$$\sigma = \frac{\pi^2}{48} \left(\frac{c}{h}\right)^2.$$



$$\Lambda = \frac{16}{\pi} * \int_0^1 \frac{y_t}{c} \sqrt{\left[1 - P_{f_i}\right] * \left[1 + \left(\frac{dy_t}{dx}\right)^2\right]} d\left(\frac{x}{c}\right)$$

*y_t* y-Koordinate des symmetrischen (= entwölbten) Basisprofils

 $\frac{dy_t}{dx}$  Neigung der Oberfläche des Basisprofils an der Stelle x

 $P_{f_i}$  Druckbeiwert des Basisprofils an der Stelle x bei kompressibler Strömung

- c Profil-Sehnenlänge
- h Kanalhöhe

Für den Blockierungsfaktor  $\varepsilon_W$  der Nachlaufverdrängung gilt der Ansatz:

$$\varepsilon_w = \tau * C_w$$
$$\tau = \frac{1}{4} \frac{c}{h}$$

mit

C_w gemessener Widerstandsbeiwert

Sehnenlänge	c [m]	0.60
Kanalhöhe	h _{NWB} [m]	3.25
Profilfaktor	۸ [-]	0.244
sigma	σ	0.00701
tau	τ	0.04615

Bei den Korrekturen im NWB-Verfahren wird die Kompressibilität vernachlässigt. Mit den beiden Blockierungsfaktoren  $\varepsilon_s$  und  $\varepsilon_w$  erfolgt die Korrektur der Kanalparameter und der Beiwerte nach den folgenden Gleichungen:

$$\begin{split} \varepsilon &= \varepsilon_{s} + \varepsilon_{w} & \text{Blockierungsfaktor} \\ V_{kor} &= V(1 + \varepsilon) & \text{korrigierte Anströmgeschwindigkeit} \\ q_{kor} &= q(1 + 2\varepsilon) & \text{korrigierter Staudruck} \\ \alpha_{kor} &= \alpha + 1.875 \bigg( \frac{c}{h} \bigg)^{2} \big( C_{A} + 4C_{M} \big) & \text{korrigierter Anstellwinkel} \\ C_{p,kor} &= 1 - \big( 1 - C_{p} \big) \big( 1 - 2\varepsilon \big) & \text{korrigierter Druckbeiwert} \end{split}$$



$$C_{A,kor} = C_A \left( 1 - \frac{\pi^2}{48} \left( \frac{c}{h} \right)^2 - 2\varepsilon \right)$$
$$C_{W,kor} = C_W (1 - 2\varepsilon)$$
$$C_{M,kor} = C_M \left( 1 - 2\varepsilon \right) + \frac{\pi^2}{48} \left( \frac{c}{h} \right) \frac{C_A}{4}$$

mit den Größen:

- V Anströmgeschwindigkeit
- q Staudruck
- *α* Anstellwinkel
- $C_A$  Auftriebsbeiwert
- C_M Momentenbeiwert
- C_p Druckbeiwert

#### 5.3 Genauigkeitsabschätzung

Für die PSI-Druckmessmodule wird vom Hersteller eine absolute Genauigkeit von 0,1 % FS angegeben, welche nach Erfahrung des NWB auch problemlos erreicht wird. Für Kulite-Sensoren wird die Genauigkeit ebenfalls vom Hersteller mit 0,1 % FS angegeben. Nach den Erfahrungen des NWB ist die Genauigkeit der Kulites eher im Bereich von 0,3 % FS. Mit diesen Genauigkeiten ergeben sich die in *Tabelle 10* angegebenen Werte des Druckbeiwertes  $C_P$  für die untersuchten Machzahlen für die unterschiedlichen Sensoren.

	Genauigkeit	Ma = 0,10	Ma = 0,15	Ma = 0,20
PSI, 5 PSI FS	0,1 % FS	0.05	0.02	0.01
PSI, 15 PSI FS	0,1 % FS	0.15	0.06	0.04
Kulite, 5 PSI FS	0,3 % FS	0.15	0.06	0.04
Kulite, 10 PSI FS	0,3 % FS	0.29	0.13	0.07
Kulite, 15 PSI FS	0,3 % FS	0.44	0.19	0.11

*Tabelle 10: Abschätzung der Genauigkeiten*  $\Delta C_p$  *der verwendeten Drucksensoren* 

Die Genauigkeit des Drehscheibenantriebs zur Verstellung des Anstellwinkels beträgt etwa 0,05°.

