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A B S T R A C T

Increases in extreme weather events associated with climate change have the potential to put currently healthy
forests at risk. One option to minimize this risk is the application of forest management measures aimed at
generating species mixtures predicted to be more resilient to these threats. In order to apply such measures
appropriately, forest managers need up-to-date, accurate and consistent forest maps at relatively fine spatial
resolutions. Cost efficiency is a major factor when creating such maps. Taking European spruce (Picea abies) and
Scots pine (Pinus sylvestris) as an example, this paper describes an innovative approach for mapping two tree
species using a combination of commercial very high resolution WorldView-2 (WV2) images and Landsat time
series data. As a first step, this study used a supervised object-based classification of WV2 images covering
relatively small test sites distributed across the region of interest. Using these classification maps as training
data, wall-to-wall mapping of fractional coverages of spruce and pine was achieved using multi-temporal Landsat
data and Random Forests (RF) regression. The method was applied for the entire state of Bavaria (Germany),
which comprises a total forested area of approximately 26,000 km2. As applied here, this two-step approach
yields consistent and accurate maps of fractional tree cover estimates with a spatial resolution of 1 ha.
Independent validation of the fractional cover estimates using 3780 reference samples collected through visual
interpretation of orthophotos produced root-mean-square errors (RMSE) of 11% (for spruce) and 14% (for pine)
with almost no bias, and R2 values of 0.74 and 0.79 for spruce and pine, respectively. The majority of the
validation samples (75% (spruce) and 84% (pine)) were modeled within the assumed uncertainty of± 15% of the
reference sample. Accuracies were significantly better compared to those achieved using a single-step classifi-
cation of Landsat time series data at the pixel level (30 m), because the two-step approach better captures
regional variation in the spectral signatures of target classes. Moreover, the increased number of available re-
ference cells mitigates the impact of occasional errors in the reference data set. This two-step approach has great
potential for cost-effective operational mapping of dominant forest types over large areas.

1. Introduction

Climate change is expected to have an important influence on future
growing conditions that will likely have a great impact on tree species.
Depending on the location, some trees species will benefit, for example,
from increasing temperatures and thus, extended vegetation periods.
However, at other locations, increased temperatures are likely to lead to
water stress, and hence, greater vulnerability of some tree species to
abiotic and biotic disturbances (Lindner et al., 2010). In Central Europe,

several coniferous tree species are of particular concern: the vulner-
ability of tree species such as European spruce and Scots pine is parti-
cularly high in areas where they are planted outside their natural
ranges (Kölling et al., 2009a; Lindner et al., 2014; Seidl et al., 2017). As
both species are of high economic importance for the European forest
sector, targeted forest management is necessary to minimize economic
losses. In order to identify areas of increased risk, Kölling et al. (2009b)
produced risk maps for different tree species based on different climate
scenarios for Bavaria, Germany. Identification of particularly

http://dx.doi.org/10.1016/j.rse.2017.09.031
Received 22 February 2017; Received in revised form 12 September 2017; Accepted 26 September 2017

⁎ Corresponding author.
E-mail address: markus.immitzer@boku.ac.at (M. Immitzer).

Remote Sensing of Environment xxx (xxxx) xxx–xxx

0034-4257/ © 2017 Elsevier Inc. All rights reserved.

Please cite this article as: Immitzer, M., Remote Sensing of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.09.031

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2017.09.031
http://dx.doi.org/10.1016/j.rse.2017.09.031
mailto:markus.immitzer@boku.ac.at
http://dx.doi.org/10.1016/j.rse.2017.09.031


vulnerable forest stands at a fine spatial resolution is a logical follow-up
step to ensure efficient planning of silvicultural activities. Therefore,
risk maps depicting (future) growing conditions must be combined with
precise species distribution information. Unfortunately, data of suffi-
cient detail for tree species distribution at a suitable spatial resolution
(i.e. percentage cover in 1 ha cells) is still missing.

Long-established forest inventories in Europe provide important
data about forest composition based on precise information obtained
from field plots where repeated periodic terrestrial observations are
made. However, the data collected is inappropriate for providing de-
tailed enough spatial information at the local to regional levels to guide
forest management decisions of the scale required to meet the chal-
lenges brought about by climate change. In order to extrapolate in-
formation obtained from these spatially specific plots to a wider area,
spatial interpolation methods such as kriging have been employed in
the past. Such procedures permit production of distribution maps of
tree species based on inventory data. The European Forest Institute
(EFI), for example, has produced Europe-wide maps using data mainly
obtained from national forest inventories (Brus et al., 2012). These data
provide a good overview of the general distribution of the species, but
at 1 km spatial resolution, these maps still lack sufficient spatial detail,
particularly for less abundant species. The tree species distribution
maps available from the Forest Information System for Europe (JRC,
2017) are another example of a data set with similar limitations.

Earth Observation (EO) derived data products covering large areas
usually only provide information on the presence or absence of forests
or on percent tree cover. Prominent examples of such products are the
global forest cover and forest cover change maps based on moderate
resolution imaging spectroradiometer (MODIS) and/or Landsat data
sets (Hansen et al., 2013; Kim et al., 2014; Sexton et al., 2013;
Townshend et al., 2012). Other products covering Europe only separate
major tree species groups such as coniferous and broadleaf trees. Ex-
amples of these classifications include the forest high resolution layer
(EEA, 2017a), the Pan-European forest type map (JRC, 2015) and the
coordinated information on the environment (CORINE) land cover in-
ventory (EEA, 2017b). An overview and comparison of various land
cover products derived from EO data can be found in Pérez-Hoyos et al.
(2012).

