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ABSTRACT: Collision avoidance is one of the high-level safety objectives and requires a complete and reliable
description of the maritime traffic situation. The radar is specified by the IMO as the primary sensor for
collision avoidance. In this paper we study the performance of multi-target tracking based on radar imagery to
refine the maritime traffic situation awareness. In order to achieve this we simulate synthetic radar images and
evaluate the tracking performance of different Bayesian multi-target trackers (MTTs), such as particle and JPDA
filters. For the simulated tracks, the target state estimates in position, speed and course over ground will be
compared to the reference data. The performance of the MTTs will be assessed via the OSPA metric by
comparing the estimated multi-object state vector to the reference. This approach allows a fair performance

analysis of different tracking algorithms based on radar images for a simulated maritime scenario.

1 INTRODUCTION

The need for an accurate and resilient situational
awareness has been increasingly growing in the
maritime domain due to a variety of reasons: the ever
increasing global trade constantly calls for ships
larger in size and numbers, which still need to
navigate the international waterways and harbors in a
secure and efficient manner. In addition, it is a
stringent necessity to traffic management and security
authorities to detect abnormal vessel behavior, to
prevent harm to marine infrastructure, humans and
nature. Apart from that, the trend towards
autonomous navigation is clearly entering the
maritime world calling for advanced solutions as
enabling technologies. From our perspective two
conclusions can be drawn from these considerations:
firstly, maritime situation awareness is crucial to all of
these applications and secondly, the described
challenges call for a refined and more reliable
situation picture. The dominating source for traffic

situation assessment in the maritime domain has been
and will be the marine radar, which is still the
primary sensor for collision avoidance. Various
approaches have been published in the literature to
augment maritime surveillance or collision avoidance
systems, mostly based on radar fusion with additional
sensors such as laser in Perera, Ferrari, Santos,
Hinostroza, and Soares (2015) or multiple stationary
radar systems for exploiting aspect angle diversity as
in Braca, Vespe, Maresca, and Horstmann (2012). The
matter of AIS and radar fusion was mainly addressed
for anomaly detection, e.g., based on multi hypothesis
tests in Guerriero, Willett, Coraluppi, and Carthel
(2008) or by exploiting historical traffic route
knowledge for SAR/AIS fusion in Mazzarella and
Vespe (2015). In Kazimierski and Stateczny (2015) an
overview was given for different AlS/radar fusion
techniques incorporating online covariance
estimation. In Siegert, Banys, and Heymann (2016)
and Siegert, Banys, Hoth, and Heymann (2017),
implementations of IMM-MSPDA and IMM-JPDA
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filters were applied to on-board maritime traffic
situation assessment considering single and multiple
targets in a clutter environment, respectively. These
approaches all follow the basic assumptions of
classical Kalman filtering concerning Gaussian
process and measurement noise and that the problem
formulation is only mildly nonlinear. In cases, in
which these assumptions do not hold, particle
filtering has become a popular alternative. Introduced
by different authors, such as Gordon, Salmond, and
Smith (1993), Kitagawa (1996) and Isard and Blake
(1998), a particle filter implements the formal
recursive Bayesian filter using sequential Monte Carlo
methods. The sought for posterior probability
distribution function (pdf) of the state vector is not
described in a functional form, but is instead
approximated by a set of random samples. The
application of particle filters to marine radar images
for fusing radar data with AIS was introduced in
Heymann, Banys, and Saez (2015) arguing that the
Gaussian noise assumption might be violated when
using radar images as measurement input. In this
study, we want to compare the performance of both
classes of recursive Bayesian filters in a maritime
multi-target scenario. For this reason, an Interacting
Multiple Model (IMM)-Joint Probabilistic Data
Association (JPDA) filter was designed based on
Unscented Kalman filtering (UKF) that is conditioned
on measurement data from radar images. In fact a
blob detector is applied to extract target candidates
from one radar image. This filter will be compared
against a newly proposed Repulsive Multi Particle
Filter (RMPF) that is conditioned directly on the
current radar image.