Die räumliche Genauigkeit des SPR-System ist in hohem Maß von der Güte der Kalibrierung des installierten SPR-Systems abhängig. In den VN 9003 und 9919 wurden die tatsächlichen Spoilerwinkel mit einem mechanischen Winkelmesser und mit dem SPR-System gemessen. Die maximale Winkelabweichung zwischen den Ergebnissen des SPR-Systems und dem mechanischen Winkelmesser bei VN 9919 betrug 3,3° bei einer Summe der quadratischen Abweichungen von  $\sum_{DPNP=1}^{20} (\varphi_{SPR} - \varphi_{mech.})^2 = 60.8^{\circ\circ}$ .

korrigierter Auftriebsbeiwert

korrigierter Widerstandsbeiwert

korrigierter Momentenbeiwert



Diese Abweichung verringert sich auf 1,8°° wenn der vom SPR-System gemessene Spoilerwinkel mit der Funktion

 $\hat{\varphi}_{SPR} = B_0 + B_1 \cdot \alpha_U + B_2 \cdot \beta_V + B_3 \cdot \alpha_U^2 + B_4 \cdot \beta_V^2$ mit den Faktoren  $B_0 = 0,424, B_1 = 0,9731, B_2 = -1,0099, B_3 = -0,0018$  und  $B_4 = 0,0003$ berechnet wird. Die maximale Abweichung des mit der oben angegebenen Funktion berechneten Spoilerwinkels vom mechanisch gemessenen Wert beträgt ±0,5°. Für Tn 2635 wurde eine zu VN 9919 vergleichbare Messung nicht durchgeführt.

#### 6 ERGEBNISSE

#### 6.1 Ergebnisse stationärer Messungen

Der Vergleich des aus der Druckverteilung integrierten Auftriebsbeiwertes  $C_{A,U}$  als Funktion des Anstellwinkels  $\alpha_U$  zwischen Tn 2634 und TN 2635 ist in *Abbildung 9* dargestellt. Die Übereinstimmung ist sehr gut.

Abbildung 10 zeigt die drei mit dem PSI gemessenen Druckschnitte (*Wing Integration, Aussenschnitt oben* und *Aussenschnitt unten*) sowie die Kulites (*Kulites Wing*) bei eingefahrenem Spoiler und einem Anstellwinkel von  $\alpha_U = 5^\circ$ . Die Annahme zweidimensionaler Strömung ist berechtigt. Die Kulites auf der Oberseite zwischen x/c = 0,8 und x/c = 0,9 liegen unterhalb des eingefahrenen Spoilers und messen daher nicht den Druck der Profilkontur an den jeweiligen Stellen.

#### 6.2 Ergebnisse instationärer Messungen

Als Beispiele der Ergebnisse instationärer Messungen zeigen Abbildung 10 für Szenario 1 und Abbildung 11 für Szenario 2 den Spoilerwinkel und einen Kulite-Druckbeiwert als Funktion der Zeit. Abbildung 10 zeigt die gute Wiederholbarkeit der Ausfahrvorgänge; aus Abbildung 11 geht hervor, dass die Bewegung des Spoilers, vermutlich auch aufgrund von Spiel am Antriebsstrang, von der idealen Form einer Sinuskurve abweicht.

#### 7 STRUKTUR DER ERGEBNIS-DATEIEN

Die Ergebnisse werden als ASCII-Dateien im von Tecplot[®] lesbaren Format in den folgenden Verzeichnissen bereitgestellt:

**Beiwerte** enthält die aus der Integration der bei eingefahrenem Spoiler an der Oberfläche befindlichen Druckbohrungen gewonnenen Beiwerte  $C_A$ ,  $C_W$  und  $C_m$  mit und ohne Wandkorrekturen.

 $\alpha$ -Reihen bei eingefahrenem Spoiler waren bei Tn 2634 die folgenden VN: 1000, 1001, 1002, 1003, 1032, 1033, 1038 und 1053. Bei Tn 2635 war es die VN 1038.



**Statisch** enthält die Ergebnisse der Druckverteilungsmessung sowohl als Druckbeiwert C_p als auch als physikalische Größe P in der Einheit Pa. Die Ergebnisse jedes Messpunktes (DPN) in jeweils einer Datei. Jede Datei enthält die Druckwerte in folgende Tecplot[®]-Zonen aufgeteilt:

*Wing Integration, Spoiler, Wing, Aussenschnitt oben, Aussenschnitt unten, Kulites Wing* sowie *Kulites Spoiler.* 

Die Zone *Wing Integration* enthält die Druckbohrungen aus den Zonen Wing und Spoiler, welche für die Berechnung der Beiwerte  $C_A$ ,  $C_W$  und  $C_m$  verwendet werden. Die "statischen" Messungen wurden mit einer Abtastfrequenz von  $f_{Abt} = 1$  kHz und einer Messzeit von 2 s durchgeführt. Die Ergebnisdateien in diesem Verzeichnis enthalten die Mittelwerte; die zur Mittelwertberechnung verwendeten Zeitschriebe sind im Verzeichnis *Zeitschrieb*, siehe unten.

**Dynamisch** enthält die Ergebnisse der dynamisch gemessenen Szenarien 1 und 2. Im Unterverzeichnis *SplitZones* sind die Ergebnisse um die Variablen PHI_SPOILER ( $\varphi_{\text{Spoiler}} = \alpha_U - \beta_V$ ) sowie PHI_SPOILER_FIT (nichtlineare Kurvenanpassung entsprechend Abschnitt 5.3, nur für Tn 2634) erweitert. Ferner sind die Ergebnisse des Szenarios 1 so aufgeteilt, dass jeder Spoiler-Aus- und Einfahrvorgang in einer eigenen Tecplot[®]-Zone gespeichert wird, deren Zeitachse jeweils bei 0 beginnt.