Studies analyzing species distribution at a more detailed level, e.g.
with up to ten different species and often at the level of individual trees,
are mainly based on optical EO data with high to very high spatial
resolutions (VHR), such as IKONOS or WorldView-2 (WV2) (Carleer
and Wolff, 2004; Fassnacht et al., 2017; Immitzer et al., 2012; Kim
et al., 2011; Mora et al., 2010; Waser et al., 2014). Hence, the high
potential of VHR data when applied within specific pilot studies and for
relatively small areas has been confirmed. Detailed studies and ex-
amples that cover larger geographic extents, however, are still missing
(Fassnacht et al., 2016).

The use of VHR data is often limited by high data costs.
Consequently, most applications that cover large areas have focused on
the use of cloud-free mosaics based on freely available data from the
Landsat family which are often produced using the Best-Available-Pixel
(BAP) method (Griffiths et al., 2013; Hermosilla et al., 2015; White
et al., 2014; Zhu et al., 2015). With the launch of the European Sentinel-
2 satellites, data with higher spatial, spectral and temporal resolutions
have become available, creating new opportunities for tree species se-
paration at the stand level (Immitzer et al., 2016b).

A recent overview of the possibilities, advantages and limitations of
different satellite sensor data and methods can be found in a review
from Fassnacht et al. (2016). The authors found that (i) the selected
approaches and/or data sets often do not permit application to larger
areas, (ii) most existing studies cover only small areas (in particular
those based on VHR data), and (iii) data from passive sensors in the
optical domain have greater potential for tree species separation than
those from active sensors. This last finding is particularly true in terms
of tree species whose phenological characteristics change significantly

with changes in season, making acquisition and processing of multi-
temporal imagery important. Gómez et al. (2016) concluded that de-
pending on the temporal resolution of the data used, both inter-annual
changes and intra-annual dynamics (e.g. phenological development)
can be detected using data from multiple time points. Recent examples
of using multi-temporal Landsat data for classification include a land
cover map of Germany provided by Mack et al. (2017) and the tree
species and basal area maps of northern New York and Vermont pro-
duced by Gudex-Cross et al. (2017).

To improve land cover maps, some research groups have in-
vestigated the possibility of combining satellite data with different
spatial resolutions. Well-known examples in forestry are studies that
have combined data sets from Landsat and AVHRR (Fries et al., 1998)
or Landsat and MODIS (Hansen et al., 2000). Other studies have derived
continuous variables such as percent forest cover by combining Landsat
and AVHRR (Iverson et al., 1989; Zhu and Evans, 1994). More recent
studies have combined Landsat data with data sets of higher spatial
resolutions such as IKONOS (Metzler and Sader, 2005) or GeoEye-1
data (Donmez et al., 2015). While most studies of this kind have fo-
cused on one general forest class, Metzler and Sader (2005) estimated
the percentage cover of softwoods and hardwoods separately.

Techniques such as multiple regression (Iverson et al., 1989; Metzler
and Sader, 2005; Zhu and Evans, 1994) or decision tree-based ap-
proaches (Donmez et al., 2015; Hansen et al., 2000; Thompson et al.,
2015) can be used to create images of continuous variables, such as
percentage of a given tree species. In recent years, the Random Forest
algorithm has become popular for modeling continuous forest attributes
based on EO data (Immitzer et al., 2016b; Mutanga et al., 2012; Stepper
et al., 2017; Thompson et al., 2015; White et al., 2015). The key ad-
vantages of this non-parametric technique are that it requires relatively
few assumptions about the structure of the data set, delivers informa-
tion about the importance of the individual input data, provides an
internal bootstrapping method for independent validation and utilizes a
relatively fast and robust modeling framework.

Combining VHR data with freely available Landsat-type data has the
potential for providing coverage of a larger spatial area along with the
advantages of the detailed information data of high spectral resolution
provides. To the best of our knowledge, no studies have yet been
published that combine satellite data sets with very high (< 5 m) and
medium (30 m) spatial resolutions for continuous (fractional) mapping
of individual tree species. This study presents such an approach for
estimating the fractional coverage of spruce and pine in 1 ha cells for the
entire German state of Bavaria. This is realized with a two-step ap-
proach including: (i) classification of several VHR WV2 scenes dis-
tributed over the study area and covering only a part of the region of
interest; and (ii) modeling the spruce and pine fractional cover derived
from these VHR maps using spectral and temporal metrics derived from
Landsat as explanatory variables. Finally, application of the calibrated
models to the total area covered by the Landsat data yields maps cov-
ering the entire federal state of Bavaria.

The main objectives of the research presented here were to:

• Examine the suitability of Landsat time series data for upscaling tree
species information derived from VHR imagery.

• Evaluate the added value of the two-step approach compared to a
standard pixel-based classification of Landsat data.

• Quantify the trade-offs between the number of VHR scenes used
(data acquisition and processing costs) and the quality of the maps
generated.

For comparison, a pixel-based classification of Landsat time series
data using the same reference data was applied. Both products were
validated using an independent data set collected through visual in-
terpretation of orthophotos.
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2. Methods

To produce fractional coverage maps of spruce and pine for the entire
state of Bavaria, a two-step approach was developed (Fig. 1). First, VHR
‘reference’ land cover maps were produced at 2 m spatial resolution
using a supervised object-based approach performed on 47 WV2 scenes.
The WV2 scenes were distributed across Bavaria, and cover roughly
20% of the total land area in the state. In a second step, the VHR land
cover maps were used as reference information to upscale to the entire
federal state of Bavaria. This was done using RF modeling to create
classes for spruce (primarily European spruce, Picea abies (L.) H. Karst.),
pine (primarily Scots pine, Pinus sylvestris L.) and others (all other tree
species and non-forest land cover classes). The aggregated VHR tree
species maps combined with data obtained from a cloud-free Landsat
time series mosaic were used as reference data to create explanatory
variables for use in a subsequent modeling step. To remove data gaps
due to clouds and cloud shadows, smoothed and gap-filled Landsat time
series data (Vuolo et al., 2017) were used. This also avoids the need for
separate modeling of data derived from each Landsat acquisition path.

