Estimation of value of time for autonomous driving using revealed and stated preferences method

Viktoriya Kolarova, Felix Steck, Rita Cyganski, Stefan Trommer German Aerospace Center, Institute of Transport Research

European Transport Conference (ETC) 2016
06.10.2017

Introduction

- Continuing trend toward fully autonomous vehicles

the driver can undertake other activities $=>$ perception of travel time might change

new mobility options - vehicle on demand
=> mode choices might change

Focus of the study:

How autonomous driving may affect value of time and mode choices?

The concept of Value of time (VoT)

- subjective VoT = willingness to pay for saving travel time

many studies addressing current mode choice preferences

some first studies that address used preferences by autonomous driving
=> but: examining changes is only possible when addressing both (when having a base line)

Methodology
 Overview

- Online survey, 500 respondents (representative sample for Germany by age and gender)
- Combination of revealed and stated preference methods
- Two stated choice experiments
- current mode choice related user preferences
- "future" mode choice related user preferences
- Additional questions on socio economics and individual mobility
- First analysis: multinomial logit

Methodology
 Revealed preference

Which of the following modes of transport do you usually use for your commuting trip?

How long does it usually take to get to work?
Trip duration

Trip length
\qquad Kilometers

Methodology Stated choice preference

Choice sets: attributes and attributes' levels

Option 1

Mode of transportation	$\underline{\text { By foot }}$
Trip duration	$-30 \% /-10 \% /+20 \%$
Access/ egress time	
Waiting time	
Cost	Total trip time:

Speed: 4.9 km/h

Option 2

Private car	Bike	Public transportation
-30\% / -10\% / +20\%	-30\% / -10\% / +20\%	-30\% / -10\% / +20\%
$2 \mathrm{~min} / 5 \mathrm{~min}$	$2 \mathrm{~min} / 5 \mathrm{~min} / 10 \mathrm{~min}$	$2 \mathrm{~min} / 5 \mathrm{~min} / 10 \mathrm{~min}$
		$2 \mathrm{~min} / 5 \mathrm{~min} / 10 \mathrm{~min}$
-30\% / -10\% / +20\%		$-30 \% /-10 \% /+20 \%$
Total trip time:	Total trip time:	Total trip time:
\bigcirc	,	\bigcirc
Speed: 26-68 km/h distance dependent	Speed: $15 \mathrm{~km} / \mathrm{h}$	Speed: 18-51 km/h distance dependent
Cost: 0.20 Euro/km		Cost: 1.5-12 Euro distance dependent

Methodology
 First stated choice experiment

Imagine that all of the following modes of transportation are available for your commuting trip. The trip duration and the trip cost using one of them are as presented below.

Please mark below which of the following modes of transportation would you choose in this situation.
(Task 1 of 8)

	Option 1	Option 2	Option 3	Option 4
Mode of transportation	Walk	Private car	Bike	Public transportation
Trip duration	3 h 40 min	0 h 36 min	1 h 12 min	0 h 39 min
Access/ egress time		5 min	5 min	5 min
Waiting time				5 min
Cost	Total trip time:	3.6 Euro Total trip time:	Total trip time:	3.15 Euro Total trip time:
	3 h 40 min	0 h 39 min	1 h 17 min	0 h 49 min
	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Introduction of the autonomous driving

Privately owned autonomous vehicle

Driverless taxi

Methodology
 Second stated choice experiment

First results - MNL estimations

	Model 1: Current available alternatives	Model 2: future available alternatives
Parameters	Estimated value	Estimated value
ASCwalk	3.02	2.39
ASCbicycle	0.74	0.29
ASCpt	0.22	-0.01
ASCdriverless_taxi	-	-0.82
B time_walk	-0.10	-0.09
B time bicycle	-0.07	-0.07
B time pt	-0.01	-0.01
B time private car / AV	-0.02	-0.01
B time driverless taxi	-	-0.02
B waiting time	-0.05	-0.05
B access/egress time	-0.06	-0.03
B cost - low income time	-0.58	
B cost - middle income	-0.48	-0.38
B cost - high income	-0.30	-0.28
B shared ride	-0.28	0.09
DLR	-	Perception of cost

First results - MNL estimations

	Model 1: Current available alternatives	Model 2: future available alternatives
Parameters	Estimated value	Estimated value
B shopping, bicycle	-0.87	-0.66
B shopping, pt	-0.83	-0.67
B leisure, by foot	0.64	0.78
B license, by foot	-2.11	-1.4
B license, bicycle	-0.70	0.26
B license, pt	-2.45	-1.52
B license, driverless taxi	-	-0.09
B pt pass, by foot	1.48	0.76
B pt pass, bicycle	1.42	0.65
B pt pass, pt	2.31	1.27
B pt pass, driverless taxi	-	0.01

First results - Value of Time

$V o T=\frac{\beta_{\text {time }, i}}{\beta_{\cos t, i}} * 60$

- not the final VoT values -

| | Low income | | Middle income | | High income | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Model 1 | Model2 | Model 1 | Model 2 | Model 1 | Model 2 |
| Public transport | 1.72 | 1.01 | 2.72 | 1.55 | 2.86 | 2.12 |
| Private car / private AV | 2.84 | 1.29 | 4.49 | 1.99 | 4.72 | 2.73 |
| Driverless taxi | | 1.96 | | 3.02 | | 4.14 |

=> Values can be integrated in an existing microscopic travel demand model (aim: to scale-up and quantify the impact of autonomous driving for certain region)

Conclusion and Outlook

Main (first) results:

- Value of time reduction when driving autonomously vs. driving manually
- Riding autonomously is perceived similar as using public transportation
- Privately owned AV is more attractive than driverless taxi
- Using a baseline is a viable method to approach changes in VoT

Next steps:

- applying more advanced methods incl. Mixed Logit Model in order to:
- consider heterogeneity (distribution of coefficient values)
- consider panel effect (8 situations per person)
- Decreasing time and cost utility can be examine
- VoT for different trips purposes
- Implementation in microscopic models to examine impact

Thank you for your attention!