**Zeitschrieb** enthält die instationär gemessenen Größen, welche den Mittelwerten der im Verzeichnis "Statisch" befindlichen Größen zugrunde liegen.



#### 8 LITERATURVERZEICHNIS

- [1] Kausche, G. et al., "The Low-Speed Wind Tunnel at DFVLR in Brunswick (Status 1988)", DFVLR-Mitt. 88-25 (1988)
- [2] Bergmann, A., " The Aeroacoustic Wind Tunnel DNW-NWB", AIAA-2012-2173, 18th AI-AA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, Colorado, USA
- [3] Moireau, A. et al., "The new NWB ventilator: a practical case of design-to-noise", AIAA-2012-2177, 18th AIAA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, Colorado, USA
- [4] Melber, S. and Bergmann, A., "Aeroacoustic optimization of the NWB airline and turning vanes based on high fidelity CFD and acoustic simulation", AIAA-2012-2177, 18th AI-AA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, Colorado, USA
- [5] Loeser, T. and Schröder, E., "The Anechoic Plenum of the DNW-NWB Aeroacoustic Wind Tunnel", AIAA-2012-2178, 18th AIAA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, Colorado, USA
- [6] Garner, H.C., Rogers, E.W., Acum, W.E.A., and Maskell, E.C., "Subsonic Wind Tunnel Wall Correction", AGARDograph 109, published by the North Atlantic Treaty Organization, October 1966
- [7] Heyson, H.H., "Jet-Boundary Corrections for Lifting Rotors Centered in Rectangular Wind Tunnels", NASA Technical Report R-71, Langley Research Center, Langley Field, VA, 1960
- [8] Maskell, E.C., "A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel", RAE Report Aero. 2865 (1963)
- [9] Vayssaire, J. Ch., "Correction de blocage dans les essais en soufflerie", Effects de decollements, AGARD CP-102, Paper 9 (1972)



#### 9 ABBILDUNGEN



Abbildung 1: DNW-NWB, Draufsicht



Bild10 aStatischer Druck p längs Kanalachse in der geschlossenen MeßstreckeAbbildung 2:Statischer Druck entlang der Messstreckenachse, aus 0





Abbildung 3: Positionen und Zuordnung von Druckbohrungen und Kulite-Sensoren





Abbildung 4: DLR-F15-Modell im DNW-NWB (TN 2634)









Abbildung 5: DLR-F15-Modell im DNW-NWB mit vier Fenstern für die PIV-Kameras in der Drehscheibe (TN 2635)

Abbildung 6: Schematischer Messaufbau Mephisto Spoiler F15, TN 2634 und TN 2635



Abbildung 7: Impuls-Zeit-Diagramm - Triggerung PIV Laser mit Video Pos. und Vipermessung



Seite 28 von 46



Abbildung 8: Druck- und Temperaturmessstellen in Vorkammer und Düse des NWB



Abbildung 9: Auftriebsbeiwert als Funktion des Anstellwinkels (unkorrigiert) bei eingefahrenem Spoiler





Abbildung 10: Druckverteilungen von PSI und Kulites bei eingefahrenem Spoiler



Abbildung 11: Signale von Spoilerwinkel und Kulite K17 der sechs Ausfahrvorgänge von POL 2037 (Szenario 1).





Abbildung 12: Signale von Spoilerwinkel und Kulite K17 der Sinusschwingung von POL 3033 (Szenario 2, Ausschnitt).



#### ANHANG A: MESSPROTOKOLL TN 2634

Datum	Pol	Konfig.	α/°	Ма	φ _{Spoiler} / °	Spoiler Bewegung	Bemerkungen
29.7.16	9001	clean	0, 5, 10, 15, 0		0	statisch	Start 12:00
29.7.16	9002	clean	0, 5, 10		0	statisch	Start 12:30
29.7.16	9003	clean	-5, -4,, 15		0	statisch	Start 15:50
		clean					
01.08.16	9004	clean	0		0, 20, 45, 60, 80	statisch	picColor-RefBild bei $\phi = 0^{\circ}$
	9005	clean	0		0, 20, 45, 60, 80	statisch	picColor-RefBild bei $\phi = 45^{\circ}$
	1000	clean	-5, -4,, 15, 14,0	0.10	0	statisch	Start 10:25
	1001	clean	-5, -4,, 16, 15,5	0.15	0	statisch	Start 10:55
	1002	clean	-5, -4,, 16, 15,5	0.20	0	statisch	Start 11:15
	1003	clean	-5, -4,, 13, 12,5	0.25	0	statisch	Start 11:30
	1004	Spoiler 2.5°	-5, -4,, 16, 14,5	0.10	2.5	statisch	Start 11:55; Aktuator nicht "Power On"
	1005	Spoiler 2.5°	-5, -4,, 16, 14,5	0.10	2.5	statisch	Start 12:10; Aktuator ständig "Power On", TransFix teilweise weg
	1006	Spoiler 2.5°	-5, -4,, 16, 14,5	0.10	2.5	statisch	Start 13:20; Wdhl 1005; Aktuator "Power Off", mit Bremse
	1007	Spoiler 2.5°	-5, -4,, 13, 12,5	0.20	2.5	statisch	Start 13:40
	1008	Spoiler 2.5°	-5, -4,, 15, 12,5	0.15	2.5	statisch	Start 14:20
	1009	Spoiler 2.5°	-5, -4,, 13, 12,5	0.25	2.5	statisch	Start 14:45
	1010	Spoiler 5°	-5, -4,, 16, 14,5	0.10	5	statisch	Start 15:15
	1011	Spoiler 5°	-5, -4,, 16, 12,5	0.15	5	statisch	Start 15:30
	9900		0				Kulite-Überprüfung
	1012	Spoiler 5°	-5, -4,, 13, 12,5	0.20	5	statisch	Start 16:30, Kul. K21 und K23 freigelegt
02.08.16	1013	Spoiler 10°	-5, -4,, 16, 14,5	0.10	10	statisch	Start 8:05, DP 533 & 545: Video falsch
	1014	Spoiler 10°	-5, -4,, 16, 12,5	0.15	10	statisch	Start 8:25
	1015	Spoiler 10°	-5, -4,, 13, 12,5	0.20	10	statisch	
	1016	Spoiler 20°	-5, -4,, 16, 14,5	0.10	20	statisch	DP 632, 648: Video falsch
	1017	Spoiler 20°	-5, -4,, 16, 12,5	0.15	20	statisch	