To assess the accuracy of the two-step approach, the three fractional
coverages generated by the model were subsequently verified and va-
lidated using 3780 1 ha cells of visually interpreted orthophoto sam-
ples. We also assessed the impact of using fewer WV2 scenes on the
accuracy of the models generated. In addition, a ‘classical’ (pixel-based)

classification of Landsat data was performed to compare the proposed
approach against a simpler procedure.

The statistical software R 3.0.1 (R Core Team, 2014) and the
packages caret (Kuhn et al., 2014), matrixStats (Bengtsson, 2014), raster
(Hijmans, 2014) and randomForest (Liaw and Wiener, 2002) were used
for the modeling step.

2.1. Study site – the federal state of Bavaria, Germany

With an area of approximately 70,500 km2, Bavaria is the largest
federal state in Germany. Around 37% of the land area is covered with
forests. Growing conditions are quite diverse in Bavaria, with oceanic
influences in the north-west, a (sub)boreal climate in the north-east and
subalpine conditions in the south. The largest part of Bavaria is char-
acterized by a subcontinental or intermediate climate. The dominant
life zones are colline to submontane, with some montane areas in the
east and the south. As a consequence, the potential natural forest
community would be dominated by different Fagetum types accom-
panied by some Quercetum types in the north-east and Piceetum types
in the east and south (Walentowski et al., 2001). The actual forests have
an average timber volume of 400 m3/ha and are dominated by Norway
spruce (41.8%), and Scots pine (17.1%) interspersed with largely
naturally established stands of European beech (13.9%) (Klemmt et al.,
2014). Due to climate change, many spruce and pine forests are highly

Fig. 1. Workflow diagram of the two-step method used to generate fractional coverage maps for spruce and pine: (left – ‘First step’) creation of tree species maps using WV2 data
distributed across the entire region of interest, (center – ‘Second step’) area-wide upscaling of tree species maps and subsequent production of final maps. Validation was done using 3780
1 ha cells of visually interpreted orthophotos. For comparison, Landsat data alone was also used to independently generate fractional coverage maps for spruce and pine (right – pixel-
based approach).
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stressed, leading to increasing biotic and abiotic risks, in particular in
areas where these species are planted outside their natural ranges
(Kölling et al., 2009a; StMELF, 2013). Therefore, forest management
activities are necessary to generate better-adapted stands with a mix-
ture of tree species that is more resilient to changing climate conditions
(Kölling et al., 2009a).

2.2. Data sets

2.2.1. WorldView-2 data
Forty-seven WV2 scenes (2 m pixel size) were used in this analysis.

Scene selection was done to ensure representation of the forest ecor-
egions of Bavaria (Walentowski et al., 2001) and the availability of
forest inventory data from the Bavarian state forest enterprise (BaySF)
for these areas. To limit data costs, archived data were selected when
possible, and new acquisitions of scenes were only requested when no
usable archive data was available. The distribution of the WV2 scenes
used is shown in Fig. 2, and detailed information about the scenes is
found in Table S1 (Supplementary materials).

All WV2 data were pre-processed at the German Aerospace Center
(DLR) using the automatic processing chain CATENA (Krauß et al.,
2013; Reinartz, 2010), which includes orthorectification (Müller et al.,
2005) and atmospheric & topographic correction (ATCOR) (Richter
et al., 2006).

2.2.2. Landsat time series data
To model the fractional coverage of spruce and pine, a smoothed and

gap-filled Landsat (LS) time series data set of images acquired in 2013
was used. Details about the process by which this data set was produced
can be found in Vuolo et al. (2017). The approach yields a data set of bi-
monthly cloud-free Bottom of Atmosphere (BoA) reflectance in the six
Landsat spectral bands. An illustration of a data set for the second half
of August 2013 is shown in Fig. 2. An example showing both raw and
processed data can be found in Vuolo (2016).

Compared to the original Landsat scenes, the main advantage of
smoothed and gap-filled Landsat time series data are:

(i) A higher number of cloud-free observations per year (24

observations per pixel and year), equally distributed over the entire
time period, and hence, covering all seasons.

(ii) Spatially homogenous data over a large spatial extent.

In addition to the reflectance values in six spectral channels, several
metrics derived from normalized difference vegetation index (NDVI,
(Rouse et al., 1974)) images produced from the time series data were
included in the analyses. These include:

• two NDVI values for each month (bi-monthly data),

• mean annual NDVI value,

• difference between average summer and winter NDVI values (am-
plitude).

2.3. Classification of WorldView-2 data and generation of reference
fractional coverage information

An object-based approach using both spectral and textural in-
formation was used to classify each individual WV2 scene. Depending
on the image location, landscape and species mixture represented in the
reference data, up to 12 different land cover classes per scene were
created (Fig. 3).

For image segmentation, eCognition Developer 8 was used. The
parameters were fine-tuned for each scene to ensure that homogenous
forest stands or tree groups were obtained and to avoid segmentation of
individual tree crowns. Reference information based on inventory data
as well as on visual interpretation of orthophotos and stereo aerial
images was manually assigned to the segments.

For each segment, statistical values (mean, standard deviation,
percentiles) for each of the eight spectral bands of the WV2 data and
additional texture layers were produced (Table 1). The texture layers
were derived from the red and near infrared bands and the NDVI image
using a discrete stationary wavelet transformation (coiflets-family:
coif1) similar to that used by Einzmann et al. (2017). More details
about the wavelet transformation can be found in Toscani et al. (2013)
and Immitzer et al. (2014).