The remainder of this document is organized as
follows. The simulated reference scenario will be
described in Section 2. This is followed by the
proposal of two methods for multi-target tracking
based on radar image processing in Section 3. Both
frameworks will be evaluated and compared in their
performance in Section 4. A conclusion and outlook is
given in Section 5.

2 SIMULATION OF MARITIME SCENARIO

For evaluation of both multi-target trackers a
maritime scenario was simulated with a commercial
ship navigation simulator (ANS6000 by Rheinmetall
AG). Two tugs were set up to maneuver in the
vicinity of a third ship, which was anchored. The
simulated radar response of this quasistatic vessel
was used as input to both multi-target trackers.
Figure 1 shows the configured tracks, while Figure 2
depicts one radar scan during the simulation time.
The multi-target reference data was obtained from
interfacing to the NMEA output on the serial port of
the simulator, which contained the encoded AIS
messages.

3 MULTI-TARGET TRACKERS
In general, the field of multi-target tracking (MTT) in
presence of multiple and in general imperfect sensors

has been widely explored, ranging from classical

512

enumerative to non-enumerative schemes.
Algorithms representing the former category, such as
Global Nearest Neighbor (GNN) and Joint
Probabilistic Data Association (JPDA) filtering,
integer programming or Multi Hypothesis Tracking
(MHT) are well-described in Bar-Shalom, Daum, and
Huang (2009), Kim, Li, Ciptadi, and Rehg (2015),
Pulford (2005) and Khaleghi, Khamis, Karray, and
Razavi (2013). More recent work has also applied
Random Finite Set (RFS) theory to MTT yielding the
Probability =~ Hypothesis  Density (PHD) or
Cardinalized PHD (CPHD) filters Mahler (2015). In
specific situations where the assumption of linear
state equation under Gaussian noise is violated,
sequential Monte Carlo methods Doucet, Smith, de
Freitas, and Gordon (2001) can be considered as an
alternative solution Hue, Le Cadre, and Pérez (2002).
Thanks to the ever increasing availability of
computing power the computational needs, one of the
drawbacks of particle filter algorithms, become less
constraining for real time applications. In this work,
we want to compare the performance of two different
multi-target trackers in a maritime scenario in terms
of their estimated multi-target state. At first, an IMM-
JPDA filter was implemented as current state-of-the-
art approach for MTT. Secondly, a novel Repulsive
Multi Particle Filter (RMPF) will be introduced which
is not subject to the Gaussian error state assumption.
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Figure 1. Simulated multi-target scenario in the Baltic Sea.
Two tugs were steered to circle around an anchored
(quasistatic) vessel, which monitors the situation by her
radar.
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Figure 2. Snapshot of radar response to simulated multi-
target scenario, showing both tug vessels clearly on screen.



The range was set to 6 NM at head-up display. Some sea
clutter due to the simulated waves is visible.

3.1 Target dynamics and measurement model

In general, for tracking vessels of various types, we
assume to propagate the state vector xj_, of the
target to the next time frame k through a non-linear

motion model following the notation of
t i t
X = S (kaleZ) @™

where g/ ~N (O,ZZQZ) and no further control

input To distinguish between different
dynamic models in the upcoming section, we
introduce the superscript i to the non-linear function

given.

f'() . The predicted state estimate X;{VH will be

corrected by evaluating the residual between the
actual radar measurement Z, associated to the "

target and the predicted measurement following the
general formulation of

Zy . =h (X;c\k—l & ) , )

where 8; is drawn from the assumed sensor noise
distribution (e.g, €, ~N (0,22 Rk) for the

Gaussian assumption).