DNIC
German-Dutch Wind Tunnels

Seite 32 von 46

	1018	Spoiler 20°	-5, -4,, 13, 12,5	0.20	20	statisch	
	1019	Spoiler 60°	-5, -4,, 16, 14,5	0.10	60	statisch	Start 10:10
	1020	Spoiler 60°	-5, -4,, 18, 12,5	0.15	60	statisch	DP 773:Video falsch
	1021	Spoiler 60°	-5, -4,, 16, 12,5	0.20	60	statisch	Fädchenvideo gespeichert
	1022	Spoiler 30°	-5, -4,, 18, 14,5	0.10	30	statisch	DP 844, 848: Video falsch, Datenpunkt nicht wiederholt
	1023	Spoiler 30°	-5, -4,, 18, 12,5	0.15	30	statisch	
	1024	Spoiler 30°	-5, -4,, 16, 12,5	0.20	30	statisch	Start 11:35
	1025	Spoiler 45°	-5, -4,, 18, 14,5	0.10	45	statisch	
	1026	Spoiler 45°	-5, -4,, 18, 12,5	0.15	45	statisch	DP 994 Video falsch
	1027	Spoiler 45°	-5, -4,, 16, 12,5	0.20	45	statisch	Start 12:20, Abbruch wg Software
	1028	Spoiler 45°	-5, -4,, 16, 12,5	0.20	45	statisch	Wdhl. 1027; DP 1013 Video falsch
	1029	Spoiler 75°	-5, -4,, 16, 14,5	0.10	75	statisch	Start 14:30
	1030	Spoiler 75°	-5, -4,, 16, 12,5	0.15	75	statisch	
	1031	Spoiler 75°	-5, -4,, 16, 12,5	0.20	75	statisch	Ende 15:05
	1032	clean	-5, -4,, 16, 15,5	0.20	75	statisch	Fädchenvideo gespeichert ; Transitionsstreifen VK abgelöst
3.8.16	1033	clean	-5, -4,, 16, 15,5	0.20	0	statisch	Spiel an Spoiler reduziert, Wdhl VN 1032; Start 8:30
	1034	Spoiler 75°	-5, -4,, 16, 12,5	0.20	75	statisch	WdhI VN 1031
	1035	Spoiler 85°	-5, -4,, 18, 14,5	0.10	85	statisch	
	1036	Spoiler 85°	-5, -4,, 18, 12,5	0.15	85	statisch	
	1037	Spoiler 85°	-5, -4,, 16, 12,5	0.20	85	statisch	
	9901-6	Spoiler 0/10/0	0		0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 3.0	Test
	9907-09	Spoiler 0/10/0	0	0.10	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 3.0	Start 14:15, 1 Nullpunkt, 3 Messungen direkt nacheinander
	9910-12	Spoiler 0/10/0	0	0.10	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 3.0	Start 14:25, je 1 Nullpunkt vor jeder Messung
	2000-02	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 3.0	Start 14:55, je 1 Nullpunkt vor jeder Messung
	9913	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 2.0$	Start 15:20, 2. + 3. Spoilerbewegung manuell gestartet
	9914	Spoiler 0/10/0	0		0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 2.0$	Start 16:00
	2003-05	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 2.0$	Start 16:15, je 1 Nullpunkt vor jeder Messung, $t_{Mess} = 4 s$
	2006	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.125$ , $t_{Halte} = 2.0$	Start 16:30, t _{Mess} = 16 s, Pvideo3d.exe neu, Abbruch wg Software