The reference data sampling focused on the two target classes spruce
and pine, with additional classes representing other forest and non-

Fig. 2. Color-infrared composites of the WorldView-2 scenes (bands 7,5,3) used as input data sets in modeling fractional coverage of spruce and pine for the entire state of Bavaria. (left);
Example of a gap-filled and smoothed Landsat data mosaic (bands: 4,3,2) for August 2013 (right).
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forest classes where present. In regions with mixed stands of spruce and
pine, a mixed class was also assigned. The reference data set creation
was based on forest inventory data and color infrared (CIR) orthophoto
interpretation. Approximately 850 training samples were generated for
each scene.

This reference data was then used to perform a supervised classifi-
cation using Breiman's (2001) Random Forest (RF) algorithm. The
parameter mtry was set to the square root of available input variables
(default) and the ntree parameter to 1000. Detailed information about
this ensemble learning algorithm and its advantages, such as the in-
tegrated bootstrapping that provides relatively unbiased ‘out-of-bag’
(OOB) results, can be found in the literature (Breiman, 2001; Hastie
et al., 2009; Immitzer et al., 2012; Pal, 2005).

To optimize the classification output, a recursive feature selection
process (Guyon et al., 2002) using the importance information obtained
from RF was applied. The classification procedure with feature selec-
tion is described in detail in Immitzer et al. (2015) and Schultz et al.
(2015).

After classification, both thematic and a spatial aggregation were
carried out (Fig. 3). First, all classes except spruce, pine, mixed spruce and
pine, shadow and clouds were combined to create one class labeled
others. Neighboring polygons of the same classes were then dissolved,
and ‘shadow’ polygons were merged with the neighboring polygon with
which they shared the longest border. The classification results ob-
tained were visually compared to orthophotos, and corrected when
necessary to prevent classification errors from propagating to the final

modeling product. Non-interpretable areas and the clouds class were set
to ‘no data’ (NA) and excluded from the procedures that followed. For
the subsequent spatial aggregation, a Bavaria-wide raster with a pixel
size of 1 ha was produced, and, in the areas covered by the WV2 scenes,
fractional coverages (in %) for each of three classes pine, spruce, and
others were calculated for each 1 ha cell. The mixed spruce and pine class
was allocated equally to the two main classes. Cells including NA areas
and those not fully covered by the WV2 classification results were
discarded.

2.4. Upscaling of the classification results to area-wide maps

After creation of the reference data set, the second part of the
method involved developing models for mapping fractional coverages
of spruce and pine for the entire forested area of Bavaria. For the Landsat
data sets, all pixels were disaggregated to 10 m spatial resolution using
a nearest neighbor resampling algorithm aligned to the 1 ha grid of cells
from the fractional coverage map. The aligned 10 m pixels were then
summarized in terms of mean, standard deviation and percentiles to
characterize the distribution of reflectance values and the NDVI values
within each 1 ha cell (Table 2).

RF regression models were then trained for each of the three classes
spruce, pine and others using the aggregated information described in the
previous section. Explanatory variables were obtained from available
Landsat time series data, including both spectral reflectance values and
NDVI. From those variables, additional features such as amplitude and

Fig. 3. Preparation of the detailed WorldView-2 classification results and transfer of these results to the final 1 ha cells to be used as ‘reference’ data for the subsequent second step of the
approach. The workflow includes thematic aggregation, shadow elimination and spatial aggregation.

Table 1
Explanatory variables for the classification models used in the first step of the approach.

EO input data No. of layers Metrics calculated for each polygon No. of explanatory variables

WorldView-2 spectral bands 8 Mean, standard deviation, percentiles: minimum, 5th, 10th, 25th, median, 75th,
90th, 95th, maximum

88

Normalized difference vegetation index
(NDVI)

1 Mean, standard deviation, percentiles: minimum, 5th, 10th, 25th, median, 75th,
90th, 95th, maximum

11

Wavelet coiflet1 texture 12 Mean, standard deviation, percentiles: minimum, 5th, 10th, 25th, Median, 75th,
90th, 95th, maximum

132
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mean values of the vegetation period were extracted. For the re-
flectance values, only data sets from the end of June 2013 and the end
of August 2013 were used. A comprehensive list of all explanatory
variables is provided in Table 2. RF regression models were used, as
they have a number of advantages that are particularly relevant for this
application. These advantages include a reduced risk of overfitting the
model, determination of variable importance, and the ability to handle
different data types (Gómez et al., 2016; Hastie et al., 2009; Immitzer
et al., 2016a). Similar to the classification approach, the RF regression
includes internal bootstrapping, and provides relatively unbiased ‘out-
of-bag’ (OOB) results.

Within each WV2 classification result converted to class-specific
proportions, 5000 1 ha cells were extracted as training samples.
Training points were chosen such that all cells having the highest
proportion (top 2%) of the classes spruce and pine were sampled, with
the remaining points chosen randomly. RF models were generated se-
parately for each of the three target classes spruce, pine, and others. First,
an RF model was built using all available Landsat metrics. Based on the
feature importance information obtained from the RF model, the 100
most important explanatory variables were chosen to build a new
model. The default values for ntree (500 trees) and mtry (third of the
total number of input features) were used in model creation. Next, the
models for each of the three classes were separately applied to the
entire study area. Afterwards, the three maps were combined and, if
necessary, rescaled so that the classes summed to 100% for each 1 ha
cell. Areas outside of forests were manually set to 100% others using the
vectorized forest information (forest mask) from the Authoritative to-
pographic-Cartographic Information System (ATKIS) (AdV, 2015).