3.2 The IMM-JPDA filter

Considering the inherent trade-off between
complexity and tracking performance the JPDA
framework was chosen, being combined with an IMM
filter to capture different target dynamics. In the
remainder of this section, we will define the set of
dynamic and measurement models that constitute the
IMM-JPDA framework for multi-sensor, multi-target
tracking. Being first introduced in Fortmann, Bar-
Shalom, and Scheffe (1983), the key feature of the
JPDA is the computation of conditional probabilities
of joint association events

(k) =4 (%), 3)

with respect to the current time k, in which Aj(k)
represents the event of the j# measurement
originating from target t, with1<j<Mand 0 <t < N.
In this context, M refers to the number of
measurements at time k, N to the number of known
targets and f is the target index the ;"
measurement is associated to. With ¢t = 0 the specific
case of a measurement originating from clutter is also
being considered. This means, in contrast to a Nearest
Neighbor (NN) association rule, the JPDA also

accounts for situations in which a single measurement

can be assigned, with a certain likelihood, to multiple
targets at the same time. Details can be found in
Fortmann Bar-Shalom, and Scheffe (1983) and Bar-
Shalom, Daum, and Huang (2009).

In this work, we use an extension to classical JPDA
filtering known as IMM-JPDA filter. The IMM was
introduced by Blom and Bar-Shalom (1988) to adapt
to quickly changing target dynamics by considering a
finite set of kinematic models that run in parallel. In
contrast to hard switching schemes, the IMM weighs
the different target state estimates based on the
likelihood of each model to explain the current
measurement data. The mode transition is thereby
governed by an underlying Markov chain. In our
case, we consider a set of two dynamic models to
capture either straight path or turning maneuver
based motion. For the former a Constant Velocity
(CV) model was designed, whereas the Constant Turn
Rate Velocity (CTRV) model is supposed to fit best to
the latter. The corresponding target state vectors are
defined as

T
XgV = l:pe,k’pn,k’l//k’vk:l , 4)
. T
XgTRV = [pe,k’pn,k’l//kﬂvk’l//k:l , ®)

with {p,4.p,4} the 2D position coordinates in the
local ENU frame, ¥/, the course over ground, v,

the speed over ground and y/, the turn rate at time

k. The uncertainty within the models is expressed in

o _ UI; 0 CTRV _ O-vz 0
k - 2 |° k - 2 | (6)
0 o 0 o,

v

The detailed definitions of the process models
f'(:) for CV and CTRV can be found in Siegert,
Bany$, Martinez, and Heymann (2016). Careful
attention needs to be paid to the augmentation of
state vectors of different dimensions. In this paper we
follow a strategy described in Glass, Blair, and Bar-
Shalom (2013) for unbiased mixing of different
process models. In contrast to the common
formulation of either IMM or JPDA, which both use
Extended Kalman Filtering (EKF) to adapt to non-
linearities in the dynamic models, we deploy the
Unscented Kalman Filter (UKF) instead (see Julier
and Uhlmann, 1997). It turns out that due to the
sigma point sampling approach the UKF is more
robust against non-linearities induced by the radar
measurement update equation, whereas the
approximation to a first-order Taylor series expansion
within the EKF was found to diminish its
performance (see Braca, Vespe, Maresca, and
Hoffmann (2012) for discussion). The combination of
IMM and JPDA filtering schemes to a well-defined
framework was initially proposed by Blom and Bar-
Shalom (1988) and extended to the multi-sensor case
in Tugnait (2003). In the end, a recursive step-by-step
algorithm was derived fusing the asynchronous
measurements from different sensors sequentially.
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The final state update equation for the #" target
tracked in mode i € {CV, CTRV} becomes

M,
i i oot ti {2\ pi
X = IBOthlk—l + z Xk (])ﬂjt , )
=

with M:ix the number of validated measurements for

target t and XZ’{}C ( ]) the UKF target estimate

conditioned on the j” measurement at time k. The

weights ), are interpreted as association

probabilities following the convention in Braca,
Vespe, Maresca, and Hoffmann (2012), with