04.08.16	9915	Spoiler 0/10/0	0		0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 2.0	Start 8:20, t _{Mess} = 16 s, Pvideo3d.exe neu
	2007	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 2.0	Start 8:30, 2., Spoilerbewegung manuell gestartet, $t_{\text{Mess}}$ = 16 s
	2008	Spoiler 0/10/0	0	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 9:45, 2., Spoilerbewegung manuell gestartet, $t_{Mess}$ = 24 s
	2009	Spoiler 0/30/0	0	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 2.0	Start 10:05, 2., Spoilerbewegung manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2010	Spoiler 0/30/0	0	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 10:15, 2., Spoilerbewegung manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2011	Spoiler 0/30/0	0	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 10:20, 2., Spoilerbewegung manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2012	Spoiler 0/50/0	0	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	Start 10:45, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2013	Spoiler 0/50/0	0	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2014	Spoiler 0/50/0	0	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.08, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 10:55, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2015	Spoiler 0/70/0	0	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.50, $t_{Halte}$ = 1.5	Start 11:05, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2016	Spoiler 0/70/0	0	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.75, $t_{Halte}$ = 1.5	Start 11:15, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2017	Spoiler 0/70/0	0	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 1.00, $t_{Halte}$ = 1.5	Start 11:25, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2018	Spoiler 0/70/0	0	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2019	Spoiler 0/70/0	0	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 11:35, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2020	Spoiler 0/70/0	0	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.50, $t_{Halte}$ = 1.5	
	2021	Spoiler 0/70/0	0	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2022	Spoiler 0/70/0	0	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 12:00, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2023	Spoiler 0/70/0	0	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.50, $t_{Halte}$ = 1.5	
	2024	Spoiler 0/70/0	0	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2025	Spoiler 0/70/0	0	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 12:20, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2026	Spoiler 0/10/0	5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	Start 13:55, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s
	2027	Spoiler 0/10/0	5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	
	2028	Spoiler 0/10/0	5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	
	2029	Spoiler 0/30/0	5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 2.0	
	2030	Spoiler 0/30/0	5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2031	Spoiler 0/30/0	5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 14:45, alle Spoilerbewegungen manuell gestartet, $t_{\text{Mess}}$ = 24 s

DRIEV
German-Dutch Wind Tunnels

Seite 34 von 46

	2032	Spoiler 0/50/0	5	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
	2033	Spoiler 0/50/0	5	0.20	0° -> 50° -> 0°	Szen. 1, t _{Stell} = 0.125, t _{Halte} = 1.5	
	2034	Spoiler 0/50/0	5	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell} = 0.08$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	Start 15:00, alle Spoilerbewegungen manuell gestartet, t _{Mess} = 24 s
	2035	Spoiler 0/70/0	5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
	2036	Spoiler 0/70/0	5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.5$ , $t_{Halte} = 1.5$	Start 15:15, alle Spoilerbewegungen manuell gestartet, $t_{Mess}$ = 24 s
	2037	Spoiler 0/70/0	5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2038	Spoiler 0/70/0	5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 1.5	
	2039	Spoiler 0/70/0	5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2040	Spoiler 0/70/0	5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2041	Spoiler 0/70/0	5	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 1.5	
	2042	Spoiler 0/70/0	5	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2043	Spoiler 0/70/0	5	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 16:05
	2044	Spoiler 0/10/0	10	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
	2045	Spoiler 0/10/0	10	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2046	Spoiler 0/10/0	10	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	
05.08.2016	2047	Spoiler 0/30/0	10	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 2.0	Start 8:00, keine Flächen-LED -> keine Spoilerbewegung
	2048	Spoiler 0/30/0	10	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 2.0	Wdhl 2047, Start 8:45
	2049	Spoiler 0/30/0	10	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2050	Spoiler 0/30/0	10	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.06, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	
	2051	Spoiler 0/50/0	10	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	Start 9:05
	2052	Spoiler 0/50/0	10	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
	2053	Spoiler 0/50/0	10	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.08, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	
	2054	Spoiler 0/70/0	10	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
	2055	Spoiler 0/70/0	10	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 1.5	
	2056	Spoiler 0/70/0	10	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	

DNIN
German-Dutch Wind Tunnels

Seite 35 von 46

2057	Spoiler 0/70/0	10	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.5, $t_{Halte}$ = 1.5	
2058	Spoiler 0/70/0	10	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
2059	Spoiler 0/70/0	10	0.15	0° -> 70° -> 0°	Szen. 1, t _{Stell} = 0.125, t _{Halte} = 1.5	
2060	Spoiler 0/70/0	10	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.5$ , $t_{Halte} = 1.5$	
2061	Spoiler 0/70/0	10	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
2062	Spoiler 0/70/0	10	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Ende 10:00
1038	clean	-5, -4,, 16	0.15	0	statisch	Start 10:15; picColor-Kameraöffnungen mit Blechen abgedeckt
2063	Spoiler 0/10/0	-5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	Start 10:35; picColor-Kameraöffnungen wieder frei
2064	Spoiler 0/10/0	-5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Auswertefehler
2065	Spoiler 0/10/0	-5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Wdhl 2064
2066	Spoiler 0/10/0	-5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Wdhl 2065
2067	Spoiler 0/10/0	-5	0.20	0° -> 10° -> 0°	Szen. 1, $t_{Stell} = 0.06$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	
2068	Spoiler 0/30/0	-5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
2069	Spoiler 0/30/0	-5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	
2070	Spoiler 0/30/0	-5	0.20	0° -> 30° -> 0°	Szen. 1, $t_{Stell} = 0.06$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	
2071	Spoiler 0/50/0	-5	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.25, $t_{Halte}$ = 1.5	
2072	Spoiler 0/50/0	-5	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 11:25
2073	Spoiler 0/50/0	-5	0.20	0° -> 50° -> 0°	Szen. 1, $t_{Stell} = 0.08$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	
2074	Spoiler 0/70/0	-5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
2075	Spoiler 0/70/0	-5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.5$ , $t_{Halte} = 1.5$	
2076	Spoiler 0/70/0	-5	0.20	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	
2077	Spoiler 0/70/0	-5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.5$ , $t_{Halte} = 1.5$	
2078	Spoiler 0/70/0	-5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	
2079	Spoiler 0/70/0	-5	0.15	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	
2080	Spoiler 0/70/0	-5	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.5$ , $t_{Halte} = 1.5$	
2081	Spoiler 0/70/0	-5	0.10	0° -> 70° -> 0°	Szen. 1, $t_{Stell} = 0.25$ , $t_{Halte} = 1.5$	