2.5. Reduction of the number of WorldView-2 scenes

The use of a large number of VHR scenes entails high costs for data
provision and analysis. To better understand the cost-benefit relation-
ship between accuracy and number of WV2 scenes used, the input
scenes were reduced iteratively from the original 47 (total number of
available WV2 scenes) to 1, using a greedy algorithm. In each step, the
WV2 scene which led to the smallest increase in the average distance of
empty cells to the sampled training cells of the respective nearest scene
was removed.

Greedy algorithms have the advantage of being fast and easy to
compute but do not necessarily lead to optimal solutions. Also, content
and data quality of the individual WV2 scenes are not considered in this
approach, which is depicted in Fig. 4.

2.6. Comparison to pixel-based classification of Landsat data

To demonstrate and quantify the added value of the two-step ap-
proach, a standard pixel-based classification of the LS data set was
performed for comparison. Again in this case, an RF classification
(ntree = 1000, mtry = square root of the number of input features) was
done using the same reference data which were used to classify the
WV2 scenes, excluding the mixed spruce and pine class. For each re-
ference polygon, the most central (30 m) LS pixel was used. Eight

classes were distinguished: spruce, pine, other coniferous trees, broadleaf
trees, non-forest vegetation, water, natural areas without vegetation and
sealed areas. In total, the number of reference pixels used for the clas-
sification was 4870 for spruce, 2080 for pine, 2821 for other coniferous
trees, 5805 for broadleaf trees and 8031 for non-forest vegetation, 3190 for
water, 2369 for natural areas without vegetation and 8251 for sealed areas.
The same 37 Landsat metrics used in the upscaling done in the two-step
approach (Table 2) were used for the pixel-based RF classification. The
model was applied to the entire study site. Again, all classes except
spruce and pine were combined to create a class labeled others. The
pixel-based classification results were subsequently aggregated to the
1 ha cells in the same way described above, to create a second set of
fractional coverages for each of the three classes.

2.7. Validation using independent samples from orthophotos

For independent validation, a regular raster grid of the entire state
of Bavaria with 2.5 km × 2.5 km cell size was produced. For each of the
3780 raster points inside the forest mask, the corresponding 1 ha cell
was assigned a class based on visual interpretation of CIR orthophotos
conducted by experienced photo-interpreters. The fractional coverages
of the three classes spruce, pine and others were assessed in 5% steps.
The resulting independent validation data set is shown in Fig. 5.

To assess the relative precision and accuracy of the two models (i.e.
the two-step approach vs. the pixel-based Landsat classification), the
root mean squared error (RMSE), the bias and the coefficient of de-
termination (R2) were calculated for each class (spruce, pine, others)
independently (see, for example Immitzer et al., 2016a for formulas).

3. Results

3.1. Land cover maps based on WV2 scenes

The median OOB overall accuracy (OA) for the 47 WV2 scenes was
93.8% (ranging from 87.6 to 97.4%), with some variation in class-
specific results (Fig. 6). Note that classes which were only present in
some WV2 scenes were aggregated to more general class groups. For
example, European larch, Douglas fir and white fir were combined in
Fig. 6 to create the class other coniferous tree species (post-classification
grouping).

The producer's accuracies (PA) for spruce ranged between 76.1 and
98.4% (median 88.0%), and those for pine between 30.4 and 100%
(median 85.9%). The user's accuracy (UA) ranged between 70.6 and
95.9% (median 88.2%) for spruce and 58.3 and 100% (median 84.7%)
for pine. The values for the other forest classes showed similar variation.
The non-forest classes achieved higher accuracies with lower variability
amongst the 47 WV2 scenes (Fig. 6).

As expected, image quality (acquisition date and acquisition para-
meters) determined the usability of the WV2 data for tree species se-
paration. Data from scenes acquired in summer months (June to
August) and acquisitions with near-nadir view angles showed the
highest suitability and achieved the highest accuracies (Supplementary
materials Table S1). For good class-specific performance, an adequate

Table 2
Explanatory variables for the regression models created in the second step of the approach.

EO input data No. of layers Metrics calculated for each 1 ha cell No. of explanatory variables

Landsat Reflectance June 2013 6 Mean, standard deviation, percentiles: minimum, 25th, median,
75th, maximum

42

Landsat Reflectance Aug 2013 6 Mean, standard deviation, percentiles: minimum, 25th, median,
75th, maximum

42

Normalized difference vegetation index (NDVI) bi-monthly time
series 2013

24 Mean, standard deviation 48

Normalized difference vegetation index (NDVI) bi-monthly time
series 2013

24 Amplitude and mean value March to August, mean of the year 3
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number of high-quality reference data was necessary.
The confusion matrix based on the OOB results of all reference data

is shown in Table 3. To generate this confusion matrix, the results of the
47 individual WV2 scenes were again combined. The class mixed spruce
and pine had the lowest class-specific accuracy, as this class was mainly
confused with the (pure) spruce and pine classes. Next to the mixed
class, the two other forest classes coniferous tree species and broadleaf
tree species showed the highest confusion with the two target classes
spruce and pine.

A visual check of the classified images sometimes revealed differ-
ences in model performance and map accuracy. Apparent mis-
classifications of the main classes spruce and pine were manually cor-
rected to avoid negative impacts on the final maps. The average

resulting change in the classification was around 2.5% of the classified
area (roughly one working day per scene). For some scenes, a greater
amount of effort was necessary, as scene quality and/or reference data
were sub-optimal (Supplementary materials Table S1).

For the second step, 5000 samples (1 ha cells) from each spatially
and thematically aggregated WV2 classification result were used. The
data distribution for each of the three classes is shown in Fig. 7.