ﬁét = P{none of the measurements origins from target t}

8)

ﬂ;t =P {the jth measurements origins from target t}

3.2.1 Track management

In general, the JPDA filter is subject to several
assumptions. Most importantly for our application,
the finite set of targets to be tracked is assumed to be
known, i.e. neither track initialization nor track
pruning is covered by the standard formulation of
JPDA. To overcome these restrictions it is suggested
in Bar-Shalom and Li (1995) to apply an M-of-N rule,
which is implemented according to Braca, Vespe,
Maresca, and Hoffmann (2012) as follows:

1 Track initialization:

— For each radar scan, every unassigned target
candidate measurement becomes a tentative
track. The gate assigned to this track accounts
for the (assumed) maximum velocity and
sensor uncertainty, i.e.,, this bound is rather
conservative.

— If a target candidate from the next radar scan
falls within the gate of a tentative track, it
becomes a preliminary track. In case a tentative
track is not supported by any detection in the
next time frame it is dropped again.

— For each preliminary track a UKF is initialized
propagating the target state through a CV
dynamic model.

— If a preliminary track is confirmed for M out of
the next N radar scans, it becomes a confirmed
track. If not, it is dropped.

— Each confirmed track will be tracked in the
IMM-JPDA filter.

2 Track termination:

— In case a confirmed track was not updated for
Mt out of Nt consecutive radar scans it is
terminated, where index t denotes a difference
between M and N from the initialization
process.

— A confirmed track will also be terminated, in
case the corresponding error state covariance
exceeds thresholds in position and/or velocity.

3.2.2 Target candidate extraction from radar images

In order to update the IMM-JPDA filter with
measurements, target candidates need to be detected
and extracted from radar first. The utilized approach
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to extract radar target information is based on image

processing instead of directly working on the radar

signal level. To extract target candidates from the
current radar image at time k the following
procedure is applied:

1 Masking the image to eliminate features of the
user interface, e.g., colored heading lines, blob in
center, radar information tables.

2 Conversion of the image from RGB to gray-scale
(weighted average from color channels).

3 Blob detection with fixed range settings for
convexity, circularity, inertia, size and intensity of
expected targets.

4 Each detected target candidate per frame is
expressed in range and bearing, relative to the
position of the vessel carrying the radar.

The key aspect in this processing chain is certainly
the scale-invariant blob detection to eventually detect
target candidates. This algorithm is well-described in
the literature and finds many applications in image
based target detection and tracking such as described
in Isard and MacCormick (2001). For this work the
implementation provided by the OpenCV framework
was used (OpenCV 3.1.0:
https://github.com/Itseez/opencv.git). Figure 3 shows
the final outcome of the different radar processing
stages. The set of extracted radar measurements is

defined as Zk={z}{,...,zf} with the "

measurement vector Zi = [Z,:,Z,I:]T comprising
range and bearing of the target candidate. The state
update of Xl,-d,H conditioned on the associated radar
target measurements is based on the definition of

h (X;‘k_l , SZ’S) from Equation 2 given as

\/(pe,/dkfl —Pe )2 + (pn,k\k—l ~ Py )2

Pn k-1~ Pn
arctan| ——
Pe k-1~ Pe

(X5 ) = +e5, (9)

with {p,,p,} the 2D reference coordinates of the

radar system in the ENU frame of the tracked vessel.



Figure 3. Extracted target candidates (red circles) at time k
after blob detection in pre-processed radar image.

3.3 The Repulsive Multi Particle Filter

The use of particle filters in marine radar image
processing (Heymann, Bany$, and Saez, 2015) showed
the potential to overcome the assumption of non-
Gaussian noise when using radar images as
measurement input. However, this study uses a
classical particle filter algorithm without any
comparison of the results to existing fusion
technologies. In this study, we compare the
performance of both classes of recursive Bayesian
filters, namely the particle filter (RMPF) and Kalman
filter based (IMM-JPDA) approaches, in a maritime
multi-target scenario.