DNIN
German-Dutch Wind Tunnels

Seite 36 von 46

	2002	Sa - il - a 0 / 70 / 0	-	0.10	0. 70. 0.		
	2082	Spoller 0/70/0	-5	0.10	U ⁻ -> /U [°] -> 0 [°]	Szen. I, $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 12:10
	1039	Spoiler 50°	-5, -4,, 16, 12,5	0.20	50	statisch	Ende 12:25
	1040	Spoiler 70°	-5, -4,, 16, 12,5	0.20	70	statisch	Start 13:20, DP 1414 & 1422 Videowinkel falsch
08.08.2016	1041	Spoiler 50°	-5, -4,, 16, 12,5	0.10	50	statisch	Start 8:15
	1042	Spoiler 50°	-5, -4,, 16, 12,5	0.15	50	statisch	
	1043	Spoiler 70°	-5, -4,, 16, 12,5	0.10	70	statisch	
	1044	Spoiler 70°	-5, -4,, 16, 12,5	0.15	70	statisch	Ende 9:05
	9916	Spoiler 10/+-5/2 Hz	10	0.00	$\Delta \phi = 5^{\circ}$	Szen. 2	Start 9:35, t _{Mess} = 24 s, Abbruch Software
	9917	Spoiler 10/+-5/2 Hz	10	0.00	$\Delta \phi = 5^{\circ}$	Szen. 2	Start 9:40, Abbruch Software
	9918	Spoiler 10/+-5/2 Hz	10	0.00	$\Delta \phi = 5^{\circ}$	Szen. 2	Wdhl 9916, 9917, N = 30
	3000	Spoiler 10/+-5/2 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 30	Start 10:05
	3001	Spoiler 10/+-5/5 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	Start 10:10
	3002	Spoiler 10/+-5/10 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	Start 10:20
	3003	Spoiler 10/+-5/10 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	Start 10:40, neue P3Dvideo.exe
	3004	Spoiler 30/+-5/2 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 30	
	3005-06	Spoiler 30/+-5/5 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	
	3007	Spoiler 30/+-5/10 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	Start 11:05
	3008	Spoiler 30/+-10/2 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 30	
	3009-10	Spoiler 30/+-10/5 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3011	Spoiler 30/+-10/10 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	Start 11:40
	3012	Spoiler 30/+-20/2 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 30	
	3013-14	Spoiler 30/+-20/5 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 75	
	3015	Spoiler 30/+-20/10 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 75	Start 12:00, Antrieb stoppt mit Error
	3016	Spoiler 30/+-20/7.5 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 75	Start 12:20
	3017	Spoiler 50/+-5/2 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 30	Start 13:40
	3018-9	Spoiler 50/+-5/5 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	
	3020	Spoiler 50/+-5/10 Hz	0	0.20	$\Delta \phi = 5^{\circ}$	Szen. 2, N = 75	
	3021	Spoiler 50/+-10/2 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 30	