3.2. Bavarian-wide spruce and pine maps

The RF regression models based on all 47 WV2 scenes, using only
the most important Landsat-based predictor variables, explained 79.8%
of the variance for spruce, 77.0% for pine and 87.9% for the class others

Fig. 4. Visualization of the iterative reduction in the number of WV2 scene, in which the decision of which scene to eliminate next was based on the average distance between the 1 ha
cells and the next nearest training cell: all 47 scenes (left), 15 scenes (center), last remaining scene (right). Remaining scenes are depicted in green. The grey-scale values represent the
distance which ranges from 0 km (white) to 226 km (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Independent validation data set (regular 2.5 km × 2.5 km
raster) produced by visual interpretation of the corresponding 1 ha
cell using orthophotos. The colors represent the dominant class:
green triangles indicate spruce, blue circles represent pine, red
squares illustrate others and grey diamonds, non-forest (only areas
inside the forest mask were interpreted). (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)

M. Immitzer et al. Remote Sensing of Environment xxx (xxxx) xxx–xxx

7



(OOB results). The most important variables for the spruce modeling
were the spectral reflectance values from the two Landsat data sets
(Bands 1, 4 and 3) and NDVI values from all seasons. Similar features
were important for the pine models, with the main difference being in-
creased importance of the NDVI metrics.

The results of the two-step mapping are presented in Fig. 8. The
maps show fractional coverages of spruce and pine from the WV2 clas-
sifications (top) and the Landsat-based upscaling (bottom), at a spatial
resolution of 1 ha. For> 90% of the 1 ha cells the sum of the fractional
coverage results of the three classes ranged between 98 and 102%. For
the final maps, all cells were rescaled to yield 100% in total.

The results of the independent validation of the two-step approach
and the direct (pixel-based) classification of Landsat data are shown in
Fig. 9. The R2 values for spruce and pine were 0.72 and 0.75, respec-
tively. The RMSE was 12.1% for pine and 14.2% for spruce. For all three
classes, bias was close to zero. With an R2 value of 0.82, the highest
correlation with the two-step approach was found for the class others,
which in this case represents only the other forest classes, as the

validation was applied only in forested areas.
The results for the pixel-based classification of the LS data (OOB

results are given in the Supplementary materials Table S2) were con-
siderably worse (Fig. 9, center row). For all three classes, significantly
lower R2 values, higher RMSE and higher bias values were observed.
The bottom row of Fig. 9 illustrates the model deviations from the in-
dependent validation data. For example, in the case of the two-step
approach for spruce, approximately 75% of the 1 ha cells are modeled
within the error margin of± 15%, while only 67% of the cells were
correctly modeled using the pixel-based approach. The bar charts in
Fig. 10 further summarize the strong improvement (R2, RMSE and bias)
obtained with the two-step mapping approach.

3.3. Reduction of WV2 scenes

To test the influence of the number of inputs, the number of WV2
scenes used was reduced in a step-wise process. With a decreasing
number of scenes, the R2 decreased and the RMSE increased (Fig. 11).

Fig. 6. Distribution of the producer's, user's and overall accuracies based on the OOB model results of the 47 WorldView-2 scene classifications. Classes which were used only for some
scenes were aggregated to more general class groups. (Abbreviations: S/P mixed: mixed spruce and pine stands, Conif: other coniferous tree species, Broad: broadleaf tree species, Veg:
non forest vegetation, Veg free: natural areas without vegetation).

Table 3
Confusion matrix based on the combined OOB results of all RF models. Classes which were used only for some scenes were aggregated to more general class groups. (Abbreviations: S/P
mixed: mixed spruce and pine stands, Conif: other coniferous tree species, Broad: broadleaf tree species, Veg: non forest vegetation, Veg free: natural areas without vegetation; UA: user's
accuracy, PA: producer's accuracy, OA: overall accuracy).

Spruce S/P mixed Pine Conif Broad Veg Water Veg free Sealed Shadow Clouds Σ UA

Spruce 4319 141 117 333 46 11 1 1 – 21 – 4990 0.866
S/P mixed 108 501 98 11 – 4 1 – – 2 – 725 0.691
Pine 105 128 1699 94 18 7 1 2 – 10 – 2064 0.823
Conif 238 9 98 2237 68 7 1 2 – 18 1 2679 0.835
Broad 51 – 38 100 5574 50 1 1 – 17 2 5834 0.955
Veg 15 – 15 28 70 7860 3 22 60 1 10 8084 0.972
Water – – – – – – 3103 2 27 31 1 3164 0.981
Veg free – – 1 1 – 21 2 2201 66 – 18 2310 0.953
Sealed – – – – 1 68 53 119 8087 11 2 8341 0.970
Shadow 34 4 13 17 28 3 24 – 6 2285 – 2414 0.947
Clouds – – 1 – – – – 19 5 – 1660 1685 0.985
Σ 4870 783 2080 2821 5805 8031 3190 2369 8251 2396 1694 42,290
PA 0.887 0.640 0.817 0.793 0.960 0.979 0.973 0.929 0.980 0.954 0.980 OA 0.935

Kappa 0.925
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However, the modeling accuracy decreased only slightly when the
number of scenes used was reduced from the original 47 to 15 WV2
scenes. Only below this point did further reduction of the number of
WV2 scenes lead to significant decreases in model performance. A re-
latively close relationship is seen between the modeling error (e.g.
RMSE) and the average distance of (empty) cells to the location of the
nearest WV2 scene (bottom of graphs), demonstrating the strong impact
of (spatially) well distributed and dense training samples (here cov-
erage with very high resolution data) on modeling accuracy.