Following the description of the target dynamics
and measurement model in Section 3.1 the
implementation of the particle filter used in this study
uses the dynamic model of constant velocity and
therefore the definition of the particle state space as in
Equation 4 is used. Under the assumption of a hidden

Markov ~ process and conditional independent
observations {y N = NI}, y, eR” the
formulations of Doucet, Godsill, and Andrieu (2000)

are used. The RMPF implements the Sequential
Importance Resampling (SIR) approach in which the
particles resampling is done after every measurement
step. In the SIR each new particle state X, is
sampled from the distribution p(xk \x’k).

The RMPF was motivated by the classical behavior
of sequential Monte Carlo trackers, which tend to
converge to a single target solution. By exploiting this
phenomenon together with the physical principle of
repelling charged particles the main parts of the
RMPF are described. As soon as the particle filter
picks up the track of a single target, a new filter is
initialized to start tracking a different target. The time
to acquisition of a target is determined by a fixed
threshold, which specifies a maximum uncertainty
bound during target tracking. This particle filter
generates a repellent force reducing the weight of the
samples from other particle filters which are
generated whenever a new target is detected. The
down-weighting is defined by the following equation:

2
w(i)=) exp (—3(0;1%) ) (10)
J
where w(i) is the weight of particle i in filter k,

J is the loop variable over all other filters except k

and o

max

position domain.

is the largest standard deviation in the
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(b) Both targets are tracked by the RMPF.

Figure 4. Different stages of target acquisition for the
Repulsive Multi Particle Filter.

The process of acquisition of the targets is
illustrated in Figures 4a and 4b. The red points show
the first particle filter which is fully converged in
Figure 4a and the second filter is initialized and
drawn to the target in the left part of the radar screen.
This can be seen by the purple circle whose center
position is at the mean of the particle distribution of
the second filter and radius of the circle is determined
by the largest standard deviation of the position
domain. In Figure 4b the second filter has converged
as well and both targets are finally tracked.
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3.4 MTT performance assessment

In Schuhmacher, Vo, and Vo (2008) the Optimal Sub-
pattern Assignment (OSPA) metric was introduced
and is considered as state-of-the-art method for MTT
performance assessment. The OSPA metric yields
several characteristics that make it attractive for MTT
performance assessment:
— It has a physical interpretation.
— It captures multi-target state errors and cardinality
errors meaningfully.
— The OSPA metric depends on only two tuning

parameters (the order and cut-off
parameter ©).

— Itisrelatively easy to compute.

Consider two finite subsets X ={x1,...,xm} and

Y ={y,...,»,} within W, where m,neN,, and

denote by Hk the

{1,2,....,k} forany k € N.The OSPA metric is then
defined as the function

set of permutations on

) :
d(c)(X Y [n[,g-? Zd ( 1ay;z- ) cp(n—m)]] 5 (11: : f/’%/——/

with d(c)(xi,y”(i)) =min(c,d(x,y)) denoting the
distance between x and y being cut off at ¢ > 0. This
definition holds for m <n, in case of m>n we
substitute d[(f) (X,Y) with dl(f) (Y,X). According
to Schuhmacher, Vo, and Vo (2008), the impact of

localization and cardinality errors to the overall metric
can be expressed as

1)
Gy (XY [n;gngd LEnm )J (12)
and
B8 (1) = [cp(”n‘””]%)- (13)

4 RESULTS

We will evaluate both proposed multi-target trackers
based on simulated radar images in the following
section. In Figure 5 the resulting tracks of the IMM-
JPDA are plotted on top of the extracted radar target
candidates obtained from the blob detector. The
corresponding output of RMPF is plotted in Figure 6.
In this case only the estimated tracks are shown, since
the filter is conditioned on the radar image not on a
finite set of target candidates.
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Figure 5. Resulting tracks (in blue and green) by applying
the IMM-JPDA filter to the simulated multi-target scenario.