DNIC
German-Dutch Wind Tunnels

Seite 37 von 46

	3022-3	Spoiler 50/+-10/5 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3024	Spoiler 50/+-10/10 Hz	0	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3025	Spoiler 50/+-20/2 Hz	0	0.20	$\Delta \varphi = 20^{\circ}$	Szen. 2, N = 30	Start 14:25
	3026-7	Spoiler 50/+-20/5 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 75	
	3028	Spoiler 50/+-20/7.5 Hz	0	0.20	$\Delta \phi = 20^{\circ}$	Szen. 2, N = 75	
	3029	Spoiler 30/+-10/5 Hz	0	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	Konfig in Datei falsch (nicht Michaels Schuld)
	3030-31	Spoiler 30/+-10/10 Hz	0	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	Ende 14:50, Konfig in Datei falsch
	3032	Spoiler 30/+-10/5 Hz	0	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	irrtümlich $\alpha = 0^{\circ}$
	3033	Spoiler 30/+-10/5 Hz	5	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3034-35	Spoiler 30/+-10/10 Hz	5	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3036	Spoiler 30/+-10/5 Hz	10	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3037	Spoiler 30/+-10/10 Hz	0	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3038-39	Spoiler 30/+-10/10 Hz	10	0.10	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3040	Spoiler 30/+-10/5 Hz	5	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	3041-42	Spoiler 30/+-10/10 Hz	5	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	Start 16:10
09.08.2016	3043	Spoiler 30/+-10/5 Hz	10	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	Start 8:10
	3044-45	Spoiler 30/+-10/10 Hz	10	0.20	$\Delta \phi = 10^{\circ}$	Szen. 2, N = 75	
	1045	Spoiler 15°	-5, -4,, 18, 17,5	0.10	15	statisch	Start 8:35
	1046	Spoiler 15°	-5, -4,, 16, 17,5	0.15	15	statisch	Abbruch, Erfassung hängt
	1047	Spoiler 15°	-5, -4,, 16, 17,5	0.15	15	statisch	Wdhl 1046, Start 9:00, 1. DP wiederholt
	1048	Spoiler 15°	-5, -4,, 16, 17,5	0.20	15	statisch	
	1049	Spoiler 40°	-5, -4,, 18, 17,5	0.10	40	statisch	
	1050	Spoiler 40°	-5, -4,, 18, 17,5	0.15	40	statisch	
	1051	Spoiler 40°	-5, -4,, 18, 17,5	0.20	40	statisch	
	1052	Spoiler 70°	-5, -4,, 14, 13,5	0.25	70	statisch	Ende 10:20
	9919	Spoiler 0/25/55/85	-5, 0, 5, 10, 15	0.00	0, 25, 55 ,85	statisch	Ende 10:45
	1053	clean, sealed	-5, -4,, 14, 13,5	0.20	70	statisch	Start 11:15
	1054	Spoiler 70°, hinge sealed	-5, -4,, 14, 13,5	0.20	70	statisch	Start 11:50, Marker-Referenzbild bei $\varphi = 70^{\circ}$ genommen



Modellausbau



#### ANHANG B: MESSPROTOKOLL TN 2635

Datum	Pol	α/°	Ма	<b>φ</b> Spoiler / °	Spoiler Bewegung	Bemerkungen
8.11.16	9001	0	0.2	0	statisch	
8.11.16	9002	0	0.2	30	statisch + 0->30°	start 11:00
8.11.16	1000	0	0.2	0	statisch	start 14:05
	1000	0	0.2	2.5	statisch	
		0	0.2	5	statisch	
		0	0.2	10	statisch	
		0	0.2	15	statisch	
		0	0.2	20	statisch	
		0	0.2	30	statisch	
		0	0.2	40	statisch	
		0	0.2	50	statisch	
		0	0.2	60	statisch	ende 14:40
	1001	5	0.2	0	statisch	start 14:55
		5	0.2	2.5	statisch	
		5	0.2	5	statisch	
		5	0.2	10	statisch	
		5	0.2	15	statisch	
		5	0.2	20	statisch	
		5	0.2	30	statisch	
		5	0.2	40	statisch	
		5	0.2	50	statisch	
		5	0.2	60	statisch	
		10	0.2	0	statisch	PIV-Messung wiederholt
		10	0.2	2.5	statisch	
		10	0.2	5	statisch	
		10	0.2	10	statisch	



Seite 40 von 46

		10	0.2	15	statisch	
		10	0.2	20	statisch	
		10	0.2	30	statisch	
		10	0.2	40	statisch	
		10	0.2	50	statisch	
		10	0.2	60	statisch	Ende 15:40
09.11.2016	1002	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Start 10:15, Messzeit NWB: 24 s, Aktuator 10 x
	1003	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Wdhl 1002, Start 10:55, Messzeit NWB: 24 s, Aktuator 10 x
	1004	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Start 11:10, Messzeit NWB: 24 s, Aktuator 10 x, Abbruch
	1005	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Wdhl 1004, Start 11:15, Messzeit NWB: 24 s, Aktuator 10 x
	1006	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 11:45, Messzeit NWB: 24 s, Aktuator 10 x
	1007	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl}$ = 0.14, $t_{Stell}$ = 0.125, $t_{Halte}$ = 1.5	Start 11:50, Messzeit NWB: 24 s, Aktuator 10 x
	1008	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl}$ = 0.14, $\ t_{Stell}$ = 0.060, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 12:05, Messzeit NWB: 24 s, Aktuator 10 x
	1009	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	Start 12:10, Messzeit NWB: 24 s, Aktuator 10 x
	1010	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Start 12:20, Messzeit NWB: 24 s, Aktuator 10 x
	1011	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{\text{Vorl}}$ = 0.14, $t_{\text{Stell}}$ = 0.250, $t_{\text{Halte}}$ = 1.5	Start 12:25, Messzeit NWB: 24 s, Aktuator 10 x
	1012	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 13:40, Messzeit NWB: 24 s, Aktuator 10 x
	1013	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.14$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 13:50, Messzeit NWB: 24 s, Aktuator 10 x
	1014	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vor1}$ = 0.14, $\ t_{Stell}$ = 0.060, $t_{Halte}$ = 1.5, $t_{Retract}$ = 0.125	Start 14:00, Messzeit NWB: 24 s, Aktuator 10 x
	1015	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	Start 14:05, Messzeit NWB: 24 s, Aktuator 10 x
	1016	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Start 14:15, Messzeit NWB: 24 s, Aktuator 10 x
	1017	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{\text{Vorl}}$ = 0.14, $t_{\text{Stell}}$ = 0.250, $t_{\text{Halte}}$ = 1.5	Start 14:20, Messzeit NWB: 24 s, Aktuator 10 x, nur 1 PIV Kamera
	1018	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vor1} = 0.14$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.5$	Start 14:25, Messzeit NWB: 24 s, Aktuator 10 x, Wdhl 1017
	1019	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 14:35, Messzeit NWB: 24 s, Aktuator 10 x
	1020	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.5$	Start 14:40, Messzeit NWB: 24 s, Aktuator 10 x
	1021	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.14$ , $t_{Stell} = 0.080$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	Start 14:45, Messzeit NWB: 24 s, Aktuator 10 x