4. Discussion

4.1. Model approach

Compared to a conceptually and computationally simpler pixel-
based classification, our two-step method achieved considerable im-
provement in accuracy using the same basic reference data. The likely
source of the increase in model accuracy is the fact that the two-step
process allowed substantially more training points to be collected than
is possible using a simple pixel-based classification. By first classifying
WV2 data; we obtained a larger amount of reference data, likely better
capturing the spectral differences between the mapped tree species.
Peculiarities in spectral and temporal signatures may, for example, re-
sult from differences in stand management and/or growing conditions
at a particular site. In addition, the large amount of reference data can
reduce the influence of possible misclassification introduced in the first
step.

The presented two-step method for mapping fractional coverage of
tree species gave good results, with 75% (spruce) to 84% (pine) of the
validation samples being modeled within the assumed uncertainty
of± 15% of the reference samples. The achieved R2 values based on
the independent validation samples were only slightly lower than the
OOB results for the three RF regression models, with similar trends and
patterns. This confirms the validity of OOB statistics for assessing RF
models mentioned in other studies (Hastie et al., 2009; Immitzer et al.,
2016a).

A completely independent validation based on orthophoto inter-
pretation using a regular grid covering the entire study site was per-
formed to assess model accuracies. The disadvantage of this approach is
that spatial shifts (or layover effects) between the orthophotos and the
map products could potentially have negative impacts on validation
accuracy. Nevertheless, we obtained satisfactory results. Our study
achieved R2 values for the three target classes ranging from 0.72 to 0.82
that are notably higher than those found in a similar study by Metzler
and Sader (2005). They reported R2 values of around 0.66 for the two
classes when upscaling soft- and hardwood coverages obtained from
IKONOS data to (multi-temporal) Landsat data. However, their analysis
was carried out in a different geographic area with different target

variables, thus limiting the value of a direct comparison. Other studies
using similar approaches for modeling forest cover also obtained similar
R2 values of around 0.80 (Donmez et al., 2015; Iverson et al., 1989;
Sexton et al., 2013).

The mapped spatial distribution of spruce and pine is similar to those
produced by the European Forest Institute (EFI) (not shown) based on
kriging of inventory data (Brus et al., 2012). However, the maps pro-
duced in our study have two main advantages: (i) they provide a higher
spatial resolution, and (ii) the artifacts which sometimes appear in the
EFI maps for species with rare(r) occurrences (e.g. strong over-
estimation around single inventory plots) are absent.

Compared to the official figures for spruce and pine acreages pro-
vided by the Bavarian State Institute of Forestry, we found distinct
differences. According to the official data derived from National Forest
Inventory (NFI) plots, spruce covers 41.8% of the forested area of
Bavaria, and pine 17.1% (Klemmt et al., 2014). From our data, however,
we calculated only 30.1% for spruce and 14.9% for pine. We believe that
the differences mainly result from diverging definitions of ‘coverage’.
For example, in our approach, we map the percentage crown coverage
in each 1 ha cell, whereas in the NFI a forest gap is counted as spruce if
it is located inside a spruce stand.

4.2. Considerations regarding the VHR input data

The classification of the WV2 data achieved very good results
overall. This is in line with several other studies that have demonstrated
the great potential of WV2 data for detailed land cover mapping, in-
cluding forest (Fassnacht et al., 2017; Immitzer et al., 2012; Karlson
et al., 2016; Omer et al., 2015; Waser et al., 2014).

The main drawback of WV2 data is its relatively high cost.
Depending on the number of occurring tree species in a given study
area, less expensive data with fewer spectral bands (see, for example
Waser et al., 2011 for use of airborne imagery) could possibly be
equally suitable for tree species classification (Immitzer et al., 2012). As
discussed, the sole purpose of the use of WV2 data in our study was to
expand the amount of detailed data available for training of RF re-
gression models. This could potentially also be achieved by making use
of other pre-existing high resolution maps. Fassnacht et al. (2016) for
example highlighted the fact that most of the tree species classification
studies considered in their review paper were data-driven and covered
only very small test sites with limited operational implementation op-
portunity. Hence, maps resulting from such small-scale studies could be
interesting input data sets for use in upscaling approaches such as the
method presented here. Using pre-existing classification results (even
those from different sensors) could further reduce data costs and,
therefore, be a cost-efficient tool for producing large-scale tree species
maps. Obviously, the quality of the VHR tree species classification is
very important for the overall modeling approach. Any

Fig. 7. Histograms of the reference data for the second step for the three Classes spruce (left), pine (center) and others (right). Data were obtained from the WV2 classification results.
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misclassification will negatively influence model accuracy in the second
step.

As expected, the date of the image collection and the acquisition
parameters had significant impacts on the resulting classification ac-
curacy. We used 47 WV2 scenes with off-nadir angles ranging from 2 to
25°. These images were acquired between the end of April and the end
of September. The scenes acquired in April or the beginning of May
were sub-optimal for tree species differentiation, due to the leafless
state of deciduous trees. In scenes covering mountainous areas, even
images from late May were not always adequate, since the broadleaf
trees in the valley had already developed leaves, whereas in the leaves
were still absent at higher elevations. For tree species classification in
Central Europe, we suggest using images acquired between mid-June
and the end of August. This proposed acquisition period also minimizes

the potential for negative impacts from illumination effects, like the
length of cast shadows.

Another important factor influencing the quality of the classifica-
tions was variation in off-nadir angle and viewing geometry. The
images used in this analysis were acquired with different off-nadir an-
gles. The scenes with angles up to 15° were generally satisfactory.
However, with higher view angles, especially those> 20°, we observed
some noticeable distortions in the images. This effect was most pro-
nounced in scenes with hilly terrain.