The accumulated radar target candidates are plotted as
black dots.
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Figure 6. Resulting tracks (in blue and green) from applying
the RMPF to the simulated multi-target scenario. Track 1
gets lost while the target moves in a blind spot of the radar.
The filter converges back to the center of the image, as the
clutter response is strongest close to the radar’s position.

It can be observed that both filters pick up two
tracks from the radar image data. The IMM-JPDA and
RMPF are continuously tracking both vessels over the
time of the simulation. The RMPF shortly loses one
target at the point in time when the vessel is covered
by the second ship in the radar. While IMM-JPDA
filtering overpasses this outage of measurement
updates by inflating the error state covariance due to
continuous predictions the particles of the RMPF start
to spread and acquire the remaining clutter response
in the vicinity of the hidden target. At the time the
vessel appears again in the radar image the filter
converges quickly back to the correct position.

The OSPA metric to compare the two filters is
shown in Figure 7. The overall OSPA metrics
computed from Eq. 11 are plotted against time for
both filters. In this analysis the cut-off parameter
(penalizing cardinality errors) was set to ¢ = 250 m;
the order p to 2. In fact the short loss of one target in
case of the RMPF is reflected only by small peaks
compared to the performance of the IMM-JPDA. This
is due to the chosen cut-off parameter c. If this
parameter is set to 500 m the mismatch between the
number of reference targets to the number of tracked
objects §ets a higher impact in the multi-target state
error d, )(X,Y). Figure 8 shows the resulting graphs
and the peak at around 2700s shows the higher
impact of the multi target state error. However, in
terms of the overall multi-target tracking accuracy



both filters show similar performance, with the RMPF
outperforming the IMM-JPDA at certain times.
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Figure 7. Performance comparison between the IMM-JPDA
(dotted blue curve) and the Particle Filter (dashed red
curve) on behalf of the OSPA metric, with ¢ =250 m and p =
2. The plot depicts the overall multi-target state errors

di(x.y).

Other parameters of interest for performance
comparison  are the  time-to-acquisition  and
completeness. While the former describes the elapsed
time until all tracks are picked up and confirmed, the
latter denotes the ratio between the amount of correct
multi-target states against the overall number of
multi-target states. In Table 1 the corresponding
values for each of the filters are listed. The numbers
show that the IMM-JPDA framework is much faster
in target acquisition, while the RMPF shows similar
performance in terms of completeness.
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Figure 8. Performance comparison between the IMMJPDA
(dotted blue curve) and the Particle Filter (dashed red
curve) for c=500 m and p =2.

Table 1. Comparison between both multi-target trackers in
terms of time-to-acquisition and completeness of multi-
target state.

Time-to-Acquisition Completeness
IMM-JPDA 12s 99.7 %
RMPFE 31.6s 97.4 %

5 CONCLUSION

In this paper we have compared two methods for
maritime traffic situation assessment based on radar
image processing. At first, an IMM-JPDA filter was
designed that is conditioned on radar target

candidates, which are extracted via blob detection
from the current radar image. Secondly, a Repulsive
Multi Particle Filter was proposed that uses the radar
image directly as measurement input to update the
particle distribution. In both cases, the track
management, e.g., the target initialization, was done
fully automatic. For performance evaluation we
considered the multi-target state errors as well as
time-to-acquisition and track completeness. It was
shown that the RMPF and the IMM-JPDA are on par
in all of those aspects. The accuracy of the multi-
target state estimation is degraded in case of the
RMPF after the loss of one target during times of
coverage. This also affects the performance in terms of
track completeness of the RMPF, which is slightly
worse compared to the IMM-JPDA. Additionally, the
RMPF takes more time to converge to a single target
state, degrading its score on track completeness.
However, in times of correct target acquisition the
RMPE performs as good as the IMM-JPDA if not
better.
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