	1022	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{VorI} = 0.14$ , $t_{Stell} = 0.080$ , $t_{Halte} = 1.5$ , $t_{Retract} = 0.125$	Start 15:00, Messzeit NWB: 24 s, Aktuator 10 x
	1023	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 16:00, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1024	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 16:10, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
10.11.2016	1025	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 8:45, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1026	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:05, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1027	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:20, Wdhl 1025, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1028	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:25, Wdhl 1026, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1029	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.080$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:35, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1030	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.080$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:40, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1031	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 9:50, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1032	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 9:55, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1033	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:00, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1034	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:10, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1035	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:30, Wdhl 1034, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1036	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:40, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1037	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:45, Messzeit NWB: 24 s, Aktuator 3 x, High Speed Laser
	1038	-5, -4,, 16, 15,5	0.2	0	statisch	Start 11:00, Ende 11:15
11.11.2016	1039	0	0.2	0	statisch	
		0	0.2	2.5	statisch	
		0	0.2	5	statisch	
		0	0.2	10	statisch	
		0	0.2	15	statisch	
		0	0.2	20	statisch	
		0	0.2	30	statisch	
		0	0.2	40	statisch	



Seite 42 von 46

	ĺ	0	0.2	50	statisch	
		0	0.2	60	statisch	
		10	0.2	0	statisch	
		10	0.2	2.5	statisch	
		10	0.2	5	statisch	
		10	0.2	10	statisch	
		10	0.2	15	statisch	
		10	0.2	20	statisch	
		10	0.2	30	statisch	
		10	0.2	40	statisch	
		10	0.2	50	statisch	
		10	0.2	60	statisch	Ende 9:35
1(	040	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 9:45, Messzeit NWB: 24 s, Aktuator 10 x
1(	041	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl}$ = 0.1, $~t_{Stell}$ = 0.060, $t_{Halte}$ = 1.0, $t_{Retract}$ = 0.125	Messzeit NWB: 24 s, Aktuator 10 x
1(	042	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Start 10:05, Messzeit NWB: 24 s, Aktuator 10 x
1(	043	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{VorI} = 0.1$ , $t_{Stell} = 0.060$ , $t_{Halte} = 1.0$ , $t_{Retract} = 0.125$	Messzeit NWB: 24 s, Aktuator 10 x
1(	044	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl}$ = 0.1, $~t_{Stell}$ = 0.080, $t_{Halte}$ = 1.0, $t_{Retract}$ = 0.125	Messzeit NWB: 24 s, Aktuator 10 x
1(	045	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl}$ = 0.1, $~t_{Stell}$ = 0.080, $t_{Halte}$ = 1.0, $t_{Retract}$ = 0.125	Start 10:25, Messzeit NWB: 24 s, Aktuator 10 x
1(	046	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x, Ende 10:30
1(	047	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:35, Messzeit NWB: 24 s, Aktuator 10 x
10	048	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vort} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Start 10:40, Messzeit NWB: 24 s, Aktuator 10 x
10	049	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x, Ende 10:50
1(	050	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x
1(	051	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vor1} = 0.1$ , $t_{Stell} = 0.250$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x
1(	052	0	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x
1(	053	10	0.2	0° -> 10° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Start 11:10, Messzeit NWB: 24 s, Aktuator 10 x
1(	054	0	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x
1(	055	10	0.2	0° -> 30° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Start 11:20, Messzeit NWB: 24 s, Aktuator 10 x

DNICT	Seite 43 von 46
German-Dutch Wind Tunnels	

1056	0	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x
1057	10	0.2	0° -> 50° -> 0°	Szen. 1, $t_{Vorl} = 0.1$ , $t_{Stell} = 0.125$ , $t_{Halte} = 1.0$	Messzeit NWB: 24 s, Aktuator 10 x, Ende 11:30
				Modellausbau	

#### EB 124-2017/905

## Windkanalmessungen am DLR-F15DS Profil mit dynamischem Spoiler - Zusammenfassung der Messkampagne TN 2634 -

#### S. Geisbauer, T. Löser

#### Verteiler:

Institutsbibliothek	1	Exemplar
Autoren	2	Exemplare
Prof. DrIng. habil. CC. Rossow	1	Exemplar
DrIng. O. Brodersen	1	Exemplar
Zentralbibliothek BS	1	Exemplar
Zentralarchiv GÖ	1	Exemplar
Reserve	5	Exemplare

12 Exemplare