In order to assess the impact of the number of input scenes versus
mapping accuracy, we analyzed a higher number of WV2 scenes than
was thought necessary for an optimal cost versus accuracy trade-off. By
experimenting with using fewer scenes, we demonstrated that a far
smaller number of scenes are sufficient if these scenes are well

Fig. 8. Intermediate and final results of the two-step approach for spruce (left) and pine (right): aggregated WorldView-2 classifications (top); results of the large scale mapping using
Landsat time series to scale the WorldView-2 classifications up to the entire state of Bavaria (bottom).
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distributed over the study area and cover the various land cover and
forest types present in the study area. In this particular case, we ob-
served nearly no decrease in model performance as the number of WV2
scenes used as inputs was reduced from 47 to 15. Only below that
number, did errors begin to increase significantly, likely because critical
training samples were no longer available. The training data obtained
from these 15 scenes covers roughly 1% of Bavaria, as only 5000 cells
from each scene were used for the modeling approach (covering a total
land area of 750 km2).

4.3. Suitability of Landsat time series data to generate explanatory variables

Ten Landsat scenes from four paths (192 to 195) are necessary to
cover the entire land area of Bavaria. Getting cloud-free data for such a
large area (acquired within a short time interval and close to key
phenological dates) is a challenge. Difficulties increase if multi-tem-
poral data are necessary to be able to distinguish between spectrally
similar classes (Beck et al., 2006; Ju and Roy, 2008). To minimize the
impacts of clouds and acquisition time, we first tried to identify and
process suitable data for two dates from each path. Modeling was done

Fig. 9. Validation results: results of the two-step approach (x-axis) plotted against the independent validation data set produced using orthophoto interpretation (1st row), the same
comparison for the direct pixel-based classification (2nd row); (for better visualization of the data, some random variation was added to the validation estimations using the jitter
function), Cumulative distribution functions of the differences between the model results and the validation data for the two model approaches (vertical lines at± 15% were added to
display the probable uncertainty margin of the visual reference estimation) (3rd row).
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for each path separately (Immitzer et al., 2015). This requires the
availability of a sufficient amount of WV2 data per path. After mod-
eling, some post-processing is required to mosaic the mapping results
from the four paths together to create area-wide maps. To avoid pro-
blems related to the strip-wise data processing, we used in this study
gap-filled time series data (Vuolo et al., 2017). The gap-filling process
involves the creation of wall-to-wall homogeneous mosaics in the ori-
ginal Landsat spectral bands at bi-monthly temporal resolution (Fig. 2).
Hence, the entire study region can be processed in one step. For the
three classes spruce, pine and others we obtained nearly identical per-
formance: R2 values for spruce, pine and others were 0.72, 0.75 and 0.82,
compared to 0.74, 0.79 and 0.83 when processing the data strip-by-
strip (Immitzer et al., 2015). Similar results were found for the RMSE,
while the bias was reduced by using the gap-filled data.

Using smoothed and gap-filled Landsat data (Vuolo et al., 2017)
thus, simplifies processing and offers a number of further advantages:
(i) any number of cloud-free images from one specific vegetation period
can be used, and (ii) fewer reference data are necessary, as larger areas
are covered than in the original Landsat scenes/paths. Both aspects
deserve more research. In particular, we did not utilize the full time
series of spectral data, but instead used data from only two time steps
(Table 2). Using additional data could be useful, especially in efforts to
map a larger number of tree species.

5. Conclusion

The two-step method developed in this research provides a good
framework for producing high quality tree species maps for large areas.
The generated mapping results are important for forest monitoring and
management activities. Specifically, the spruce and pine maps gener-
ated in this study will be combined with risk maps by the Bavarian State
Institute of Forestry to be used in locating hot spots where forest con-
version activities should be prioritized. The fractional coverage maps at
a resolution of 1 ha are potentially useful for several other applications
such as landscape modeling or monitoring tasks.

The method developed here combines large-area Landsat mosaics
with very high resolution (VHR) WorldView-2 (WV2) data covering
only a relatively small part of the region of interest in a computationally
efficient way. The use of WV2 data permits expansion of the reference
data later available to train the RF models based on Landsat metrics.
The use of Landsat data for the final mapping considerably reduces the
costs associated with the acquisition and processing of commercial VHR
data over large areas.

In the present study, the approach was solely applied to map spruce
and pine. Obviously, application to other species is possible. The
method also permits the use of pre-existing (high resolution) maps as
inputs. To achieve acceptable accuracies, it is important that the full
variation in landscape types within the study area is well covered by the
VHR imagery or similar input data. In Bavaria, which has a very

Fig. 10. Comparison of the validation results for the three classes spruce, pine and others obtained using the two methods: the two-step approach (black) and the pixel-based classification
(grey): R2 values (left), RMSE values (center), and bias values(right).

Fig. 11. Validation results for RF-models based on decreasing numbers of WorldView-2 scenes (stepwise reduction of input data) for the three classes spruce, pine and others: (left) R2

values, (center) RMSE values, and (right) Bias values. At the bottom of each graph, the average minimum distance (MinDist) between (empty) 1 ha cells to the nearest WorldView-2 image
used is shown.
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heterogeneous landscape ranging from the Alps to lowlands, we found
that the very high resolution reference data should cover roughly 1% of
the total area in order to achieve 10–15% accuracy (RMSE) for mapping
fractional coverage of spruce and pine. For our data set, less compre-
hensive coverage significantly increased the modeling errors, as local
variation in spectral signatures was no longer captured.

The approach presented here is likely transferable to many other
remote sensing applications, and could potentially also work with other
VHR data (e.g., orthophotos, UAV, aerial airborne hyperspectral data)
combined with other decametric inputs such as Sentinel-2 instead of
Landsat data.
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